覃 慧, 王 宝
Möbius几何中的多分量Camassa-Holm方程
覃 慧, 王 宝*
(宁波大学 数学与统计学院, 浙江 宁波 315211)
研究了一般Möbius几何中的曲线流, 证明了一类多分量的Camassa-Holm方程等价于Möbius几何中的一个不变曲线流, 此方程是两分量Camassa-Holm方程的多分量推广, 也可以看成是一类多分量KdV系统的对偶可积系统. 最后得到了此方程的一个退化情形的尖峰孤子解.
不变曲线流; Möbius几何; Camassa-Holm方程; 多分量Camassa-Holm系统; 尖峰孤子解
本文在文献[12]的基础上把Möbius几何的李代数形式进一步推广, 证明一个(1++)分量的KdV方程和(1++)分量的Camassa-Holm方程可以从这一般Möbius几何中的曲线流中得到. 利用伸缩变换进一步研究这个多分量Camassa-Holm方程的柯西问题, 最终得到一个退化情形的尖峰孤子解.
2006年, Sanders等[9]研究了以下李代数确定的Möbius几何中的曲线流,
文献[12]从Sanders等[9]的工作出发, 提出研究由更一般的李代数
引入Lorentz群
和Möbius群
设
将式(3)代入式(4), 得到以下方程:
显然, 方程有以下解:
对此方程组可求得如下解:
代入方程(7)得到以下方程:
本节将研究方程(8)柯西问题
注意到
且满足条件
的表达式是方程(9)的全局弱解.
和
另一方面, 由式(10)有
直接计算得
和
因此, 将式(18)代入式(15), 式(19)代入式(16), 式(20)代入式(17), 并使用式(22)~(27)可以得到式(11). 定理证明完毕.
[1] Camassa R, Holm D D. An integrable shallow water equation with peaked solitons[J]. Physical Review Letters, 1993, 71(11):1661-1664.
[2] Escher R, Kohlmann J, Lenells J. The geometry of the two-component Camassa-Holm and Degasperis-Procesi equations[J]. Journal of Geometry and Physics, 2011, 61(2):436-452.
[3] Kouranbaeva S. The Camassa-Holm equation as a geodesic flow on the diffeomorphism group[J]. Journal of Mathematical Physics, 1999, 40(2):857-868.
[4] Gui G, Liu Y, Olver P J, et al. Wave-breaking and peakons for a modified Camassa-Holm equation[J]. Communications in Mathematical Physics, 2013, 319(3):731-759.
[5] Chou K S, Qu C Z. Integrable equations arising from motions of plane curves[J]. Physica D: Nonlinear Phenomena, 2002, 162(1/2):9-33.
[6] Lenells J. Traveling wave solutions of the Camassa-Holm equation[J]. Journal of Differential Equations, 2005, 217(2):393-430.
[7] Sanders J A, Wang J P. Integrable systems in-dimensional Riemannian geometry[J]. Moscow Mathematical Journal, 2003, 3(4):1369-1393.
[8] Spivak M. A Comprehensive Introduction to Differential Geometry[M]. 2nd ed. Wilmington: Publish or Perish Inc., 1979.
[9] Sanders J A, Wang J P. Integrable systems in-dimensional conformal geometry[J]. Journal of Difference Equations and Applications, 2006, 12(10):983- 995.
[10] Chen M, Liu S Q, Zhang Y J. A two-component generalization of the Camassa-Holm equation and its solutions[J]. Letters in Mathematical Physics, 2006, 75(1): 1-15.
[11] Qu C Z, Song J F, Yao R X. Multi-component integrable systems with peaked solitons and invariant curve flows in certain geometries[J]. Symmetry Integrability and Geometry: Methods and Applications, 2013, 9:001.
[12] Kang J, Liu X C, Qu C Z. On an integrable multi-component Camassa-Holm system arising from Möbius geometry[J]. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2021, 477(2251):20210164.
[13] Jenson G R, Musso E, Nicolodi L. Surfaces in Classical Geometries[M]. New York: Springer, 2016.
[14] Sharpe R W. Differential Geometry[M]. New York: Springer, 1997.
A multi-component Camassa-Holm equation arising from Möbius geometry
QIN Hui, WANG Bao*
( School of Mathematics and Statistics, Ningbo University, Ningbo 315211, China )
In this paper, we study curve flows in general Möbius geometry, and prove that a class of multi-component Camassa-Holm equations are equivalent to an invariant curve flow in Möbius geometry, which is a multi-component generalization of the two-component Camassa-Holm equation, and can also be regarded as a dual integrable system of a class of multi-component KdV systems. We also obtain a peaked solution for a degradation case of multi-component Camassa-Holm equations.
invariant curve flow; Möbius geometry; Camassa-Holm equation; multi-component Camassa-Holm system; peaked solution
O29
A
1001-5132(2023)03-0043-07
2022−11−08.
宁波大学学报(理工版)网址: http://journallg.nbu.edu.cn/
覃慧(1996-), 女, 广西桂平人, 在读硕士研究生, 主要研究方向: 可积系统. E-mail: qhwbatg@163.com
通信作者:王宝(1990-), 男, 河北保定人, 讲师, 主要研究方向: 可积系统. E-mail: wangbao@nbu.edu.cn
(责任编辑 韩 超)