由一道2022年高考压轴题引发的研究

2023-04-12 03:53:19丁成荣
数理化解题研究·高中版 2023年3期
关键词:构造导数研究

摘   要:关于ex、lnx、x的组合函数问题,按常规方法解答难度较大.如果能抓住组合函数的结构特征,合理构造新函数,可以将问题转化为常见的超越函数问题.2022年高考甲卷第22题至少可以用两种不同的构造法来解答.

关键词:构造;导数;研究

中图分类号:G632         文献标识码:A         文章编号:1008-0333(2023)07-0056-03

1 题目再现

题目   (2022年全国高考甲卷第22题)已知函数fx=exx-lnx+x-a.

(1)若fx≥0,求a的取值范围;

(2)证明:若fx有两个零点x1,x2,则x1x2<1.

2 总体把握

本题题设简洁,问题常规.第一问模式近十年来经常考查,本质是求函数的最小值,进而得出参数范围.可以直接求最小值,也可以分离参数构造函数求最值,还可以指数与对数相互转化构造函数求最值.第二问属于典型的极值点偏移问题,有很多办法可以处理它,由于问题有高数背景,并不容易解答.紧紧扣住已知函数的结构,指数与对数相互转化构造函数相对容易一些.

3 解法探究

3.1 常规解法

分析1   对于(1),利用教材知识:用导数研究函数的单调性、极值、最值,按部就班可以解答,在求導过程中,注意因式分解,将超越式转换为整式或分式,基本功扎实的学生还是可以完成的.

对于(2),直接作答,思路不畅,方向不明,我们利用分析法,将问题等价转化为exx-xe1x-2lnx-12x-1x>0,这个过程还是比较漫长的,对学生的能力要求较高.最后结合导数的功能可以完成证明.

构造法解题显得很便捷,使用也非常广泛,在三角、数列、函数、导数、解析几何、立体几何、解不等式中均有应用.在平常学习中应注意积累,在结构上下功夫,提高应用意识,主动探究构造路径,一些问题构造方法较多,如本题.通过本题的对比解答,不难看出构造法的妙处,通过长期主动训练,一定能提高我们的创新水准.

参考文献:

[1] 胡贵平.指对同构法处理导数题[J].数理化解题研究,2021(01):30-32.

[2] 符强如.着眼基础 回归教材——2019年全国Ⅱ卷第22题解析与思考[J].理科考试研究,2020,27(03):15-17.

[责任编辑:李   璟]

收稿日期:2022-12-05

作者简介:丁成荣(1983.7-),男,江苏省盐城人,本科,中学一级教师,从事高中数学课堂教学研究.

猜你喜欢
构造导数研究
FMS与YBT相关性的实证研究
辽代千人邑研究述论
解导数题的几种构造妙招
视错觉在平面设计中的应用与研究
科技传播(2019年22期)2020-01-14 03:06:54
EMA伺服控制系统研究
关于导数解法
真空挤压成型机螺旋及其对坯体质量的影响
佛山陶瓷(2016年12期)2017-01-09 13:40:09
工业机器人技术的发展与应用综述
一对奇N阶幻立方MCl和MC2
导数在圆锥曲线中的应用