王兆昊,郭兴茹,张乐欢,何永睿,陈善春,姚利晓
csi-miR399响应柑橘溃疡病菌侵染的表达模式及其抗病性分析
西南大学柑桔研究所/国家柑桔工程技术研究中心/国家柑桔品种改良中心,重庆 400712
【目的】明确csi-miR399响应柑橘溃疡病菌(subsp.,)侵染的表达模式,筛选其靶基因,进而分析csi-miR399与寄主抗性的相关性,为柑橘溃疡病抗性种质的创制打下基础。【方法】分别以柑橘溃疡病抗性品种四季橘()和感病品种纽荷尔脐橙()为试材,通过茎环qPCR方法分析csi-miR399在叶片离体注射1、3和5 d时的表达量变化,明确抗/感品种中csi-miR399响应侵染的表达模式;利用在线软件psRNATarget预测csi-miR399的靶基因,并通过qPCR分析候选靶基因在接种柑橘叶片和瞬时表达csi-miR399叶片中表达量的变化;克隆csi-miR399前体基因序列,通过同源重组方法构建病毒表达载体 pCLBV202-MIR399,根癌农杆菌介导的真空浸润法接种尤力克柠檬(),通过qPCR分析csi-miR399表达量;进而采用离体叶片针刺法接种,观察发病症状,统计病情指数,分析csi-miR399过表达对抗性的影响。【结果】接种后,csi-miR399在抗病品种四季橘中的表达呈现先下降再上升的趋势,而在感病品种纽荷尔脐橙中的表达呈持续下降趋势。接种5 d时,csi-miR399在四季橘与纽荷尔脐橙中的表达量分别是健康对照的4.64倍和7.61%,初步表明csi-miR399与柑橘的溃疡病抗性相关。从13个预测靶基因中筛选鉴定了csi-miR399的3个靶基因Cs2g06030、Cs7g03830、Cs8g18800,分别编码泛素偶联酶PHO2、未知蛋白和漆酶。利用构建的病毒表达载体pCLBV202-MIR399获得过表达csi-miR399的柠檬植株(Y37、Y41和Y57),与空载体对照pCLBV202接种植株(L35)相比,Y37、Y41和Y57中csi-miR399表达量显著增加,接种后的溃疡病病斑面积显著减小,病情指数显著降低(<0.01),表明csi-miR399过表达显著提高了柠檬的溃疡病抗性。【结论】csi-miR399与柑橘的溃疡病抗性密切相关,过表达csi-miR399显著提高柑橘对溃疡病的抗性,可应用于柑橘抗溃疡病的分子育种。
csi-miR399;柑橘溃疡病;靶基因;柑橘病毒表达载体;生物胁迫
【研究意义】柑橘溃疡病(citrus canker)是由柑橘黄单胞杆菌属柑橘致病变种(subsp,)引起的一种传播广泛、危害严重的细菌性病害[1],造成柑橘果实、叶片和茎段出现水浸状脓包样坏死性病变[2],给世界柑橘产业造成了巨大的经济损失。当前柑橘溃疡病主要通过传统农业措施、铜制剂农药等化学药剂及相关生物治理手段进行防治,存在成本高和环境不友好等系列问题[3-5]。筛选、鉴定优质的抗性基因或调控分子,开展抗性品种培育和应用成为柑橘溃疡病防控的最经济、有效的措施[6-8]。【前人研究进展】miRNA是生物体内一种长度约为20—24 nt的小RNA,能够与AGO1蛋白结合形成RISC(RNA-induced silencing complex),在植物中主要通过剪切转录本的方式来抑制靶基因翻译,发挥基因转录后调控作用[9-10],在植物-病原互作机制中具有非常重要的调节作用[11]。拟南芥miR393是植物中第一个发现的具有抗病作用的miRNA分子,被flg22诱导时,可降低生长素信号通路中F-box生长素受体、和的表达,从而抑制丁香假单胞菌()的生长[12];miR167可以通过降解生长素响应因子和转录本抑制生长素信号,影响气孔的开闭,调控对丁香假单胞菌的防御[13];miR160和miR398在水稻中过表达可增加过氧化氢含量和增强抗性反应基因的表达,抑制稻瘟病菌()的生长[14-15];番茄中过表达miR172a和miR172b可通过抑制转录因子增加对番茄晚疫病的抗性[16];杨树中miR319a抑制的表达,解除TCP19-RGA复合物对的抑制作用,从而促进的表达,增加叶片毛状体数量,增强杨树抗虫性[17];而抑制miR159的作用则提高了烟草对寄生疫霉()的抗性[18]。另外,还不断发现新的miRNA分子参与植物对生物胁迫的应答过程[19-20]。【本研究切入点】miR399是植物中一种保守的miRNA分子,通过降解靶基因泛素偶联酶()参与磷的吸收、转运和动态平衡[21-22],还参与花粉的雄性不育和果实品质的调控[23-25]。近期研究发现,miR399在植物抗生物胁迫中具有重要作用,过表达miR399可增强拟南芥对病原的抗性[26]。在多年生果树中也发现miR399参与生物胁迫应答过程,如感染苹果茎痘病毒(apple stem pitting virus,ASPV)[27]和柑橘黄龙病(Huanglongbing,HLB)[28]等果树中miR399表达量显著上升。然而miR399与柑橘溃疡病抗性的相关研究尚未见报道。【拟解决的关键问题】通过抗/感柑橘品种csi-miR399响应侵染的表达模式、csi-miR399靶基因筛选及病毒载体过表达csi-miR399植株的溃疡病抗性评价等研究,明确csi-miR399与柑橘溃疡病抗性的相关性,为柑橘溃疡病抗性育种提供优良基因资源。
试验于2020年9月至2022年3月在西南大学柑桔研究所完成。柑橘溃疡病抗性品种四季橘()和感病品种纽荷尔脐橙()等植物材料保存于国家柑桔品种改良中心温网室。
在28℃条件下于LB固体培养基中活化。挑选单克隆置于LB液体培养基中,28℃220 r/min过夜培养。第2天稀释菌液至A600值为0.2,并继续在28℃220 r/min条件下复摇至A600值介于0.5—0.7。随后将菌液5 000 r/min离心10 min,弃掉上清液,用等量无菌水重悬。选取大小均匀的健康叶片分别注射重悬菌液,对照叶片注射无菌水。在处理1、3和5 d时收集叶片,液氮冻存。进行3次生物学重复。
采用北京艾德莱生物科技有限公司(Aidlab)的EASY spin植物RNA快速提取试剂盒,依照说明书方法提取叶片RNA,采用微量高精度核酸蛋白检测仪测定RNA浓度。逆转录体系:2 µL 5×PrimeScript RT Master Mix(TaKaRa公司),0.5 µL miR399 RT-Primer(10 µmol·L-1)(表1),500 ng RNA,加RNase Free dH2O补足10 µL。反应条件:37℃30 min,85℃5 s。cDNA稀释5倍后直接用于qPCR或保存于-20℃备用。
根据miRbase数据库(https://www.mirbase.org/)中csi-miR399(miRbase收录号:MI0016711)序列,于TaKaRa官网In-Fusion HD Cloning在线引物设计工具(https://www.takarabio.com/)设计csi-miR399扩增引物pLGN-MIR399-F/pLGN-MIR399-R和pCLBV202- MIR399-F/pCLBV202-MIR399-R(表2)。以纽荷尔脐橙叶片cDNA为模板进行PCR,胶回收扩增产物分别与线性化表达载体pLGN和病毒表达载体pCLBV202进行同源重组连接,同源重组体系:2 µL 5×In-Fusion Snap Assembly Master Mix(TaKaRa公司),2 µL线性化载体,6 µL插入片段。反应条件为50℃ 30 min。连接产物转化大肠杆菌DH5,并筛选单克隆送擎科生物公司测序,构建成功的表达载体pLGN-MIR399和pCLBV202-MIR399分别转化根癌农杆菌EHA105和GV3101。
表1 qPCR相关引物核苷酸序列
参考Li等[30-31]的离体叶片注射法,在锦橙()上开展pLGN-MIR399的瞬时表达,并以pLGN作为对照。注射后22℃暗培养6 d,取注射部位叶片样品提RNA并反转录,通过qPCR分析csi-miR399及其靶基因的表达量。
参考张琦等[32]农杆菌介导的真空浸润法,对尤力克柠檬()实生苗接种病毒表达载体pCLBV202-MIR399,空载体 pCLBV202为对照。接种植株25℃恒温光照培养箱中16 h光照/8 h黑暗培养,8周龄时提取叶片RNA,以其反转录产物cDNA为模板,使用引物pClbv-s/r(表2)进行阳性植株筛选及csi-miR399的qPCR定量,作为内参对照。
溃疡病抗性评价参考Peng等[8]的离体叶片针刺接种法并略做修改。挑选健康叶片用75%酒精消毒,无菌水清洗干净后分装至150 mm大培养皿中(3个生物学重复),叶柄处包裹充分湿润的脱脂棉,对叶脉两侧区域进行针刺注射,每一边针孔大小和数目相同,每个针孔均使用移液枪接种1 µL重悬菌液。使用石蜡带封口培养皿,置于28℃恒温光照培养箱(16 h光照/8 h黑暗)中培养。每日观察叶片发病情况并进行记录,接种7和10 d进行拍照,Image J软件统计叶片溃疡病斑面积(lesion area,LA,mm2)。病情分级标准总共7级,分别为0级(LA≤0.25 mm2),1级(0.25 mm2<LA≤0.5 mm2),2级(0.5 mm2<LA≤0.75 mm2),3级(0.75 mm2<LA≤1 mm2),4级(1 mm2<LA≤1.25 mm2),5级(1.25 mm2<LA ≤1.5 mm2),6级(1.5 mm2<LA≤1.75 mm2),7级(LA>1.75 mm2)。根据以下公式计算病情指数(disease index,DI):DI=100×Σ(各级病斑数×相应级数值)/(病斑总数×最大级数)。
表2 载体构建相关引物核苷酸序列
柑橘不同品种对溃疡病的敏感性存在差异,四季橘是柑橘溃疡病抗性品种,而纽荷尔脐橙属于溃疡病敏感品种。在接种1 d时,四季橘和纽荷尔脐橙csi-miR399的表达量与水处理对照组相比均出现下降,分别为对照的36.44%和86.91%。在接种3 d 时,四季橘叶片与对照组没有观测到区别,csi-miR399表达量为对照的81.09%;纽荷尔脐橙叶片出现水渍状突起边缘,csi-miR399表达下调为对照的15.95%。在接种5 d 时,四季橘叶片接种部位发生褐变,csi-miR399表达上调为对照组的4.64倍;而纽荷尔脐橙叶片水渍状突起更为明显,csi-miR399表达量为对照组的7.61%(图1)。以上结果显示,csi-miR399在四季橘和纽荷尔脐橙感病初期下调,但随着感染时间延长,csi-miR399在四季橘中表达上调,而在纽荷尔脐橙中表达持续下调。表明csi-miR399在柑橘抗性品种和敏感品种中对的应答反应不同,可能与柑橘的溃疡病抗性相关。
利用psRNATarget软件预测到csi-miR399的13个候选靶基因,定量PCR检测这些基因在经处理5 d 时叶片的表达情况(图2)。结果发现,Cs7g03830(未知蛋白)在四季橘中下调表达,在纽荷尔脐橙中上调表达,与csi-miR399的表达趋势相反,推测其可能是csi-miR399的作用靶标。Cs2g06030(泛素偶联酶)和Cs8g18800(漆酶)在四季橘中下调表达,与csi-miR399的表达趋势相反,在纽荷尔脐橙中无差异,推测其也可能是csi-miR399的作用靶标。其他10个预测靶基因Cs2g02870、Cs8g05410、Cs2g14510、orange1.1t02010、Cs3g09820、Cs7g08000、Cs7g22930、orange1.1g025013m、Cs4g04510和orange1.1t01536在四季橘和纽荷尔脐橙中或无表达差异、或表达趋势均上调或均下调、或与csi-miR399的表达趋势一致,不是csi-miR399的直接靶标。
A:接种溃疡病菌5 d时柑橘叶片症状,NH5X和SJ5X分别为纽荷尔脐橙和四季橘Symptoms of citrus leaves inoculated with Xcc at 5 d, NH5X and SJ5X are C. sinensis and C. microcarpa, respectively;B:csi-miR399在纽荷尔脐橙和四季橘中的表达差异The differential expression of csi-miR399 in C. sinensis and C. microcarpa
1: csi-miR399; 2: Cs2g02870; 3: Cs2g06030; 4: Cs2g14510; 5: Cs3g09820; 6: Cs4g04510; 7: Cs7g03830; 8: Cs7g08000; 9: Cs7g22930; 10: Cs8g05410; 11: Cs8g18800; 12: orange1.1g025013m; 13: orange1.1t01536; 14: orange1.1t02010
为进一步验证csi-miR399的候选靶基因,在柑橘叶片中利用根癌农杆菌瞬时转化pLGN-MIR399,检测csi-miR399及其候选靶基因Cs2g06030、Cs7g03830和Cs8g18800的表达量。结果显示,与瞬时转化pLGN空载的叶片相比,瞬时过表达csi-miR399的叶片中csi-miR399的表达量上调1.34倍,而Cs2g06030、Cs7g03830、Cs8g18800的表达量则分别下降了12.25%、16.84%和53.29%(图3)。该结果进一步确定csi-miR399可调控候选靶基因Cs2g06030、Cs7g03830、Cs8g18800的表达,证实了csi-miR399与3个候选基因之间的靶向关系。
以柑橘cDNA为模板,pCLBV202-MIR399-F和pCLBV202-MIR399-R为引物扩增csi-miR399前体基因序列,电泳结果表明PCR产物符合预期,大小为130 bp(图4-A)。回收扩增产物,与基于柑橘叶斑驳病毒(citrus leaf blotch virus,CLBV)的表达载体pCLBV202[32]连接,获得重组植物病毒表达载体pCLBV202-MIR399(图4-B)。
图3 pLGN-MIR399瞬时过表达柑橘叶片中csi-miR399及其靶基因的相对表达量
A:csi-miR399的PCR扩增条带Amplification of csi-miR399 by PCR;B:表达载体构建示意图Schematic diagram of expression vectors of csi-miR399
利用根癌农杆菌介导的真空浸润法[33]将pCLBV202-MIR399及空载体pCLBV202接种至尤力克柠檬,用引物对pClbv-s/r(表2)进行RT-PCR检测。结果表明获得pCLBV202-MIR399阳性植株3株(Y37、Y41和Y57),空载对照pCLBV202阳性植株一株(L35)(图5-A)。对4个株系中csi-miR399的表达情况进行qPCR分析。结果表明,3个过表达株系csi-miR399表达量均有上调,其中Y37株系的csi-miR399表达量为对照的1.72倍(图5-B)。
通过离体叶片针刺法接种,观察过表达植株(Y37、Y41和Y57)及对照植株(L35)的叶片发病情况。结果发现,在接种1 d时,全部叶片除针孔损伤外无其他明显病变特征;接种3 d时,全部叶片的针孔处损伤加重,且在针孔周围出现淡黄色和白色晕圈,不同植株间程度轻重不一;接种5 d时,大部分植株的叶片溃疡病症状加剧,在接种针孔部位开始出现明显脓包,且呈扩增趋势,但过表达植株病斑显著小于对照植株;接种7 d时,过表达植株的菌斑面积已基本达到稳定状态,与接种10 d时的病斑点面积无明显差别,对照L35植株在10 d时的病斑面积则进一步显著增加(图6-A)。统计病斑面积计算病情指数,结果显示过表达植株在7和10 d时的病情指数显著低于对照植株(图6-B)。上述结果说明过表达csi-miR399能够提高植株的溃疡病抗性,显著减轻侵染的症状。
A:pCLBV202-MIR399接种尤力克柠檬植株的RT-PCR检测RT-PCR detection of lemon plants inoculated with pCLBV202-MIR399;B:pCLBV202-MIR399接种柠檬植株内csi-miR399的相对表达量Relative expression of csi-miR399 in lemon plants inoculated with pCLBV202-MIR399
图6 过表达csi-miR399柠檬叶片接种 Xcc的症状(A)及病情指数(B)
近期研究表明,miR399参与植物的生物胁迫反应。果树受苹果茎痘病毒和黄龙病菌感染后miR399表达上调[27-28]。本研究发现在感染5 d 时,抗性品种中csi-miR399表达量显著增加,而敏感品种中则显著下降(图1)。利用病毒载体在柑橘中过表达csi-miR399可使溃疡病病斑面积显著减小,病情指数显著降低(图6),这表明csi-miR399与柑橘的溃疡病抗性密切相关。不过,本研究未开展寄主csi-miR399前体的干扰试验及干扰植株的溃疡病抗性评价,有待于进一步完善。
拟南芥中过表达miR399可提高植物对真菌病原()和半活体寄生真菌()的抗性[26],但在水稻中miR399的过表达则会使得植株对稻瘟病菌的敏感性增强[34]。这种抗性的差异可能与转基因植物体内磷含量的变化相关,但具体原因未知。miR399/PHO2是一组公认的miRNA-靶基因组合,在植物中PHO2负责编码泛素偶联酶,与磷稳态平衡有密切联系[35-36]。在柑橘中miR399通过调控靶基因的翻译,作用于转录因子和,影响花器官的发育[23];miR399-模块同样在冬小麦中作用于正调控植物的抗冻性[37]。在本试验中,柑橘Cs2g06030()确认为溃疡病胁迫下csi-miR399作用的靶基因(图2、图3),可能通过转录因子和抗性基因的泛素化过程参与csi-miR399对柑橘溃疡病的抗性作用。
除外,有报道碱性/中性转化酶基因[25,38]、转录因子和[39]也是miR399的靶基因。本研究发现漆酶(Cs8g18800)是csi-miR399潜在的靶基因。漆酶是参与木质素合成的多基因蛋白家族,在生物胁迫下,不同成员呈现上调或下调表达;过表达漆酶基因增强植物对生物胁迫的抗性,而干扰漆酶的表达也存在抗性增强现象[40]。miR399-漆酶模块在柑橘溃疡病抗性中的调控作用需要进行深入研究。
植物病毒载体已用于外源基因的表达,该方法不需转化和再生,比传统的根癌农杆菌转化方法操作简便、耗时短且可通过嫁接接种至多个寄主品种。柑橘叶斑驳病毒(CLBV)在多数柑橘品种中不显示症状,且目前尚未发现传播虫媒,因此基于该病毒的载体具有较高的安全性,已成功用于开花基因和抗菌肽等已知功能基因的表达,可如同植物双元表达载体一样实现外源基因的过表达和发挥生物学功能[32,41]。本试验在上述研究基础上推进一步,利用基于CLBV的病毒表达载体实现csi-miR399在柑橘中的过表达,并证明该基因的过表达可提高柑橘对溃疡病的抗性。并且,转pCLBV202-MIR399的柑橘实生苗嫁接到枳砧,4年后仍可检测到CLBV病毒和csi-miR399表达,显示该病毒载体在柑橘体内具有较强的稳定性。因此,利用基于CLBV的病毒载体过表达miRNA为柑橘溃疡病提供了一种新型防控技术。
csi-miR399与柑橘的溃疡病抗性密切相关,过表达csi-miR399显著提高柑橘对溃疡病的抗性,可应用于柑橘抗溃疡病的分子育种或病害防控。
致谢:西南大学宋震教授惠赠病毒表达载体pCLBV202,胡军华副研究员惠赠柑橘溃疡病菌。在此表示感谢!
[1] AL-SAADI A, REDDY J D, DUAN Y P, BRUNINGS A M, YUAN Q, GABRIEL D W. All five host-range variants ofcarry onehomolog with 17.5 repeats that determines pathogenicity on citrus, but none determine host-range variation. Molecular Plant-Microbe Interactions,2007, 20(8): 934-943. doi: 10.1094/mpmi- 20-8-0934.
[2] PITINO M, ARMSTRONG C M, DUAN Y P. Rapid screening for citrus canker resistance employing pathogen-associated molecular pattern-triggered immunity responses. Horticulture Research,2015, 2: 15042. doi: 10.1038/hortres.2015.42.
[3] 王晓宇, 彭埃天, 宋晓兵, 黄峰, 崔一平. 柑橘溃疡病综合防控技术研究进展. 中国农学通报,2021, 37(31): 106-111.
WANG X Y, PENG A T, SONG X B, HUANG F, CUI Y P. Comprehensive control technology of citrus bacterial canker disease: a review. Chinese Agricultural Science Bulletin, 2021, 37(31): 106-111. (in Chinese)
[4] ISLAM M N, ALI M S, CHOI S J, HYUN J W, BAEK K H. Biocontrol of citrus canker disease caused bysubsp.using an endophytic. Plant Pathology Journal,2019, 35(5): 486-497. doi: 10.5423/ppj.Oa.03.2019.0060.
[5] VILLAMIZAR S, FERRO J A, CAICEDO J C, ALVES L M C. Bactericidal effect of entomopathogenic bacteriumagainstreduces citrus canker disease severity. Frontiers in Microbiology,2020, 11: 1431. doi: 10.3389/ fmicb.2020.01431.
[6] CONTI G, XOCONOSTLE-CAZARES B, MARCELINO-PEREZ G, HOPP H E, REYES C A. Citrus genetic transformation: an overview of the current strategies and insights on the new emerging technologies. Frontiers in Plant Science,2021, 12: 768197. doi: 10.3389/fpls.2021.768197.
[7] 姚利晓, 范海芳, 张庆雯, 何永睿, 许兰珍, 雷天刚, 彭爱红, 李强, 邹修平, 陈善春. 柑橘溃疡病抗性相关转录因子CitMYB20的功能. 中国农业科学,2020, 53(10): 1997-2008. doi: 10.3864/j.issn.0578- 1752.2020.10.007.
YAO L X, FAN H F, ZHANG Q W, HE Y R, XU L Z, LEI T G, PENG A H, LI Q, ZOU X P, CHEN S C. Function of citrus bacterial canker resistance-related transcription factor CitMYB20. Scientia Agricultura Sinica, 2020, 53(10): 1997-2008. doi: 10.3864/j.issn.0578-1752.2020. 10.007. (in Chinese)
[8] PENG A H, CHEN S C, LEI T G, XU L Z, HE Y R, WU L, YAO L X, ZOU X P. Engineering canker-resistant plants through CRISPR/Cas9- targeted editing of the susceptibility genepromoter in citrus. Plant Biotechnology Journal,2017, 15(12): 1509-1519. doi: 10.1111/ pbi.12733.
[9] CHEN X M. Small RNAs and their roles in plant development. Annual Review of Cell and developmental Biology,2009, 25: 21-44. doi: 10.1146/annurev.cellbio.042308.113417.
[10] VAUCHERET H. Post-transcriptional small RNA pathways in plants: mechanisms and regulations. Genes & Development,2006, 20(7): 759-771. doi: 10.1101/gad.1410506.
[11] YANG X, ZHANG L, YANG Y, SCHMID M, WANG Y. miRNA mediated regulation and interaction between plants and pathogens. International Journal of Molecular Sciences,2021, 22(6): 2913. doi: 10.3390/ijms22062913.
[12] NAVARRO L, DUNOYER P, JAY F, ARNOLD B, DHARMASIRI N, ESTELLE M, VOINNET O, JONES J D. A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science,2006, 312(5772): 436-439. doi: 10.1126/science.1126088.
[13] CARUANA J C, DHAR N, RAINA R. Overexpression ofinduces salicylic acid-dependent defense againstthrough the regulation of its targetsand. Plant Direct,2020, 4(9): e00270. doi: 10.1002/pld3.270.
[14] LI Y, LU Y G, SHI Y, WU L, XU Y J, HUANG F, GUO X Y, ZHANG Y, FAN J, ZHAO J Q,. Multiple rice microRNAs are involved in immunity against the blast fungus. Plant Physiology,2014, 164(2): 1077-1092. doi: 10.1104/pp.113.230052.
[15] LI Y, CAO X L, ZHU Y, YANG X M, ZHANG K N, XIAO Z Y, WANG H, ZHAO J H, ZHANG L L, LI G B,. Osa-miR398b boosts H2O2production and rice blast disease-resistance via multiple superoxide dismutases. New Phytologist,2019, 222(3): 1507-1522. doi: 10.1111/nph.15678.
[16] LUAN Y S, CUI J, LI J, JIANG N, LIU P, MENG J. Effective enhancement of resistance toby overexpression of miR172a and b in. Planta,2018, 247(1): 127-138. doi: 10.1007/s00425-017-2773-x.
[17] FAN D, RAN L Y, HU J, YE X, XU D, LI J Q, SU H L, WANG X Q, REN S, LUO K M. miR319a/TCP module and DELLA protein regulate trichome initiation synergistically and improve insect defenses in. New Phytologist,2020, 227(3): 867-883. doi: 10.1111/nph.16585.
[18] ZHENG Z, WANG N, JALAJAKUMARI M, BLACKMAN L, SHEN E, VERMA S, WANG M B, MILLAR A A. miR159 represses a constitutive pathogen defense response in tobacco. Plant Physiology,2020, 182(4): 2182-2198. doi: 10.1104/pp.19.00786.
[19] MISHRA R, MOHANTY J N, CHAND S K, JOSHI R K. Can-miRn37a mediated suppression of ethylene response factors enhances the resistance of chilli against anthracnose pathogenL. Plant Science,2018, 267: 135-147. doi: 10.1016/j.plantsci.2017.12.001.
[20] XU Y, WANG R, MA P, CAO J, CAO Y, ZHOU Z, LI T, WU J, ZHANG H. A novel maize microRNA negatively regulates resistance to. Molecular Plant Pathology,2022, 23(10): 1446-1460. doi: 10.1111/mpp.13240.
[21] BARI R, PANT B D, STITT M, SCHEIBLE W R. PHO2, microRNA399, and PHR1 define a phosphate-signaling pathway in plants. Plant Physiology,2006, 141(3): 988-999. doi: 10.1104/pp.106. 079707.
[22] PANT B D, BUHTZ A, KEHR J, SCHEIBLE W R. MicroRNA399 is a long-distance signal for the regulation of plant phosphate homeostasis. The Plant Journal,2008, 53(5): 731-738. doi: 10.1111/j. 1365-313X.2007.03363.x.
[23] WANG R, FANG Y N, WU X M, QING M, LI C C, XIE K D, DENG X X, GUO W W. The miR399-module regulates reproductive development and male fertility in citrus. Plant Physiology,2020, 183(4): 1681-1695. doi: 10.1104/pp.20.00129.
[24] WANG Y, ZHANG J, CUI W, GUAN C, MAO W, ZHANG Z. Improvement in fruit quality by overexpressing miR399a in woodland strawberry. Journal of Agricultural and Food Chemistry,2017, 65(34): 7361-7370. doi: 10.1021/acs.jafc.7b01687.
[25] HU Z, WANG F S, YU H, ZHANG M M, JIANG D, HUANG T J, XIANG J S, ZHU S P, ZHAO X C. Effects of scion-rootstock interaction on citrus fruit quality related to differentially expressed small RNAs. Scientia Horticulturae,2022, 298: 110974. doi: 10.1016/ j.scienta.2022.110974.
[26] VAL-TORREGROSA B, BUNDO M, MARTIN-CARDOSO H, BACH-PAGES M, CHIOU T J, FLORS V, SEGUNDO B S. Phosphate-induced resistance to pathogen infection in. The Plant Journal,2022, 110(2): 452-469. doi: 10.1111/tpj.15680.
[27] ZHANG Q, ZHANG Y, WANG S, HAO L, WANG S, XU C, JIANG F, LI T. Characterization of genome-wide microRNAs and their roles in development and biotic stress in pear. Planta,2019, 249(3): 693-707. doi: 10.1007/s00425-018-3027-2.
[28] ZHAO H W, SUN R B, ALBRECHT U, PADMANABHAN C, WANG A R, COFFEY M D, GIRKE T, WANG Z H, CLOSE T J, ROOSE M,. Small RNA profiling reveals phosphorus deficiency as a contributing factor in symptom expression for citrus Huanglongbing disease. Molecular Plant,2013, 6(2): 301-310. doi: 10.1093/mp/sst002.
[29] DAI X, ZHUANG Z, ZHAO P X. psRNATarget: a plant small RNA target analysis server (2017 release). Nucleic Acids Research,2018, 46(W1): W49-w54. doi: 10.1093/nar/gky316.
[30] LI F, DAI S, DENG Z, LI D, LONG G, LI N, LI Y, GENTILE A. Evaluation of parameters affecting-mediated transient expression in citrus. Journal of Integrative Agriculture,2017, 16(3): 572-579. doi: 10.1016/S2095-3119(16)61460-0.
[31] ACANDA Y, WELKER S, ORBOVIĆ V, LEVY A. A simple and efficient agroinfiltration method for transient gene expression in citrus. Plant Cell Reports,2021, 40(7): 1171-1179. doi: 10.1007/s00299-021- 02700-w.
[32] 张琦, 段玉, 苏越, 蒋琪琪, 王春庆, 宾羽, 宋震. 基于柑橘叶斑驳病毒的表达载体构建及应用. 中国农业科学,2022, 55(22): 4398-4407. doi: 10.3864/j.issn.0578-1752.2022.22.006.
ZHANG Q, DUAN Y, SU Y, JIANG Q Q, WANG C Q, BIN Y, SONG Z. Construction and application of expression vector based on citrus leaf blotch virus. Scientia Agricultura Sinica, 2022, 55(22): 4398-4407. doi: 10.3864/j.issn.0578-1752.2022.22.006. (in Chinese)
[33] SIMMONS C W, VANDERGHEYNST J S, UPADHYAYA S K. A model ofvacuum infiltration into harvested leaf tissue and subsequenttransgene transient expression. Biotechnology and Bioengineering,2009, 102(3): 965-970. doi: 10.1002/bit.22118.
[34] CAMPOS-SORIANO L, BUNDO M, BACH-PAGES M, CHIANG S F, CHIOU T J, SEGUNDO B S. Phosphate excess increases susceptibility to pathogen infection in rice. Molecular Plant Pathology,2020, 21(4): 555-570. doi: 10.1111/mpp.12916.
[35] PEGLER J L, NGUYEN D Q, OULTRAM J M J, GROF C P L, EAMENS A L. Molecular manipulation of the miR396 and miR399 expression modules alters the response ofto phosphate stress. Plants,2021, 10(12): 2570. doi: 10.3390/plants10122570.
[36] LIN S I, CHIANG S F, LIN W Y, CHEN J W, TSENG C Y, WU P C, CHIOU T J. Regulatory network of microRNA399 and PHO2 by systemic signaling. Plant Physiology,2008, 147(2): 732-746. doi: 10.1104/pp.108.116269.
[37] PENG K K, TIAN Y, SUN X Z, SONG C H, REN Z P, BAO Y Z, XING J P, LI Y S, XU Q H, YU J, ZHANG D, CANG J. tae-miR399-module enhances freezing tolerance in winter wheat via a CBF signaling pathway. Journal of Agricultural and Food Chemistry,2021, 69(45): 13398-13415. doi: 10.1021/acs.jafc.1c04316.
[38] ZHOU H, LI C, QIU X, LU S. Systematic analysis of alkaline/neutral invertase genes reveals the involvement of Smi-miR399 in regulation ofand. Plants,2019, 8(11): 490. doi: 10.3390/plants8110490.
[39] BAEK D, CHUN H J, KANG S, SHIN G, PARK S J, HONG H, KIM C, KIM D H, LEE S Y, KIM M C, YUN D J. A role formiR399f in salt, drought, and ABA signaling. Molecules and Cells,2016, 39(2): 111-118. doi: 10.14348/molcells.2016.2188.
[40] BAI Y, ALI S, LIU S, ZHOU J, TANG Y. Characterization of plant laccase genes and their functions. Gene,2023, 852: 147060. doi: 10.1016/j.gene.2022.147060.
[41] VELAZQUEZ K, AGUERO J, VIVES M C, ALEZA P, PINA J A, MORENO P, NAVARRO L, GUERRI J. Precocious flowering of juvenile citrus induced by a viral vector based oncitrus leaf blotch virus: a new tool for genetics and breeding. Plant Biotechnology Journal,2016, 14(10): 1976-1985. doi: 10.1111/pbi.12555.
Expression pattern of csi-miR399 in response tosubsp.infection and its disease resistance analysis
Citrus Research Institute, Southwest University/National Citrus Engineering Technology Research Center/National Center for Citrus Varieties Improvement, Chongqing 400712
【Objective】The objective of this study is to identify the expression pattern of csi-miR399 in response to the infection of citrus canker bacteria (subsp.,), screen its target genes, analyze the correlation between csi-miR399 andresistance in host plants, and to lay a foundation for the creation of citrus canker resistant germplasms.【Method】In order to clarify the expression pattern of csi-miR399 in response toinfection,-resistantvariety Calamondin ()-sensitive variety Newhall Navel Orange () were used as materials, and changes in the relative expression of csi-miR399 were analyzed by stem-loop qPCR after their leaves were injected withat 1, 3 and 5 d. The online software psRNATarget was used to predict the target genes of csi-miR399, which were further confirmed by qPCR in citrus leaves infected withand transiently over-expressed with csi-miR399. The viral expression vector pCLBV202-MIR399 was constructed by in-fusion cloning through csi-miR399 precursor sequence being inserted into pCLBV202, and transferred into Eureka Lemon () by-mediated vacuum infiltration. The lemon over-expressed with csi-miR399 was evaluated for resistance againstthrough being stab-inoculated with the pathogen and investigated disease index.【Result】After inoculation with, the expression of csi-miR399 in Calamondin showed a downward trend and then an upward trend, while that in Newhall Navel Orange continued to decrease. At 5 d, the expression of csi-miR399 in Calamondin and Newhall Navel Orange was 4.64 times and 7.61% as its expression in healthy leaves, respectively, preliminary indicating that csi-miR399 was related to citrus canker resistance. Thirteen predicted target genes were screened from citrus genome. Three of them were confirmed because of the opposite expression trends with csi-miR399, which were Cs2g06030 (), Cs7g03830 (unknown protein), and Cs8g18800 (laccase). Three lemon strains (Y37, Y41 and Y57) with over-expressed csi-miR399 were obtained. Comparing with L35 (empty vector pCLBV202), csi-miR399 was significantly up-regulated in the Y37, Y41 and Y57 strains. The area of canker lesions in Y37, Y41 and Y57 was also significantly reduced, and the disease index was significantly decreased after inoculation with(<0.01). It indicated that overexpression of csi-miR399 significantly enhanced the resistance to citrus canker.【Conclusion】csi-miR399 is closely related to the resistance of citrus to canker disease. Overexpression of csi-miR399 significantly improves the resistance, which can be applied to the molecular breeding of citrus against canker disease.
csi-miR399; citrus canker; target gene; over-expression vector based on citrus virus; biotic stress
10.3864/j.issn.0578-1752.2023.08.005
2023-01-20;
2023-01-31
国家重点研发计划(2021YFD1400800,2021YFD1600800)、国家现代农业(柑橘)产业技术体系(CARS-26)
王兆昊,E-mail:wangzh0614@163.com。通信作者姚利晓,E-mail:yaolixiao@cric.cn
(责任编辑 岳梅)