响应面优化微波辅助绿茶茶多酚提取工艺

2023-03-16 09:23马小雨罗彩萍海军军医大学药学院上海200433上海市药物中药代谢产物研究重点实验室上海200433
药学实践杂志 2023年2期
关键词:蒸馏水茶多酚输出功率

马小雨,罗彩萍,刘 悦,2 (.海军军医大学药学院, 上海 200433;2.上海市药物(中药)代谢产物研究重点实验室,上海 200433)

我国的绿茶资源十分丰富,茶多酚系指绿茶中富含的多种酚类化合物,在绿茶中含量约为15%~30%[1],具有降低血压、调血脂、抗菌消炎、治疗放射损伤、预防骨质疏松、减肥、抗癌、抗氧衰老等广泛的药理作用[2-7]。

随着大众对天然健康产品需求日益增长,茶多酚市场展现出强劲的发展动力,茶多酚的提取工艺仍是影响茶多酚制品深加工和跨界开发利用的重要环节[8]。溶剂萃取法、超声提取法、微波提取法、生物酶提取法和超临界萃取法(SFE)等是业内常用的茶多酚提取方式[9]。传统有机溶剂萃取操作简便但存在提取得率及纯度低、溶剂残留、耗时长等缺点;超临界萃取法效率高但设备投资高因而推广性不强;酶辅助提取条件温和、环境友好,但成本较高,酶制剂易残留;超声提取法具有高效、快速的优点,常与溶剂萃取法结合,以提高茶多酚得率并提升企业经济效益,但提取时间过长会影响提取效果[9-12];微波提取法以穿透力强、可供选择溶剂较多且用量少、产物活性优良等为优势,适用于耐热成分的提取[13-16]。常见的提取工艺优化方法有均匀试验、正交试验(OED)、响应面优化(RSM)等[17],均匀试验适用于多因素、多水平情况但追求最大化均匀性、忽略部分正交性导致了结果的不稳定性[18-20],正交试验具有试验量少的优点但最佳参数仅局限于已设水平的组合[21],在更加广泛的范围内考察各因素间的交互作用并希望得到高精确度的回归方程则多采用响应面优化法[22]。

1 材料与方法

1.1 材料与试剂

高级绿茶,实验前置于50 ℃烘箱干燥,研磨至细粉;茶多酚标准品(含量≥98%,乐美天医药科技有限公司)。

试 剂: 无 水 乙 醇、KH2PO4、FeSO4·7H2O、Na2HPO4·12H2O (分析纯,中国医药集团上海化学试剂公司);没食子酸(纯度≥ 98%)、四水合酒石酸钠钾(分析纯,德国Ehrenstorfer公司)。

1.2 仪器

仪器: IS09001电子分析天平(德国Sartorius公司);G70D20CN1P-D2(S0)微波炉(广东格兰仕有限公司);ANPEL 2300TH超声波清洗器(上海安谱有限公司);UV2310 紫外-可见分光光度计[天美(中国)科学仪器有限公司];DHG-9240A电热恒温鼓风干燥箱(上海一恒科学仪器有限公司)。

1.3 方法

1.3.1 溶液的配制

⑴精密称取0.252 5 g FeSO4·7H2O、1.251 3 g四水合酒石酸钠钾,置于250 ml容量瓶中,加入适量的蒸馏水充分溶解后稀释定容,摇匀即得酒石酸亚铁溶液。

⑵精密称取2.268 2 g KH2PO4置于250 ml容量瓶中,加入适量的蒸馏水并用超声波辅助溶解,蒸馏水稀释定容,摇匀即得0.066 67 mol/L Na2HPO4水溶液;精密称取23.876 0 g Na2HPO4·12H2O置于1 000 ml容量瓶中,加入适量的蒸馏水并用超声波辅助溶解,蒸馏水稀释定容,摇匀即得0.066 67 mol/L KH2PO4水溶液。将上述磷酸二氢钾水溶液和磷酸氢二钠水溶液以3∶17的配比混合,搅匀,即得pH=7.5的磷酸盐缓冲液[16]。

⑶精密称取没食子酸0.050 0 g于50 ml容量瓶,加入适量的蒸馏水充分溶解后,蒸馏水稀释定容,摇匀即得1.0 mg/ml的没食子酸标准溶液。

⑷精密称取茶多酚标准品0.015 0 g于10 ml容量瓶,加入适量的蒸馏水充分溶解后,蒸馏水稀释定容,摇匀即得1.5 mg/ml茶多酚标准品母液。

1.3.2 标准曲线的绘制

没食子酸标准曲线绘制: 取25 ml棕色容量瓶,分别加入0.00、0.25、0.50、0.75、1.0、1.25ml的没食子酸标准溶液,再加入4.00 ml蒸馏水和5.00 ml酒石酸亚铁溶液,最后加入磷酸盐缓冲液稀释定容,摇匀即得0.00、10.00、20.00、30.00、40.00、50.00 μg/ml没食子酸系列标准溶液。以0.00 μg/ml没食子酸溶液作为参比溶液,测定波长为540 nm对应的吸光度,绘制没食子酸标准曲线并计算线性回归方程[23,24]。

茶多酚标准品校正因子f测定: 精密量取茶多酚标准品母液0.50 ml于25 ml容量瓶,照上述没食子酸标准曲线绘制中的溶液配制方法,即得30.00 μg/ml茶多酚标准品溶液。测定540 nm波长对应吸光度,将此数据代入没食子酸标准曲线回归方程求算ρ没食子酸,按下列公式即可求得f。

1.3.3 绿茶中茶多酚提取及提取得率测定

准确称取1.0 g高级绿茶粉末于250 ml锥形瓶,以不同提取条件微波辅助提取,提取液减压抽滤并弃去茶饼,准确量取澄清提取液的体积后保存适量提取液,精密量取0.30 ml于25 ml棕色容量瓶,再加入4.00 ml蒸馏水和5.00 ml酒石酸亚铁溶液,最后加入磷酸盐缓冲液稀释定容,摇匀即得提取液样品溶液。在波长540 nm处测定吸光度,茶多酚提取得率按下列公式计算:

式中:n为稀释倍数;f为校正因子;ρ为没食子酸质量浓度( μg/ml);m为茶叶质量(g);V为提取液体积( ml)[24]。

1.3.4 单因素实验

以提取时间、微波输出功率、乙醇体积分数、料液比为4项考察因素,设计相应的5个适宜水平进行茶多酚提取(见表1),按“1.3.3”项下方法进行吸光度测定,计算茶多酚提取得率。

表1 单因素实验条件

1.3.5 响应面优化试验

依据单因素实验数据,选定各单因素的适宜水平,使用Design Expert 12.0.3.0统计软件下Box-Behnken方法[25],把茶多酚提取得率作为响应值,设计四个因素三种水平优化提取工艺进行响应面实验,得到各因素与响应值的二次多项回归方程及方差分析模型,预测最佳提取工艺并进行验证。

2 结果与分析

2.1 没食子酸标准曲线

如图1,在没食子酸0.00 ~50.00 μg/ml浓度范围内,没食子酸标准曲线方程:A=0.015 9ρ+0.003 7(r=0.999 7),吸光度A和没食子酸浓度ρ线性关系良好。

图1 没食子酸标准曲线

2.2 单因素对茶多酚提取得率的影响

2.2.1 提取时间对茶多酚提取得率的影响

如图2所示,固定微波输出功率、料液比、乙醇体积分数,提取时间在10~90 s范围内,随着提取时间延长,茶多酚提取得率先增大后减小,提取时间为50 s时,茶多酚提取得率最大值为24.93%。原因推测由于时间过长,茶叶中除了茶多酚的其他易溶于乙醇的成分被提取出来,导致茶多酚的醇提液饱和[26]。因此最佳提取时间为50 s。

图2 提取时间对茶多酚提取得率的影响

2.2.2 微波功率对茶多酚提取得率的影响

如图3所示,固定提取时间、料液比、乙醇体积分数,微波输出功率在70~630 w范围内,茶多酚提取得率随微波功率的增加先上升后小幅降低,在提取时间为350 w时,茶多酚提取得率达到24.27%,为70~630 w范围内的最大值。原因推测为微波输出功率过低无法有效破碎细胞使其释放茶多酚,过高导致茶多酚被氧化破坏[27]。因此最佳微波输出功率为350 w。同时,当微波输出功率为210 w和490 w时,茶多酚提取得率相对于其他功率下较高,提示我们考察微波输出功率影响时,其范围可适当拓宽。

图3 微波输出功率对茶多酚提取得率的影响

2.2.3 料液比对茶多酚提取得率的影响

如图4所示,固定提取时间、微波输出功率、乙醇体积分数的条件下,料液比在1∶20 (g/ml) ~1∶100 (g/ml)范围内,茶多酚提取得率随料液比增加先增加,后逐渐稳定,在料液比为 1∶40 (g/ml)和1∶60 (g/ml)时,茶多酚提取得率分别达到24.95%和24.96%(最大值)。原因推测为料液比过低时溶剂量不足,导致提取不完全,由于料液比过高,茶多酚已经达到了较大溶出度、其他杂质溶出部分竞争茶多酚溶出空间[28]。因此最佳料液比为1∶60 (g/ml)。

图4 料液比对茶多酚提取得率的影响

2.2.4 乙醇体积分数对茶多酚提取得率的影响

如图5所示,固定提取时间、微波输出功率、料液比,乙醇体积分数在0%~80%范围内,随着乙醇体积分数增加,茶多酚提取得率先增大后减小,乙醇体积分数为60%时,茶多酚提取得率最大值24.59%。因此,最佳乙醇体积分数为60%。同时,把乙醇体积分数为0%与其他水平时对应的提取得率做对比,我们可以发现乙醇提取茶多酚效率远高于纯水提取。

图5 乙醇体积分数对茶多酚提取得率的影响

2.3 茶多酚提取得率的响应面分析

2.3.1 茶多酚提取得率的响应面实验设计及结果

根据单因素实验中各因素水平对茶多酚提取得率的影响结果,按照表2的响应面设计方案并进行实验,结果如表3所示。

表2 响应面设计各因素及水平

表3 响应面实验条件及结果

2.3.2 茶多酚提取得率的响应面数据回归方程拟合和方差分析:

把提取时间(A)、微波输出功率(B)、料液比(C)、乙醇体积分数(D)作为自变量,茶多酚提取得率(%)Y作为因变量,进行回归方程拟合和方差分析,得回归方程如下:

回归模型极显著(P<0.000 1),失拟项不显著(P>0.05),r=0.967 0,结果表明优化条件下茶多酚提取得率的实际值与二次回归方程的预测值吻合良好(表4),说明该数学模型适用于高级绿茶中茶多酚提取工艺的预测。其中,A、C、D、AB、B2、C2、D2对响应值茶多酚提取得率的影响极显著(P<0.01),B、A2对响应值茶多酚提取得率的影响显著(P<0.05)。

表4 回归方程模型显著性分析表

2.4 响应面可视化分析

将提取时间A、微波输出功率B、料液比C、乙醇体积分数D中任意两个因素作为X1、X2,将茶多酚提取得率设为响应值Z,创建两个因素相互作用的响应平面图。3D曲线单因素方向坡度越陡即斜率越大,反映出该单因素对茶多酚提取得率的影响越具显著性; 3D曲线越陡、等高线轮廓呈椭圆形,反映两个因素交互作用对茶多酚的提取得率有更显著的影响[29-32]。结合方差分析表,各因素对茶多酚提取得率的影响如下: 料液比(C)>提取时间(A)>乙醇体积分数(D)>微波输出功率(B)。同时,图6直观显示提取时间A和微波输出功率B交互作用对茶多酚提取得率的影响极为显著,其余因素间交互作用不显著,各交互作用对茶多酚提取得率的影响如下: AB>BD>BC>AD>CD>AC。

图6 各因素交互作用对茶多酚提取得率响应面和等高线图

2.5 茶多酚最佳提取工艺及验证

利用所得二次回归方程模型预测绿茶中茶多酚的最佳提取工艺为: 提取时间37.41 s、微波输出功率369.28 w、料液比1∶45.13 (g/ml)、乙醇体积分数55.44%,该优化条件下茶多酚预测提取得率为26.42%。从实际实验条件出发,将最佳提取条件修改为: 微波提取时间37s、微波输出功率350 w、料液比1∶45 (g/ml)、乙醇体积分数55%,并进行三次平行重复实验验证,茶多酚平均提取得率为25.56%。

3 讨论与结论

茶多酚是绿茶中的一类多酚活性物质,本实验通过建立没食子酸标准曲线、引入校正因子测算茶多酚提取得率。从支持绿色工艺和溶剂常用性角度,本实验采用常见的食品级溶剂乙醇萃取技术取代传统的有害有机溶剂萃取技术[12]。基于响应面优化法试验次数少、周期短优势[14],为解决前期文献中有关微波提取茶多酚的报道大多局限于单因素实验研究而缺乏优化的系统实验方案[33]、各因素水平选取范围参差不齐[13,34]以及其他工艺优化方法低精度、预测差等问题,本实验考察了微波提取时间、微波输出功率、料液比、乙醇体积分数4个单因素对茶多酚提取得率的影响,并确定各单因素适宜范围,在此基础上采用响应面优化方法预测了最佳提取条件,考虑到实际生产所需调整茶多酚最佳提取条件,并进行三次平行重复实验验证。

实验结果表明响应面设计茶多酚提取得率实际值与理论值相差不大,证明响应面实验设计在优化茶多酚提取工艺方面具有可靠性。综上,响应面优化微波辅助茶多酚的提取工艺具有操作性强、生产周期短、生产成本较低、准确度高、稳定性强的优势,能同步考察较多因素对工艺的综合影响,为茶多酚的实际生产领域提供技术支撑,在茶多酚大规模工业化生产方面具有较大的应用潜力[35,36]。

猜你喜欢
蒸馏水茶多酚输出功率
热压式蒸馏水机和多效蒸馏水机制备注射用水的质量比较
茶多酚的抗氧化性及其在畜牧生产中的应用
两种分光光度法测定茶类产品中茶多酚含量的比较
Analysis of Wastewater Membrane Pollutants in Joint Station and Research on Biological Control Technology
肠道微生物与茶及茶多酚的相互作用在调节肥胖及并发症中的作用
适用于智能电网的任意波形输出功率源
基于双层BP神经网络的光伏电站输出功率预测
浅谈蒸馏法制备注射用水的设备和方法
分布式发电系统并网逆变器输出功率的自适应控制
大全集团对其光伏组件产品提供25年输出功率线性质保服务