陈建珍 穆麒麟
摘要:干旱胁迫和高盐胁迫是农业生产上面临的两大主要非生物胁迫,严重危害作物的生长生产,导致作物的产量和质量显著降低。因此,提高作物抵抗逆境胁迫的能力已成为当下亟待解决的问题。利用有益菌与作物建立互惠共生关系,提高作物的抗逆性,已成为帮助作物应对环境变化、增产增质的一种经济有效且绿色环保的措施。印度梨形孢是一种可以体外培养的根内生真菌,寄主范围广泛,能与多种作物互作共生。本文系统总结了干旱和盐胁迫条件下,印度梨形孢定殖促进作物的营养生长和生殖生长,提高作物的抗氧化能力、维持光合系统的稳定性和细胞溶质的离子稳态,激活胁迫相关的基因和蛋白质,增强作物的抗逆性,缓解胁迫危害等的研究。该研究可为农业的可持续发展和印度梨形孢潜在价值的深层次开发提供参考。
关键词:印度梨形孢;干旱胁迫;盐胁迫;内生真菌;互惠共生
中图分类号:S311;S182 文献标志码:A
文章编号:1002-1302(2023)24-0011-10
印度梨形孢是担子菌门(Basidiomycota)蜡壳耳目(Sebacinales)的一种根内生真菌,可以在室内进行纯化培养,最初从印度塔尔沙漠灌木的根际土壤中分离摩西球囊霉(Glomus mosseae)孢子时所得,寄主范围广泛,可定殖于单子叶植物和双子叶植物的根部,促进植物生长,增强营养吸收,提高植物抵抗逆境胁迫的能力[1-3]。印度梨形孢采取双相定殖策略——早期营养生长,之后在植物根部建立菌落,杀死并定殖于活的根细胞,与植物根系建立互惠共生关系[4]。接种印度梨形孢24~48 h,孢子几乎遍及检测根段的所有区域,主要集中在根毛附近;接种48 h后,孢子成功萌发,穿透表皮细胞,定殖于根皮层的地上组织,在细胞间和细胞内生长,在根皮层和根际区形成梨形厚垣孢子[5-7]。
1 印度梨形孢与干旱胁迫
气候变化已成为限制作物生产的一个重要因素,目前已有10%以上的耕地受到不同程度的影响。预计到2050年,平均作物产量将下降50%以上[7]。干旱是制约农业可持续发展的关键环境因素,干旱和半干旱地区40%以上的农场都受到不同程度的影响[8]。干旱胁迫不仅影响作物的表观性状,抑制生长、降低产量,而且对作物的生理、生化特性和分子特性产生严重的负面影响[9-11]。目前,应对干旱胁迫的措施主要有3种:(1)作物通过形态变化、生理和生化反应来逃避或抵抗干旱;(2)培育节水抗旱品种;(3)利用有益菌(如印度梨形孢)与植物建立互惠共生关系。其中,利用真菌-作物的互惠共生提高作物的抗旱能力,既是植物适应环境胁迫的一种策略,也是帮助作物避旱或抗旱的一种经济、有效措施[12]。本研究从印度梨形孢接种方式、定殖测定时间、干旱处理和对作物的影响等方面系统地归纳和总结了印度梨形孢定殖于不同的作物,促进其生长、提高其抵抗干旱胁迫能力的研究(表1)。
1.1 印度梨形孢促进作物生长,降低干旱胁迫的负面影响
印度梨形孢能与水稻、小麦、大麦、水稻和指粟(穇子)等多种作物互作共生,促进作物的营养生长和生殖生长,使根长、根体积、根干(鲜)质量、茎干(鲜)质量、叶片数量、叶面积、株高和生物产量增加[6,10,13-19];使番茄的果实质量、数量和总产量增加[3];使抽穗期提前,株高、穗长、灌浆籽粒的数量、单株粒质量和穗数增加,产量和品质提高[20-21]。
1.2 印度梨形孢调控干旱胁迫相关的代谢过程,提高作物的抗旱能力
1.2.1 提高抗氧化能力 干旱胁迫条件下,印度梨形孢能提高抗氧化物酶活性,激活活性氧清除系统,提高对活性氧和其他破坏植物细胞的自由基的胁迫耐受性。印度梨形孢定殖能提高作物叶片的过氧化物酶、过氧化氢酶、超氧化物歧化酶、谷胱甘肽还原酶、抗坏血酸过氧化物酶和愈创木酚过氧化物酶等多种抗氧化物酶的活性,降低丙二醛积累,维持过氧化氢含量的稳定,提高作物的解毒能力[3,13,15-16,23-24]。Saddique等研究发现,印度梨形孢定殖使脯氨酸合成关键酶——吡咯啉-5-羧酸合成酶(P5CS)的活性上调,脯氨酸含量增加,叶片总抗氧化能力提升[10]。Tsai等研究發现,印度梨形孢定殖促进了过氧化氢酶和谷胱甘肽还原酶的活性升高,使还原型谷胱甘肽和氧化型谷胱甘肽的比值升高,脯氨酸含量增加,提高了稻株的抗氧化能力,减小了膜损伤,降低了丙二醛含量,对超氧化物歧化酶和抗坏血酸过氧化物酶的活性没有显著影响[21]。Hosseini等研究发现,印度梨形孢定殖促进了小麦根长、根体积、叶片水势、叶片相对含水量和叶绿素含量显著升高,过氧化氢酶和抗坏血酸过氧化物酶活性显著降低,脯氨酸含量无显著变化;而且接种印度梨形孢改善了小麦的生长发育,促进了水分和营养物质的吸收,降低了胁迫引起的氧化损伤[14]。这可能与印度梨形孢调节胁迫诱导的氧化应激,抑制植物细胞中活性氧(ROS)的形成和过度积累,增强作物抗胁迫能力有关[25-26]。有研究认为,印度梨形孢与作物共生能产生生长素,瞬时提高抗坏血酸过氧化物酶活性,同时降低过氧化氢酶活性[27-28]。
1.2.2 维持光合系统稳定 光合作用是植物生长发育的关键生理过程。干旱胁迫使类囊体膜退化、光合色素降解加速,破坏电子传递反应,限制光合作用,导致作物的产量和质量显著降低[29]。印度梨形孢定殖促进了受干旱胁迫影响的小麦、藜麦、水稻、指粟等作物的营养生长,增加了叶绿素含量和光合参数,延缓了胁迫诱导的光合效率下降以及叶绿素和类囊体蛋白降解,减小了光合损害[3,10,13,15,23]。Tsai等研究发现,印度梨形孢接种提高了稻株的叶绿素含量,促进了气孔关闭、叶温升高,Fv/Fm增加,叶片萎蔫程度和光合效率损害程度降低[21]。
1.2.3 调控受干旱胁迫作物的分子特性 干旱胁迫条件下,印度梨形孢定殖使叶片中干旱相关基因DREB2A、CBL1、ANAC072、RD29A及miR159、miR396的表达水平上调,使类囊体膜Ca2+敏感调节因子(Ca2+-sensing regulator)的CAS mRNA水平和CAS蛋白量增加[22,25];增加了参与光合作用、抗氧化防御系统和能量运输等的蛋白质水平[6];改变了碳氮代谢,重新分配资源;重新编码了参与应激反应、氧化还原和信号转导的蛋白质合成;增强或维持了干旱胁迫作物中膜相关蛋白的存在;改变了参与泛素——蛋白酶体途径和自噬体形成中的蛋白质变化,减轻了胁迫危害[19]。Zhang等研究发现,印度梨形孢通过增强根部的氧化潜能,重新平衡碳、硫代谢,激活激素功能基因(对脱落酸、生长素、水杨酸和细胞分裂素有反应的基因),提高了作物的抗旱能力[17]。
综上,干旱胁迫条件下,印度梨形孢定殖激活了抗氧化酶系统,提高了抗氧化能力;减轻了光合器官的受损程度,维持了光合器官的稳定性;提高了功能基因和蛋白质的表达,协调代谢过程,促进作物生长,提高了作物抵抗干旱胁迫的能力(图1)。
2 印度梨形孢与盐胁迫
土壤和灌溉水中的高盐含量是严重危害作物生长的全球性问题,根际过量的离子损害作物根系的生长发育,随后向地上部分逐渐转移并累积,破坏作物的新陈代谢,导致作物生长受阻、产量降低。预测到2050年,全球超过50%的耕地将盐碱化[30-31]。高盐含量对作物的主要危害包括:(1)抑制必需酶的活性,影响细胞分裂和细胞扩张,导致膜紊乱和渗透失衡,使生长受阻、产量下降;(2)引起细胞代谢毒性和离子稳态失衡;(3)降低土壤孔隙度以及水和土壤间的气体传导率,改变土壤的完整结构,导致土壤水势降低,阻碍矿物养分吸收;(4)造成光合作用的气孔限制、光合速率降低和活性氧过量产生,导致氧化应激损伤[32-38]。研究发现,大约4/5的农作物可以与有益的土壤微生物形成互惠共生关系,为缓解盐分胁迫提供一种更快、更具成本效益和环保效益的解决方案[39-45]。本研究从印度梨形孢接种方式、定殖测定时间、盐胁迫处理和对作物的影响等方面系统地归纳和总结了印度梨形孢定殖不同的作物后促进作物生长、提高作物抵抗盐胁迫的研究(表2)。
2.1 印度梨形孢促进作物生长,降低盐胁迫的负面影响
盐胁迫条件下,印度梨形孢定殖促进了大麦、水稻、番茄、苜蓿、胡卢巴等的生长,使根分支增多,根长度、侧根密度、根体积、根冠比、根干质量(鲜质量)、茎长度、茎干质量(鲜质量)、叶片数量、叶面积、幼苗的生物量、单株果实的数量及质量增加,降低胁迫危害[31,46-51]。
2.2 印度梨形孢调控盐胁迫相关的代谢过程,提高作物的抗盐能力
2.2.1 调节离子稳态 盐胁迫条件下,印度梨形孢通过成功定殖在拟南芥、水稻、大麦、番茄和白菜等多种作物的根部,调节Na+和K+的浓度以及 Na+/K+ 比值,降低高盐毒害。印度梨形孢定殖降低了叶片和根系中Na+浓度,增加了根和叶中K+的浓度,降低了Na+/K+[37,41,47-48];减少了Na+向地上部分(茎和芽)的吸收和运输,使枝条中的Na+和K+含量降低,保护光合组织免受离子毒害[52]。K+不仅是维持作物最佳生长生产的必需养分,还是作物应对环境变化的重要信号分子[53]。胁迫条件下,维持细胞溶质K+稳态和Na+/K+内稳态已成为作物耐受盐胁迫的基本机制,对于植物的生长和发育非常重要[48,54]。印度梨形孢定植使玉米根部K+外流降低,枝条中K+含量升高,玉米的耐盐性提高[55]。随着NaCl浓度的增加,根部Na+和K+含量显著增加,当NaCl浓度增加到200 mmol/L时,枝条中Na+含量显著增加,印度梨形孢接种能显著降低根和枝条中的Na+和K+含量,减轻离子毒害[43]。 过高的盐浓度不仅造成离子稳态失衡,还会减少植株对多种营养元素的吸收,印度梨形孢定殖促进了磷的吸收,使白菜根和枝条中的P含量升高,一定程度上缓解了盐胁迫对作物代谢过程的抑制作用[52]。
2.2.2 提高抗氧化能力 植物在进化过程中在形态、生理生化和分子水平上形成了多种防御机制,以抵抗逆境胁迫。如产生脯氨酸、甘氨酸、甜菜碱等渗透调节物质,协调酶抗氧化剂和非酶抗氧化剂的作用[56-57]。
印度梨形孢成功定殖番茄、苜蓿、白菜和水稻等多种作物,激活活性氧清除系统,增加了过氧化物酶、过氧化氢酶、超氧化物歧化酶等抗氧化物酶的活性,诱导了脯氨酸积累,减轻了活性氧和其他自由基对作物细胞的破坏作用,使脂质过氧化程度降低,电解质渗透率减小,使花青素含量、丙二醛含量和溶液相对电导率降低,胁迫耐受性提高[37,43,49-50,52]。盐胁迫条件下,印度梨形孢定殖增加了番茄根中脯氨酸、甘氨酸、甜菜碱和可溶性糖含量,有助于保持有利的水势梯度,便于作物从土壤中吸收水分,降低受害程度[41]。
2.2.3 誘导抗盐相关基因 作物通过调节膜转运基因的表达来对抗盐胁迫中Na+过量积累和K+缺乏;定位于液泡膜的NHX蛋白不仅对K+的有效摄取、膨压调节和气孔运动起着至关重要的作用,而且还参与K+稳态和作物耐盐性调节[37,58]。Shabala等研究发现,盐胁迫的主要有害影响是通过去极化激活的外向整流K+(GORK)以及ROS激活的非选择性K+可渗透阳离子通道(NSCC)来上调根细胞的K+流出[59]。盐胁迫条件下,印度梨形孢定殖拟南芥、苜蓿、白菜等作物,增强了编码高亲和力钾转运蛋白(HKT1)和内向整流K+通道KAT1和KAT2的基因转录水平,使脯氨酸合成关键酶——δ1-吡咯烷-5-羧酸合成酶基因(P5CS2)、防御相关基因PR1和PR10以及转录因子MtAlfin1-like和C2H2型锌指蛋白MtZfp-C2H2、盐超敏感(SOS)信号通路(SOS1和SOS2)以及NHX型Na+/H+逆向转运蛋白(NHX1)的基因高表达,降低了Na+/K+,提高了作物的耐盐性[48-49,52,60]。Jogawat等从根内生真菌印度梨形孢中分离出酵母HOG1同源物(PiHOG1),通过RNA干扰技术在印度梨形孢中转化得到PiHOG1基因沉默转化子KD (knockdown),在200 mmol/L NaCl胁迫下,与对照相比,接种KD的水稻生物量、茎长、根长和根数、光合色素和脯氨酸含量显著降低,说明PiHOG1参与了印度梨形孢对盐害的反应,在水稻抵抗盐胁迫中起重要作用[61]。Nivedita等研究发现,盐胁迫条件下,印度梨形孢定殖水稻,与细胞壁修饰酶、植物激素和受体样激酶相关的基因被诱导。表明,激素串扰、信号传导和细胞壁动态之间的协同作用有助于促进印度梨形孢定殖的水稻生长,提高耐盐性[50]。
2.2.4 维持光合系统的稳定性 盐胁迫条件下,印度梨形孢定殖使水稻、拟南芥、番茄等作物的叶绿素和类胡萝卜素含量增加[37,46,48],叶片相对含水量、叶片水势、净光合速率、胞间CO2浓度、气孔导度、蒸腾速率、光系统Ⅱ的光化学效率升高,提高了作物抵抗盐胁迫的能力[41,43,52,55]。Ghorbani等研究发现,高盐浓度抑制了番茄的生长和光合作用,印度梨形孢接种提高了叶绿素含量、类胡萝卜素含量、气孔导度和净光合速率,降低了胞间CO2浓度,减轻了盐胁迫对光器官的伤害,提高了光合效率,促进番茄生长[41]。
綜上,盐胁迫条件下,印度梨形孢定殖降低了Na+/K+,维持了离子稳态;激活了抗氧化酶系统,提高了抗氧化能力,诱导了抗盐相关基因的表达,促进了多种代谢过程的协同作用,增加了光合色素含量,降低了光合器官的损害,提高了光合效率,促进作物生长,提高作物抵抗盐胁迫的能力(图2)。
3 结论与展望
干旱胁迫和高盐胁迫导致作物的生长环境进一步恶化,抑制作物的生长生产,导致产量和质量显著降低。利用有益菌与作物建立互惠共生关系,是应对环境变化、维持农业可持续发展的一种友好健康方式。印度梨形孢是一种可以在多种培养基上培养的根内生真菌,可以促进作物生长、提高作物抵抗逆境胁迫的能力。科学家从形态、生理、生化、分子等方面开展了有关印度梨形孢促进作物生长、提高作物的抗逆能力的相关研究并对其机制做了深度解析,但是,胁迫条件下作物的他感作用、印度梨形孢成功定殖后调节胁迫过程的关键候选基因的功能、不同激素的调控路径及其路径间的相互作用等还需深入探讨。印度梨形孢可用作促生剂、营养吸收增强剂、生物防治剂、免疫调节剂和生物肥料等,在现在和今后的农业生产上应用前景都非常广泛,今后需要进一步合理有效地开发其潜力,形成商业生产模式并成功推广应用到农业生产,推进农作物绿色栽培和农业可持续发展。
参考文献:
[1]Unnikumar K R,Sree K S,Varma A. Piriformospora indica:a versatile root endophytic symbiont[J]. Symbiosis,2013,60(3):107-113.
[2]Gill S S,Gill R,Trivedi D K,et al. Piriformospora indica:potential and significance in plant stress tolerance[J]. Frontiers in Microbiology,2016,7:332.
[3]Abdelaziz M E,Abdeldaym E A,Sabra M A. The root endophytic fungus Piriformospora indica improves growth performance,physiological parameters and yield of tomato under water stress condition[J]. Middle East Journal of Agriculture Research,2018,7(3):1090-1101.
[4]Zuccaro A,Lahrmann U,Güldener U,et al. Endophytic life strategies decoded by genome and transcriptone analyses of the mutualistic root symbiont Piritormospora indica[J]. PLoS Pathogens,2011,7(10):e1002290.
[5]Varma A,Bakshi M,Lou B G,et al. Piriformospora indica:a novel plant growth-promoting mycorrhizal fungus[J]. Agricultural Research,2012,1(2):117-131.
[6]Ghabooli M,Khatabi B,Ahmadi F S,et al. Proteomics study reveals the molecular mechanisms underlying water stress tolerance induced by Piriformospora indica in barley[J]. Journal of Proteomics,2013,94:289-301.
[7]Hussin S,Khalifa W,Geissler N,et al. Influence of the root endophyte Piriformospora indica on the plant water relations,gas exchange and growth of Chenopodium quinoa at limited water availability[J]. Journal of Agronomy and Crop Science,2017,203(5):373-384.
[8]Gohari A,Eslamian S,Abedi-Koupaei J,et al. Climate change impacts on crop production in Irans Zayandeh-Rud River Basin[J]. Science of the Total Environment,2013,442:405-419.
[9]Takahashi S,Badger M R .Photoprotection in plants:a new light on photosystem Ⅱ damage[J]. Trends in Plant Science,2011,16(1):53-60.
[10]Saddique M A B,Ali Z,Khan A S,et al. Inoculation with the endophyte Piriformospora indica significantly affects mechanisms involved in osmotic stress in rice[J]. Rice,2018,11(1):1-12.
[11]Boorboori M R,Zhang H Y. The role of Serendipita indica (Piriformospora indica) in improving plant resistance to drought and salinity stresses[J]. Biology,2022,11(7):952.
[12]Rajput S,Sengupta P,Kohli I,et al. Role of Piriformospora indica in inducing soil microbial communities and drought stress tolerance in plants[M]//New and future developments in microbial biotechnology and bioengineering. Amsterdam:Elsevier,2022:93-110.
[13]Yaghoubian Y,Goltapeh E M,Pirdashti H,et al. Effect of Glomus mosseae and Piriformospora indica on growth and antioxidant defense responses of wheat plants under drought stress[J]. Agricultural Research,2014,3(3):239-245.
[14]Hosseini F,Mosaddeghi M R,Dexter A R. Effect of the fungus Piriformospora indica on physiological characteristics and root morphology of wheat under combined drought and mechanical stresses[J]. Plant Physiology and Biochemistry,2017,118:107-120.
[15]Tyagi J,Varma A,Pudake R N. Evaluation of comparative effects of arbuscular mycorrhiza (Rhizophagus intraradices) and endophyte (Piriformospora indica) association with finger millet (Eleusine coracana) under drought stress[J]. European Journal of Soil Biology,2017,81:1-10.
[16]Xu L,Wang A A,Wang J,et al. Piriformospora indica confers drought tolerance on Zea mays L. through enhancement of antioxidant activity and expression of drought-related genes[J]. The Crop Journal,2017,5(3):251-258.
[17]Zhang W Y,Wang J,Xu L,et al. Drought stress responses in maize are diminished by Piriformospora indica[J]. Plant Signaling & Behavior,2018,13(1):e1414121.
[18]Hosseini F,Mosaddeghi M R,Dexter A R,et al. Maize water status and physiological traits as affected by root endophytic fungus Piriformospora indica under combined drought and mechanical stresses[J]. Planta,2018,247(5):1229-1245.
[19]Ghaffari M R,Mirzaei M,Ghabooli M,et al. Root endophytic fungus Piriformospora indica improves drought stress adaptation in barley by metabolic and proteomic reprogramming[J]. Environmental and Experimental Botany,2019,157:197-210.
[20]Ahmadvand G,Hajinia S. Effect of endophytic fungus Piriformospora indica on yield and some physiological traits of millet (Panicum miliaceum) under water stress[J]. Crop and Pasture Science,2018,69(6):594.
[21]Tsai H J,Shao K H,Chan M T,et al. Piriformospora indica symbiosis improves water stress tolerance of rice through regulating stomata behavior and ROS scavenging systems[J]. Plant Signaling & Behavior,2020,15(2):1722447.
[22]Mohsenifard E,Ghabooli M,Mehri N,et al. Regulation of miR159 and miR396 mediated by Piriformospora indica confer drought tolerance in rice[J]. Journal of Plant Molecular Breeding,2017,5(1):10-18.
[23]Sun C,Johnson J M,Cai D G,et al. Piriformospora indica confers drought tolerance in Chinese cabbage leaves by stimulating antioxidant enzymes,the expression of drought-related genes and the plastid-localized CAS protein[J]. Journal of Plant Physiology,2010,167(12):1009-1017.
[24]Swetha S,Padmavathi T. Mitigation of drought stress by Piriformospora indica in Solanum melongena L. cultivars[J]. Proceedings of the National Academy of Sciences,India Section B:Biological Sciences,2020,90(3):585-593.
[25]Marulanda A,Porcel R,Barea J M,et al. Drought tolerance and antioxidant activities in lavender plants colonized by native drought-tolerant or drought-sensitive Glomus species[J]. Microbial Ecology,2007,54(3):543-552.
[26]Kumar M,Yadav V,Tuteja N,et al. Antioxidant enzyme activities in maize plants colonized with Piriformospora indica[J]. Microbiology,2009,155(3):780-790.
[27]Sirrenberg A,Gbel C,Grond S,et al. Piriformospora indica affects plant growth by auxin production[J]. Physiologia Plantarum,2007,131(4):581-589.
[28]Pasternak T P,tvs K,Domoki M,et al. Linked activation of cell division and oxidative stress defense in alfalfa leaf protoplast-derived cells is dependent on exogenous auxin[J]. Plant Growth Regulation,2007,51(2):109-117.
[29]Liu X,Li L M,Li M J,et al. AhGLK1 affects chlorophyll biosynthesis and photosynthesis in peanut leaves during recovery from drought[J]. Scientific Reports,2018,8:2250.
[30]Jamil A,Riaz S,Ashraf M,et al. Gene expression profiling of plants under salt stress[J]. Critical Reviews in Plant Sciences,2011,30(5):435-458.
[31]Reshna O P,Beena R,Joy M,et al. Elucidating the effect of growth promoting endophytic fungus Piriformospora indica for seedling stage salinity tolerance in contrasting rice genotypes[J]. Journal of Crop Science and Biotechnology,2022,25(5):583-598.
[32]Requena N,Perez-Solis E,Azcón-Aguilar C,et al. Management of indigenous plant-microbe symbioses aids restoration of desertified ecosystems[J]. Applied and Environmental Microbiology,2001,67(2):495-498.
[33]Tuteja N. Mechanisms of high salinity tolerance in plants[J]. Methods in Enzymology,2007,428:419-438.
[34]Chaves M M,Flexas J,Pinheiro C. Photosynthesis under drought and salt stress:regulation mechanisms from whole plant to cell[J]. Annals of Botany,2009,103(4):551-560.
[35]Jouyban Z. The effects of salt stress on plant growth[J]. Technical Journal Engineering and Applied Sciences,2012,2(1):7-10.
[36]Porcel R,Aroca R,Ruiz-Lozano J M.Salinity stress alleviation using arbuscular mycorrhizal fungi.A review[J]. Agronomy for Sustainable Development,2012,32(1):181-200.
[37]Abdelaziz M E,Abdelsattar M,Abdeldaym E A,et al. Piriformospora indica alters Na+/K+ homeostasis,antioxidant enzymes and LeNHX1 expression of greenhouse tomato grown under salt stress[J]. Scientia Horticulturae,2019,256:108532.
[38]Alif Ali B S,Beena R,Stephen K. Combined effect of high temperature and salinity on growth and physiology of rice (Oryza sativa L.)[J]. Agricultural Research Journal,2021,58(5):783-788.
[39]Andrés-Barrao C,Lafi F F,Alam I,et al. Complete genome sequence analysis of Enterobacter sp. SA187,a plant multi-stress tolerance promoting endophytic bacterium[J]. Frontiers in Microbiology,2017,8:2023.
[40]de Zélicourt A,Synek L,Saad M M,et al. Ethylene induced plant stress tolerance by Enterobacter sp. SA187 is mediated by 2-keto-4-methylthiobutyric acid production[J]. PLoS Genetics,2018,14(3):e1007273.
[41]Ghorbani A,Razavi S M,Ghasemi Omran V O,et al. Piriformospora indica inoculation alleviates the adverse effect of NaCl stress on growth,gas exchange and chlorophyll fluorescence in tomato (Solanum lycopersicum L.)[J]. Plant Biology,2018,20(4):729-736.
[42]Ghorbani A,Razavi S M,Omran V O G,et al. Piriformospora indica alleviates salinity by boosting redox poise and antioxidative potential of tomato[J]. Russian Journal of Plant Physiology,2018,65(6):898-907.
[43]Hassani D,Khalid M,Huang D F,et al. Morphophysiological and molecular evidence supporting the augmentative role of Piriformospora indica in mitigation of salinity in Cucumis melo L.[J]. Acta Biochimica et Biophysica Sinica,2019,51(3):301-312.
[44]de Vries F T,Griffiths R I,Knight C G,et al. Harnessing rhizosphere microbiomes for drought-resilient crop production[J]. Science,2020,368(6488):270-274.
[45]Manikanta C L N,Beena R,Rejeth R. Root anatomical traits influence water stress tolerance in rice (Oryza sativa L.)[J]. Journal of Crop Science and Biotechnology,2022,25(4):421-436.
[46]Jogawat A,Saha S,Bakshi M,et al. Piriformospora indica rescues growth diminution of rice seedlings during high salt stress[J]. Plant Signaling & Behavior,2013,8(10):e26891.
[47]Alikhani M,Khatabi B,Sepehri M,et al. A proteomics approach to study the molecular basis of enhanced salt tolerance in barley (Hordeum vulgare L.) conferred by the root mutualistic fungus Piriformospora indica[J]. Molecular BioSystems,2013,9(6):1498-1510.
[48]Abdelaziz M E,Kim D,Ali S,et al. The endophytic fungus Piriformospora indica enhances Arabidopsis thaliana growth and modulates Na+/K+ homeostasis under salt stress conditions[J]. Plant Science,2017,263:107-115.
[49]Li L,Li L,Wang X Y,et al. Plant growth-promoting endophyte Piriformospora indica alleviates salinity stress in Medicago truncatula[J]. Plant Physiology and Biochemistry,2017,119:211-223.
[50]Nivedita,Gazara R K,Khan S,et al. Comparative transcriptome profiling of rice colonized with beneficial endophyte,Piriformospora indica,under high salinity environment[J]. Molecular Biology Reports,2020,47(10):7655-7673.
[51]Sanskriti B,Shatrupa S,Madhulika S,et al. Augmentative role of Piriformospora indica fungus and plant growth promoting bacteria in mitigating salinity stress in Trigonella foenum-graecum[J]. Journal of Applied Biology & Biotechnology,2022,10(1):85-94.
[52]Khalid M,Hassani D,Liao J L,et al. An endosymbiont Piriformospora indica reduces adverse effects of salinity by regulating cation transporter genes,phytohormones,and antioxidants in Brassica campestris ssp. chinensis[J]. Environmental and Experimental Botany,2018,153:89-99.
[53]Anschütz U,Becker D,Shabala S.Going beyond nutrition:regulation of potassium homoeostasis as a common denominator of plant adaptive responses to environment[J]. Journal of Plant Physiology,2014,171(9):670-687.
[54]Shabala S.Signalling by potassium:another second messenger to add to the list?[J]. Journal of Experimental Botany,2017,68(15):4003-4007.
[55]Yun P,Xu L,Wang S S,et al. Piriformospora indica improves salinity stress tolerance in Zea mays L. plants by regulating Na+ and K+ loading in root and allocating K+ in shoot[J]. Plant Growth Regulation,2018,86(2):323-331.
[56]Ahmad P,Jaleel C A,Sharma S.Antioxidant defense system,lipid peroxidation,proline-metabolizing enzymes,and biochemical activities in two Morus alba genotypes subjected to NaCl stress[J]. Russian Journal of Plant Physiology,2010,57(4):509-517.
[57]Ahmad P,Ashraf M,Hakeem K R,et al. Potassium starvation-induced oxidative stress and antioxidant defense responses in Brassica juncea[J]. Journal of Plant Interactions,2014,9(1):1-9.
[58]Barragán V,Leidi E O,Andrés Z,et al. Ion exchangers NHX1 and NHX2 mediate active potassium uptake into vacuoles to regulate cell turgor and stomatal function in Arabidopsis[J]. The Plant Cell,2012,24(3):1127-1142.
[59]Shabala S,Pottosin I.Regulation of potassium transport in plants under hostile conditions:implications for abiotic and biotic stress tolerance[J]. Physiologia Plantarum,2014,151(3):257-279.
[60]Ghazanfar B,Cheng Z,Wu C,et al. Glomus etunicatum root inoculation and foliar application of acetyl salicylic acid induced NaCl tolerance by regulation of NAC1 & LeNHX1 gene expression and improved photosynthetic performance in tomato seedlings[J]. Pakistan Journal of Botany,2016,48(3):1209-1217.
[61]Jogawat A,Vadassery J,Verma N,et al. PiHOG1,a stress regulator MAP kinase from the root endophyte fungus Piriformospora indica,confers salinity stress tolerance in rice plants[J]. Scientific Reports,2016,6:36765.