何 涛,魏泽勇,王占山,程鑫彬*
(1.同济大学 物理科学与工程学院 精密光学工程技术研究所,上海 200092;2.同济大学 物理科学与工程学院 先进微结构材料教育部重点实验室,上海 200092;3.上海市数字光学前沿科学研究基地,上海 200092;4.上海市全光谱高性能光学薄膜器件与应用专业技术服务平台,上海 200092)
以可控的方式操纵光的传播是光学中的一个基本问题。传统光学器件由自然原子组成的光学材料构成,主要通过光程积累对光波进行调控,其功能受限于自然材料的性质。近年来,人们提出了由亚波长人工原子按一定宏观排列方式组成的超构材料[1],通过设计人工原子和人工原子的序,可以实现材料介电常数和磁导率的定向设计[2]。基于此,超构材料可以实现各种奇特的电磁调控,例如负折射和隐身等[3-4]。尽管三维超构材料在长波领域取得了巨大的成功,但由于光频三维超构材料损耗大、难以实际制备,限制了其实际应用。
超构表面是一种由平面型人工原子按特定宏观排列方式构建而成的二维超构材料[5-6],具有损耗低、可制备和易集成等特点,已经成为研究光波调控的新平台[7-10]。通过在亚波长尺度下调控光波的振幅、相位和偏振等特性,超构表面展示了丰富的光波调控能力,如光波异常偏折[11-14]、色 散 补 偿[15-17]、超 透 镜 成 像[18-19]和 全 息 成 像[20-21]等。其中,异常偏折是超构表面调控光波最基本的方式之一,也是许多实际应用的基础和前提[22-28],如激光雷达和光谱仪等。自从描述异常偏折的广义Snell定律[29]被提出,超构表面的异常偏折成为光子学领域的研究热点[23,30-33],引起了学术界和工业界的广泛关注。随着研究的深入,人们发现梯度相位超构表面无法实现接近100%的高效率异常偏折[34-35],高效率的异常偏折需要考虑振幅和相位协同调控,因此各种振幅相位协同调控超构表面被报道[36-38],近期光频完美效率异常反射也被演示[39]。
目前,异常偏折超构表面研究取得了长足的进展,本文回顾了光频超构表面异常偏折这一领域的近期发展,首先介绍梯度相位超构表面和振幅相位协同调控超构表面的发展,然后介绍基于超构表面异常偏折的光子学应用,最后对超构表面异常偏折及其应用进行了总结与展望。
2011年,哈佛大学团队[29]报道了超构表面的异常偏折,通过沿着超构表面设计局域的相位分布,构建梯度相位,可以控制光束的偏折方向,且折/反射方向满足广义Snell定律。基于梯度相位的认识,人们展开了大量研究,金属超构表面和介质超构表面分别被提出用于实现光束的异常偏折。
如图1所示,在两种介质之间的界面设计超构表面引入突变相变,且该相位是一个与界面位置相关的函数,那么光在经过超构表面相邻两个位置点时的相移分别为Ф和Ф+dФ。假设两点之间有两条与实际光路无限靠近的光路,由费马原理可知两条光路的光程近似相等,则有:
图1 广义斯涅耳定律[29]Fig.1 Schematic of generalized Snell’s law[29]
其中:k0是入射光的波矢,θi和θt是入射角和出射角,ni和nt分别是入射空间和出射空间的折射率。因此,广义Snell定律可写成:
广义Snell定律也被称为异常折射/反射定律,θr是异常反射角。由广义Snell定律可知,入射到超构表面的平面波的出射角不仅与入射角、入射介质和出射介质有关,还与波长和相位梯度有关,通过设计相位梯度,可以调控光波以任意角度出射,甚至是以表面波的形式出射[40]。
为了验证广义Snell定律并实现异常偏折光波调控,哈佛大学团队[29]使用金属V型天线在硅表面构建相位梯度,通过实验观察到异常折射和反射现象,尽管异常折射和反射的效率不高,但是这与从费马原理推导出的广义Snell定律非常一致,如图2(a)所示。为了在不牺牲超薄平面设计的情况下进一步提高金属超构表面异常折射的效率,新加坡国立大学团队[41]提出了双层等离子超构表面,如图2(b)所示,通过打破辐射对称性,并且受益于适当定制的层内和层间耦合,能够实现17%的转换效率和0.73 dB的消光比。
图2 (a)金属天线超构表面[29];(b)双层等离子超构表面[41]Fig.2(a)Metal antenna metasurface[29];(b)Hybrid bilayer plasmonic metasurface[41]
与此同时,研究人员提出使用金属-介质-金属的构型作为超构表面的单元结构,通过金属底板保证高反射率,通过改变上层金属纳米棒的尺寸实现0~2π的相位完全覆盖。如图3(a)所示,复旦大学团队[34]通过改变入射光偏振方向的金纳米棒的长度构建梯度相位,设计、制造和表征了工作在850 nm的梯度相位超构表面,通过实验证明了该超构表面可以将入射光偏折到异常反射方向,且出射光与入射光具有相同的偏振。该超构表面工作角度不大,因此异常反射效率高达80%。但是上述单元结构是针对工作波长850 nm进行设计的,当波长远离850 nm时,单元结构的相位响应逐渐偏离设计值,且不同单元结构的偏离各不相同,导致梯度相位逐渐被破坏,因而超构表面仅能在150 nm的带宽内维持异常反射调控。美国西北大学团队[42]提出使用宽度渐变的梯形金属超构表面实现高效率的宽带光频异常反射,如图3(b)所示。这种空间渐变的超构表面可以在宽带上赋予入射光梯度相位,且不会产生任何交叉偏振效应。最终,研究团队使用上述金属超构表面在可见光和近红外波段展示了高效率的宽带(450~850 nm)异常反射,其中异常反射级次与最强衍射级次的功率比值高达103,异常反射效率约85%。韩国光云大学研究团队[43]使用金属铝的单层梯形超构表面在整个可见光波段展示了线偏振光的异常反射调控。随后他们[44]又提出将一个可见光波段的宽带异常反射超构表面与近红外波段的宽带异常反射超构表面进行层叠,如图3(c)所示,使超构表面从可见光一直到近红外都保持梯度相位,最终能够在456~1 456 nm实现平均效率70%以上的异常反射。
图3 (a)金属超构表面[34];(b)梯形金属超构表面[42];(c)双层梯形金属超构表面[44]Fig.3(a)Metal metasurface[34];(b)Trapezoid metal metasurface[42];(c)Bilayer trapezoid metal metasurface[44]
图4 (a)可见光硅超构表面[45];(b)近红外硅超构表面[46];(c)可见光晶体硅超构表面[47]Fig.4(a)Silicon metasurface for visible light[45];(b)Silicon metasurface for near-infrared light[46];(c)Crystalline silicon metasurface for visible light[47]
尽管金属超构表面能够提供较强的相位调控能力,从而可以构建梯度相位实现异常偏折,然而金属在光频范围内的吸收无法避免,且吸收还会被金属微结构的共振放大,进一步增大吸收损耗。因此,研究人员提出使用高折射率介质来降低吸收。斯坦福大学研究团队[45]使用超薄的硅纳米柱构建梯度相位超构表面,能够对可见光实现70%左右效率的异常折射。纽约州立大学团队[46]同样使用硅纳米柱构建梯度超构表面,在通信波长实现了36%效率的异常折射。中山大学研究团队[47]使用在可见光吸收更小的晶体硅来构建超构表面,超构表面由在石英衬底上排列成方形晶格的硅柱渐变阵列组成。该超构表面单元能够实现完整的2π相位控制,并在532 nm波长下实现偏振无关的光束异常折射,透射率可达71%,相对衍射效率高达95%。
异常反射要求超构表面能够保证较高的反射率,因此研究人员通常采用高折射率介质-间隔层-金属的构型。范德比尔特大学研究团队[48]在银的薄膜上设计硅超构表面的几何结构,如图5(a)所示。通过将单元结构彼此相邻放置,在一个超元胞内构建线性梯度相位,超构表面能够将1 550 nm正入射的光束偏折到11.5°的方向,偏折效率达到83%。随着波长从红外波段缩短至可见光,硅的吸收也逐渐变大。在可见光范围,二氧化钛由于同时具备较高的折射率和可忽略的吸收而成为最常用的材料。哈尔滨工业大学[49]使用二氧化钛纳米柱构建超构表面,通过扫描二氧化钛纳米柱的结构参数,寻找若干个初始相位不同的半波片,将不同相位的半波片依照梯度相位放置构建超构表面。该超构表面能对632 nm波长的入射光实现偏振转化和异常反射,如图5(b)所示,异常反射效率约为49%。
图5 (a)硅超构表面[48];(b)二氧化钛超构表面[49]Fig.5(a)Silicon metasurface[48];(b)Titanium dioxide metasurface[49]
尽管梯度相位超构表面取得了巨大的进展,但由于广义Snell定律本身只考虑了局域相位,只能描述光束的偏折方向,人们难以实现接近100%效率的完美异常偏折,且效率随着偏折角度的增大急剧下降[34]。局域相位是指在设计过程中忽略不同单元结构之间的耦合,不考虑单元结构周围的结构对其相位的影响。针对这一挑战,研究人员通过严格的推导指出[50]:完美效率的异常偏折依赖于振幅和相位协同调控,需要考虑超构表面单元结构之间的非局域效应,非局域效应是指在超构表面的设计过程中需要考虑单元结构周围结构对其振幅和相位的影响。
如图6所示,入射光入射到超构表面时会被散射到空间1和空间2中,形成反射光和透射光,s代表电磁场的水平分量。以异常反射为例,推导实现100%效率完美异常反射的物理要求,首先假设超构表面将正入射的光完全偏折到指定方向,从反射光的远场反推得到超构表面表面处的反射场分布,将反射场分布和入射光在超构表面表面处的场分布叠加得到入射空间的总场分布,接着利用边界条件得到总电场和总磁场与表面阻抗和导纳的关系。对于一个超薄表面,既可以用表面阻抗和导纳进行特性描述,又可以用反射和透射系数进行特性描述。因此,通过阻抗和导纳与反射和透射系数的关系,可以得到反射和透射系数与总场分布的关系。以TE偏振入射为例,考虑到完美异常反射体系的透射为零,则反射系数的解析公式为:
图6 完美异常反射的振幅和相位[50]Fig.6 Reflected amplitude and phase of perfect anomalous reflection[50]
其中:下标i代表入射场,下标1s代表反射场的水平分量。
反射振幅和反射相位随位置的关系如图6所示。不难发现,完美异常反射依赖于振幅和相位协同调控,需要考虑单元结构之间的非局域效应。具体来说,反射相位随着异常反射角度的增大而逐渐偏离线性梯度,而反射振幅则在1上下浮动且随着异常反射角度的增大而变剧烈,即完美异常反射要求超构表面不同区域分别实现增益和损耗。然而,增益会导致系统复杂、不稳定,这对光学器件的设计提出了更高的挑战。
图8 (a)微波完美异常反射器[51];(b)大角度高效率异常反射器[52]Fig.8(a)Perfect anomalous reflector in microwave region[51];(b)High efficiency anomalous reflector at large angle[52]
为了在被动超构表面系统中实现完美异常偏折的物理要求,如图7所示,多伦多大学[36]和马萨诸塞大学团队[38]分别针对透射式和反射式异常偏折提出利用辅助场引导功率分布,创建需要的阻抗分布,从而实现完美异常偏折要求的非局域响应。
图7 辅助场实现超构表面的等效非局域响应Fig.7 Auxiliary fields achieve equivalent nonlocal response for metasurfaces
阿尔托大学团队[51]使用一系列矩形金属贴片设计反射器的表面阻抗分布,通过表面波的能量转移实现了反射器需要的强烈的非局域响应,抑制了其他方向的寄生反射,最终在微波实现了完美异常反射器。鉴于金属非局域超构表面在微波波段取得了巨大的成功[37,51],阿尔托大学团队[52]提出将该理念和结构平移至光频波段,通过优化金属非局域超构表面的结构参数,实现了界面阻抗匹配和寄生反射抑制,最终实现了82.9%的异常反射效率,反射角度为80°,突破了梯度相位超构表面的效率限制。但是,金属在光频的吸收难以避免,仍然有16.3%的入射光能量被金属结构吸收。
金属非局域超构表面由于受限于吸收损耗,难以真正实现高效率的光频异常偏折。斯坦福大学的研究团队利用拓扑算法,围绕拓扑超构表面开展了系统研究[35,53-57],获得了非对称的自由几何结构超构表面,通过布洛赫波的耦合提高了大角度下的异常折射效率,最高效率达86%,如图9(a)所示。康奈尔大学的研究团队[58]使用支持多共振模式的双各向异性超构表面,如图9(b)所示,通过控制模式的干涉实现了99.8%的衍射效率,然而当考虑体系所有的反射能量时,性能迅速下降。
图9 (a)自由形状超构表面[35];(b)双各向异性超构表面[58]Fig.9(a)Metasurface with freeform geometries[35];(b)Bianisotropic metasurface[58]
同济大学团队[39]则从实现完美异常反射的物理要求出发,并给出了实现完美异常反射的能流分布要求。在一个既没有有源元件又没有损耗元件的无透射系统中,可以使用系统内部的横向能流来调控所需的表面能流分布。随后,同济大学提出一维多层膜结合二维超构表面的准三维亚波长新结构,通过准三维亚波长结构内传输波和布洛赫波的高效耦合,可以增强整个系统横向能流的调控能力,如图10所示。进一步地,通过分析结构内的场分布,发现可以利用多层膜的反射振幅和反射相位对布洛赫波及传输波产生的横向能流进行调控,从而实现完美异常反射需要的能流分布。基于以上理念和结构,工作在1 550 nm波长处的完美异常反射器得以实现。
图10 准三维亚波长结构实现完美异常反射[39]Fig.10 Quasi-three-dimensional subwavelength structure realizes perfect anomalous reflection[39]
光束扫描系统是激光雷达的核心硬件。通过在异常偏折超构表面中引入主动可调谐材料,可以实现可调谐的光束偏转,从而实现光束扫描系统的小型化和微型化。
澳大利亚国立大学研究团队[59]将液晶引入超构表面,通过加热超构表面将液晶状态从向列相切换为各向同性,展示了激光束从0°到12°偏折的切换,效率为50%,如图11(a)所示。新加坡科技研究局[60]同样提出了一个由液晶调制的可调介质超构表面,如图11(b)所示,超构表面可以提供突变的相位,从而实现像素尺寸的小型化。通过施加不同的偏压,展示了动态可调的光束偏转,最大偏转角度为11°,效率约为35%。
图11 透射式主动超构表面光束扫描示意图[59-60]Fig.11 Schematic of beam steering based on active metasurface in transmission mode[59-60]
加州理工学院团队[61]报道了一种逆向设计方法来优化设计主动的阵列级光束扫描超构表面(见图12(a))。通过电调谐每个相同几何结构的超构表面单元,能够在空间上设计有源天线阵列的相位和振幅分布。基于这种方法,连续的光束偏转被演示,最大偏折角度达到70°。加州理工学院提出的这种框架有望进一步适用于各种目标函数和主动可调超构表面天线阵列平台。
图12 反射式波束控制主动超构表面示意图[61-62]Fig.12 Schematic of beam steering based on active metasurface in reflection mode[61-62]
韩国三星电子研究团队[62]利用电学调控氧化铟锡的方式(见图12(b)),展示了一种全固态的反射式超构表面阵列,通过调控单元结构中的两个独立参数(顶栅电压和底栅电压),可以独立控制单元结构反射系数的实部和虚部。基于以上理念,实现了扫描频率为5.4 MHz的连续激光扫描,最大激光偏转角在4°左右,效率在1%左右,并成功地对由模型车和人物组成的模拟街景进行了三维深度扫描。
加州理工学院的研究团队[63-64]提出了一种基于超构表面的紧凑型光谱仪,如图13所示。它由一块1 mm厚、体积为7 mm3的玻璃制成,包含三个反射式超构表面,其中实现色散的光栅就是一个异常反射式超构表面。该光谱仪主要受益于折叠光学架构以及平面化超构表面的性能,能够在近红外波段100 nm带宽内提供约1.2 nm的分辨率。
图13 折叠式超构表面光谱仪示意图[63-64]Fig.13 Schematics of folded metasurface spectrometer[63-64]
德克萨斯大学奥斯汀分校研究团队[65]提出将异常反射超构表面引入有机光探测器,通过将光偏转到异常反射方向,能够拓展光的传播路径,从而增加光灵敏度和光电探测器效率,如图14所示。研究人员基于梯度相位设计了异常反射超构表面,能够实现76%效率的光波异常反射操纵。将超构表面集成到有机光电探测器中,显著增加了560~690 nm入射光的吸收并产生光电流,响应度提高了1.5~2倍。
图14 超构表面集成的有机光电探测器[65]Fig.14 Metasurface-integrated organic photodetectors[65]
超构表面的出现极大地增强了人们调控光波的能力,并因此成为光子学领域的研究热点。其中,异常偏折是超构表面调控光波最基本的方式之一,也是许多光波调控现象及应用的基础和前提。经过十年左右的发展,无论是基础理论还是应用研究,超构表面异常偏折都取得了长足的进步和发展。基于广义Snell定律的梯度相位超构表面激发了学术界对异常偏折的研究热情,但由于广义Snell定律只考虑了局域相位,只能描述光束的偏折方向,无法确定偏折能量。完美效率的异常偏折依赖于振幅和相位协同调控,需要考虑超构表面单元结构之间的非局域效应。早期,通过改变单元结构的几何尺寸,可以实现对电磁波不同反射相位的调控,通过构建几何尺寸梯度变化的超构表面,实现了80%左右效率的光频异常反射。近期,多层膜被引入超构表面用于增强超构系统中的横向能流,实现振幅和相位的协同调控,通过联合设计超构表面和多层膜的几何参数,已经实现了99%以上效率的光频异常反射。然而,对于透射式异常偏折来说,透射式异常偏折同时存在透射和反射通道,需要抑制的端口成倍增加,难度大大提高,目前光频异常折射的绝对效率只有90%左右,还未达到效率极限。因此,未来需要进一步围绕高效率异常折射展开研究,探究如何兼顾反射抑制和非局域响应来实现完美异常折射的物理要求,并利用合适的超构表面构型来实现完美效率异常折射。另一方面,由于实际应用中,超构表面器件往往工作于特定波长范围或特定角度范围,甚至是特定锥角范围,为了满足实际应用需求,未来的另一个研究方向是围绕宽带、宽角异常偏折的机理和实现方式展开深入研究,为基于超构表面异常偏折的应用发展提供支持。