舒 田,陈智虎,刘春艳,许元红,赵泽英
(1.贵州省农业科学院科技信息研究所,贵州贵阳 550006;2.贵州师范大学喀斯特研究院,贵州贵阳 550001)
果业作为我国农业的重要组成部分,在种植业中位列第三,其面积、产量和产值仅次于粮食和蔬菜[1],在保障食物供给、居民健康、生态安全、农户增收以及激发农村经济活力和农业可持续发展中的作用日益显著,是新时代乡村振兴的重要支柱产业之一。病虫害是影响果树生长、降低果品质量、影响果业健康发展的主要因素,已成为当今果树种植及生产管理中最根本、最引人关注的灾害之一。病虫害种类繁多、规模大、时常暴发性成灾或二次传播,给果树病虫害有效防控带来了巨大挑战。同时,某些弱寄生菌逐渐成为果树的主要病害,防控难度加大,病虫害的蔓延将直接导致果树树体及果品质量安全,甚至引起消费恐慌,给水果产业发展带来消极影响[2]。一般果园果树的病虫害防控是大范围地定期喷药以避免病虫害的发生,存在过量过度使用农药化学现象,致使果园土壤酸化严重、农业面源污染增加,最终导致果品质量安全风险大,果业绿色健康发展难度大。因此,如何及早发现并精准实现病虫害的有效监控,从而精准指导适时适量施药已成为农业研究者的关注热点。传统的人工检测与监测费时费力,虽然准确性较高,但存在一定的主观性和时间的滞后性,无法满足现代精准农业对病虫害发生类型、发病位置、发病程度和发生面积等信息进行定位、定时、定量以及快速有效、及时同步获取的精准要求[3]。因此,实时、快速、精准、无损地监测、识别、防治水果病虫害,对于提高水果产量、提升果品品质、减少果业损失、促进农民增收和乡村产业振兴尤其是山区经济腾飞具有重要意义。
高光谱遥感能够采集获得用来描述地球表面物质光谱特性的一维光谱信息和描述其地理分布的二维空间信息,其光谱的分辨率达到了纳米级,很多在多光谱图像中无法获得的对于某种植物特别波长的波谱信息被感知[4]。高光谱遥感具有分辨率高、连续性强、信息量巨大等优势,可实时获取植物生长过程中器官形态的细微变化[5],在农业病虫害鉴别上表现出强大的潜能,可以为大田、农场、果园等不同尺度的农作物病虫害精准防控和高效防治提供参考[6]。通过利用高光谱传感器可获得地物在可见光波段(0.4~0.7 μm)、近红外波段(0.7~1.1 μm)以及短波红外波段(1.1~2.5 μm)范围内的数百个波段的电磁波谱信息[7-10],另外有些光谱传感器还能探测优于1 nm的连续窄波段光谱信息用于地物研究分析[11]。对于光谱反射率高低而言,可见光范围内由植被对色素的吸收和反射的强弱决定,近红外波段由植物细胞的基本结构决定,而短波红外范围内则由植被对水汽的吸收情况决定[12]。全波段范围内植被由于受病虫害侵染,植物器官的微小变化就会引起叶片和形态的高度敏感表现,这就是病虫害早期诊断和不同病虫害识别的高光谱应用意义所在[13],也正是近些年高光谱探测技术迅猛发展及被青睐的缘由[14]。可见光-近红外是绿色植被对电磁波谱响应最为敏感的区间,尤其是近红外区及“红边”位置[15-18]对于作物病虫害症状的早期检测和诊断、动态变化监测和分析有着举足轻重的依据。作物病虫害高光谱遥感监测依赖于作物受不同胁迫影响后发生的光谱响应[19]。可见光波段内,叶绿素含量影响着植物的光谱特性。当植物健康正常并旺长时,叶绿素含量高时“绿峰蓝移”。当作物染病后,色素系统被破坏而“失绿”,从而出现病斑、黑斑或伤斑现象,这将导致可见光波段的反射率改变,导致“绿峰红移”[20];而在近红外波段,绿色植物的光谱反射大小主要取决于植物叶片内部的细胞结构,染病后植物叶片组织的水分代谢受阻,病虫害侵染继续加重,这将导致植物植株的整体性损伤,如细胞破裂死亡腐烂、植物整株萎蔫等,最后导致近红外及短波红外波段范围的光谱反射率改变,致使“红边蓝移”[21-23]。农作物病虫害的发生发展与其长期所处的生长发育环境、气候条件、土壤状况以及农作物品类等因素关系密切,作物病害的病原体主要为真菌、细菌、放线菌和部分线虫,虫害多是由一年多代的成虫越冬,在来年适宜季节大量繁殖而带来的作物危害[24]。果树冠层受病虫害后不同时期会出现细胞组织颜色黄化、叶片形状残缺、冠层形态矮化、植株枯死、萎蔫导致蒸腾速率下降等,这些症状过程都表现在一定的反射光谱上(图1)。
作为较晚兴起的新型遥感技术,高光谱遥感在作物病虫害监测识别与应用研究中得到极广泛的关注[25-28]。根据数据采集方式的不同分为成像和非成像2种类型[29]。非成像高光谱原理就是测量传感器探头平视视域范围内的平均光谱[30],多用于植株冠层、叶片特征的光谱变化分析,常用的就是ASD公司的地物光谱仪,比如Rumpf等利用ASD地物光谱仪测量了不同病害染病叶片的光谱数据,系统分析了不同病害的识别精度[31];而成像高光谱以快照式 (窗扫式) 的成像高光谱传感器性能最佳,扫射1次便能获得整个区域内高光谱“立方体”,这种“立方体”具有“图像立方体”的形式和结构,数据获取稳定且时效性强,体现了成像高光谱“图谱合一”的优势[32](图2),已成为作物表型分析和不同病虫害监测识别不可或缺的光谱传感器[33]。Apan等基于EO-1 hyperion 高光谱图像实现了甘蔗黄锈病的监测[34],Lee等利用航空高光谱成像仪对柑橘黄龙病进行了监测和图像分类[35-36],同样Qin等利用高光谱成像仪对柑橘溃疡病进行了探测分类[37],Yeh等利用推扫式成像高光谱仪实现了对患炭疽病的草莓叶片不同病斑的识别[38]。从上述分析可以看出,地面平台的非成像高光谱、航空平台的机载成像高光谱传感器在水果病虫害监测识别及其分类上得到大范围的应用和发展,而空间分辨率影响下的星载成像高光谱在水果及病虫害监测上应用相对较少,受其分辨率的限制主要应用于大尺度的作物种植面积提取及长势监测。随着“星-空-地”高光谱遥感多源多平台的发展,为水果果树病虫害遥感监测及其不同应用方向的分析研究提供了多组合选择[39-40],研究方法也从经典的统计分析向人工智能、模式识别、深度学习、大数据分析等方向扩展[29]。因此,利用高光谱遥感技术对水果果树病虫害早期诊断、胁迫分类、监测识别、危害程度进行定量分析和品质检测成为可能。
为探讨水果病虫害高光谱遥感应用的研究热点和发展趋势,基于检索平台WOS (Web of Science)和中国知网(China National Knowledge Infrastructure,简称CNKI)进行文献收集与统计分析,检索时间为2021年12月31日。在WOS系统中,采取“TS=fruit disease”and “TS=hyperspectral”or “TS=fruit pest”and“TS=hyperspectral”or“TS=fruit disease and pest”and“TS=hyperspectral”方式检索文献,时间不限。经过去重处理,共获得文献78篇,时间覆盖范围为2008年至2021年;在中国知网中,采取“主题=水果病虫害”或含“主题=水果病害”或含“主题=水果虫害”并且“主题=高光谱”方式检索文献,时间不限,仅检索出文献2篇。再扩大检索范围,采取“主题=病虫害”或含“主题=病害”或含“主题=虫害”并且“主题=高光谱”方式检索文献,时间不限。分析和选择水果类文献,共获得69篇文献,时间覆盖范围为2007年至2021年。由图3可知,国外国内水果病虫害高光谱遥感研究发文量基本相当,发表时间也基本一致,总体呈现递增趋势,2018—2021年增加最为快速,发文量较少说明高光谱在该领域研究具有广阔前景,大有可为;根据WOS题录数据的发文量排名和CNKI对国内科研机构题录数据的发文量来看,中国是高光谱遥感技术在水果病虫害研究中发表论文最多的国家,总和为97篇,其次为美国、西班牙、德国;国内高校和科研院所对水果病虫害高光谱的研究也比较关注,其中以沈阳农业大学、华南农业大学、浙江大学、华东交通大学、西北农林科技大学的学者研究最多,该结果如图4-a、图4-b所示。根据图4-c分析,对文献涉及的基础学科研究发现,以农学领域应用为主,然后就是在遥感与光谱学、食品科学、化学、植物学及计算机学科上也得到广泛应用。由图4-d可知,水果病虫害高光谱的应用研究集中在病虫害检测,病虫害植株分类识别、病虫害监测估算和严重度等级分类也是研究的热点。通过对检索的147篇文献进行分析发现,学者对柑橘(柑桔)、苹果果树高光谱病虫害研究最多,其次就是桃、梨、脐橙等水果,而且利用高光谱成像技术比非成像多,地面平台比机载和星载平台的要多。
综上所述,星-空-地平台的高光谱遥感技术为水果病虫害的研究和应用提供了多种模式或组合上的选择,同时以无人机为载荷的高光谱成像技术越来越受到研究的青睐。大多数学者综合了高光谱遥感、农学、病理学、植物保护理论与计算机技术,并从传统的统计分析向机器学习、深度学习、人工智能、图像与模式识别及大数据分析等方向扩展。本文首先简述了高光谱遥感监测的基本原理、数据获取方式以及技术要点,然后从水果高光谱遥感对病虫害早期诊断、病虫害光谱响应、不同病虫害监测识别、病虫害危害度定量分析以及病虫害无损检测等方面的研究进展进行了深入探讨,并结合近年来的高光谱研究实际,针对性地提出了高光谱遥感在水果病虫害中应用的趋势与未来展望。
病虫害防治坚持“预防为主,早发现,早防治”的原则,传统的农业生产管理存在对病虫害农情信息监测不及时,监测结果以定性方式展示,无法将监测结果实现定量化等难题,而高光谱技术则能够尽早通过对作物微小生理变化的识别判定疾病的发生。病虫害对作物的影响主要分为外部形态和内部生理变化,何种变化都将不可避免地导致作物光谱特征的改变,尤其是中、近红外光谱特征的变化。赵英时等指出只有近红外波段反射率发生变化,可见光波段的反射率才会发生变化[41-42],在观测病虫害方面,红外波段光谱特征监测相较于肉眼要快速很多,这对病虫害的早期防治具有非常重要的意义[43]。Delalieux等利用多个时期的苹果分析黑星病胁迫叶片和健康叶片的光谱变化特点,发现在1 375~1 750、2 200~2 500 nm的光谱范围内对叶片侵染初期能够快速识别,而在580~660、685~715 nm范围内可以快速地、较精准地识别侵染3周后的病害叶片[44]。梅慧兰等获取了370~1 000 nm 范围内的健康、不同染病程度和缺锌等5类柑桔叶片的高光谱图像,利用偏最小二乘判别分析构建了柑桔黄龙病的分级监测模型[45]。Oerke等利用不同时期葡萄叶片光谱特征变化分析和监测霜霉病感染程度时发现,接种天数越长,健康和染病叶片的光谱差异就会越大,可用于染病监测的光谱数量也会越多。400、1 400、1 900 nm可用于早期预测,接种后第8.5天的疾病检测宜采用红边波长,接种第9.5天后的疾病诊断宜采用 500~700 nm范围内检测[46]。
通过文献检索分析,虽然国内外将高光谱技术应用在水果病虫害防治方面的研究成果相对较少,但是应用潜力已得到充分证实,而且早期诊断研究的热点波段集中在近红外及“红边”位置。对于病虫害的早期诊断监测,还需结合高光谱遥感信息、作物发病机理机制及所处气象环境条件,利用长时间序列的遥感数据对病虫害开展生境监测是实现病虫害早期防治的关键技术之一。
从上述分析可知,作物对电磁波谱的响应主要由作物表面特征和内部生理特征决定,植物自身的色素、细胞结构、水汽吸收分别影响并决定了可见光、近红外及短波红外范围的光谱特征。由图5可知,由于叶绿素和类胡萝卜素强吸收带的存在,绿色健康植被在可见光波段的反射率较低,同时在蓝光和红光谱段内存在2个吸收谷,绿光波段内则存在1个强反射峰;然而介于可见光红光波段与近红外波段的700~770 nm波段范围内,植被光谱反射率曲线急剧上升几乎近似垂直直线,该波段范围的斜率与植被单位面积叶绿素含量关系密切,学界称为“红边位置”;此后在短波红外的1 400、1 900 nm附近有2个吸收谷,主要由水汽强烈吸收造成。在受到病菌侵染后叶绿素遭到破坏,可见光范围内的光谱反射率增强,红边位置向短波方向移动[21]。同时,染病植株在受到胁迫较严重时就会出现叶倾角变化甚至植株倒伏等冠层形态的变化,当胁迫达到某一临界阈值,作物植株内部的水分代谢会受到破坏,导致植株及叶片严重缺水,这都会引起近红外波段反射率的变化[22,47-48]。红外波段反射率有增加也有降低,不同病虫害对应的光谱响应不太一致,但1 400、1 900 nm附近出现吸收谷反射率增加的现象[40]。
Garcia-Ruiz等利用2种不同的成像系统对柑橘黄龙病进行识别,结果表明健康与染病果树在波长710 nm和红边波长处的反射光谱存在明显差异,模型的分类精度在65%~87%之间[49]。邓小玲等利用DJI MATRICE 600 pro六旋翼无人机搭载S185成像光谱仪,采用连续投影算法对柑橘患黄龙病植株进行分类识别,分类准确率超过95%,并提取出了最佳识别特征波段(698、762nm)[50]。郭冬梅基于柑橘叶片高光谱,应用逐步判别分析筛选出柑橘黄龙病9个特征波长(400.19、403.17、406.15、407.64、412.12、721.14、730.74、740.34、823.98 nm)[51]。谭明等利用高光谱图像识别技术对柑橘溃疡病进行识别研究,认为柑橘正常果树叶片与溃疡病叶片在可见光波段的510.9、575.4、600.88 nm和近红外波段的 998.97 nm 具有很好的光谱响应[52]。李江波等以脐橙为研究对象,基于高光谱成像并利用特征波段主成分分析法和波段比算法对溃疡病果实进行分类识别,提取处溃疡病特征波段5个(630、685、720、810、875 nm),正确识别率达到95.4%[53]。Knauer等利用非成像高光谱(400~2 500 nm)和成像光谱仪HySpex VNIR 1600、HySpex SWIR-320m-e对葡萄白粉病进行识别研究,通过基于线性判别分析法(linear discriminant analysis,简称LDA)提取了特征光谱波段(440、498、549、640、651、811、1 081、1 652、2 253 nm)和基于积分图像提取了纹理特征,识别分类精度达到99.8%[54]。温淑娴等利用高光谱成像技术对患有炭疽病的砀山酥梨进行识别,也提取了识别酥梨炭疽病的特征波长,分别为572.0、613.2、652.6、749.2、806.5、874.6 nm[55]。可以看出,可见光-短波红外波段范围内对特定水果及其病虫害光谱响应非常明显,对柑橘病虫害的研究比较常见,逐渐扩大到其他水果及果树病虫害的研究应用也是大势所趋,这些敏感波段或特定波长可为后续低成本的特定品种监测仪器的开发提供依据。
高光谱不但可以针对单一果树的同一病虫害胁迫植株进行分类提取,还可以对果树不同病虫害以及不同水果果树同种病虫害进行识别,这也是高光谱技术应用于作物病虫害监测识别和防治的重点。Qin等利用光谱信息散度法(SID)对患病的葡萄柚进行了识别检查,准确率达到96.2%[37]。郭冬梅采集了感染褐斑病、黑星病和溃疡病的柑橘叶片高光谱图像,分析并比较病斑及附近不同组织的光谱反射率特征,提取了区分3种病害的光谱特征波段(404.66、421.10、428.60、434.62、436.12、446.68、618.04、700.40、719.55、727.54、864.38、938.93、998.96 nm),并利用特征波段结合多方向Fisher线性判别分析法对褐斑病、黑星病和溃疡病的识别率为100%[51]。王建涛等利用高光谱成像系统提取450~900 nm下81个波段作为模型输入数据,构建了基于卷积神经网络的柑橘溃疡病、红蜘蛛等胁迫病叶分类模型。在迭代次数为1 000次和学习率为0.001时,模型识别的准确率达到98.75%[56]。Abdulridha等利用高光谱成像系统采集了患病的鳄梨叶片高光谱图像,采用多层感知机(multi-layer perceptron,简称MLP)和决策树(decision tree,简称DT)等2种分类算法,实现了对鳄梨枯萎病及缺氮的识别,最高精度可达100%[57]。张建华等从蜜柚和葡萄病害叶片局部图像信息入手,分别采用最优二叉树支持向量机和卷积神经网络区域建议算法对4种蜜柚叶片病害和6种葡萄病叶进行了识别检测[58-59]。研究表明,基于高光谱图像利用不同分类算法对不同病虫害识别成为可能,而且准确率较高,表1为部分水果病虫害识别相关研究使用到的高光谱分类算法。
表1 水果病虫害识别的高光谱分类算法
由于高光谱庞大的光谱特征和图像特征,数据量大,高维度信息的冗余性导致处理时间长,数据降维难度大,特征提取及选择的方法、数据降维方法以及数据的前期处理方式等都会对判别精度造成影响。同时,算法的选择以及不同算法的结合会极大提高模型识别的精度,研究表明融入深度学习对于作物病虫害的识别以及精度的提高是一种行之有效的方法。
在水果病虫害分类识别的基础上,定量测评分析病虫害的危害程度对于指导果园精准施药等作业管理具有重要意义,高光谱及其成像技术的定量分析为其提供了可能。邢东兴等分析了红富士苹果树在各级红蜘蛛虫害、黄叶病害胁迫下的反射光谱特征,构造了6种光谱指数并分别建立了红蜘蛛虫害和黄叶病害级别(正常、轻度、中度、重度)的测评数学模型,测评准确率分别为96%、98%[60]。同样,温淑娴等采集了酥梨样本接种炭疽病初期到发病直至腐烂整个过程的高光谱图像及210个样品作为研究对象,采用阈值分割法、权重系数法、主成分分析及聚类分析等方法,样本正确识别率为98.41%,根据时序高光谱图像的K-Means分类发现酥梨在第2天和第3天的发病症状明显,推测出这个时段对病害施加诊治手段最为有利。随着病害程度的进一步加深,病害区域含水率升高,光谱反射率降低[55]。梅慧兰等采集了健康、染病和缺锌柑橘叶片370~1 000 nm 波长范围的高光谱图像,建立了偏最小二乘判别模型,模型判别精度达到96.4%[45]。同样,刘燕德等也通过采集鉴别为轻度、中度、重度、缺锌和正常的5类柑橘叶片高光谱图像(图6),利用最小二乘支持向量机法构建的柑橘黄龙病判别模型最好,误判率为0[61]。孙晔利用图像分割算法及统计学方法,选取了水蜜桃全果实高光谱图像中709、807、874 nm 3个有效的单波段图像,通过设置阈值进行桃子腐烂与健康区域的定位,对严重腐烂、一般腐烂、轻度腐烂和健康桃子的检测精度分别达到100%、100%、66%和99%[62],该研究表明健康果、腐烂果的检测和鉴别效果好,而轻度腐烂果表面ROI像素比高光谱成像更小而不合适,从而导致检测精度低。
文献分析中发现,水果病虫害的危害程度定量分析中,大多数学者以病虫害危害等级为因变量,自变量可为全波段、特征波长或特定区间光谱,基于统计的回归分析方法(PLSR、FLDA、SVM、Logistic回归、多线性回归、Dirichlet聚集回归)[25,63-66]或分类算法(SAM、DT、ANN)[31],以特定病虫害特征图谱或特征波段开展研究。光谱植被指数(spectral vegetation index,简称SVI)是遥感传感器的不同光谱波段间的线性与非线性的几何集合,从不同角度反映作物生育期的生长状况而受到广泛关注[31,67-69],针对性地进行作物疾病特异性数据分析,利用不同波长数据构建特定的病虫害识别指数(SDI),相较于单纯的SDI,特定SDI能更快捷、更简单地实现特定病虫害的量化反演分析[70-71]。与SVI一样,特定水果SDI的构建也将成为水果病虫害危害等级量化分析的研究方向。
水果在产存运销过程中易受病菌侵染以及害虫侵蚀,对其生理机能、组织结构造成一定影响,出现如斑点、腐烂、霉粉和虫蛀等反常症状,从而造成果业损失和影响食品安全。一直以来,水果品质的无损检测是农业工程领域的研究热点和重要课题[72],对水果病虫害进行无损检测与准确评价成为提升水果品质以及保障食品安全的重要举措[73]。水果病虫害无损检测主要基于近红外透射光谱技术和高光谱成像技术,韩东海等基于短波近红外透射光谱研制出苹果水心病检测仪,检测结果发现苹果不同级别水心病的透射光谱强度不同[74],从而实现对苹果水心病的判别,与全球同类检测方法相比,该方法检测正确率高、仪器设备简单易操作。此外,韩东海等还利用透射光谱技术对苹果内部褐变开展无损检测,其准确率达到95.65%[75]。Teerachaichayut等基于近红外透射光谱,利用波长660~960 nm检测山竹果硬果皮病,并区分山竹果健康果皮与病害果皮的光谱特征,可准确检测出山竹果的硬果皮病[76]。刘思伽等利用高光谱成像技术对感染炭疽病、苦痘病、黑腐病和褐斑病4种病害的寒富苹果进行了检测,选取3个特征波长、10个特征波长以及全波长光谱信息,利用线性判别分析、支持向量机和BP人工神经网络模型分别对不同光谱信息进行病害识别,病害果的检测率达96.25%[77]。Siedliska等利用高光谱成像技术检测草莓感染腐败真菌情况,选取19个波长作为最适合草莓感染鉴别的波长,并建立了监督分类模型[78]。章林忠等基于近红外光谱开展了葡萄病害研究,得到最佳预处理方法为多元散射校正、一阶导数结合Norris平滑处理,利用判别分析模型分析,正确率达96.15%[79]。
传统的水果病虫害检测多为人工诊断,其效率低、耗时久、主观性强、内部病虫害无法肉眼识别,而理化指标检测又存在破坏性强、样品处理繁琐、检测周期长等问题,虽然大部分研究成果都处于试验或实验室研究阶段,样本量不大,但足以证明利用高光谱技术开展水果病虫害的无损检测是可行的,对保障果业健康发展、减少经济损失具有重要意义。
本文从病虫害的早期诊断、光谱响应分析、不同病虫害识别、危害度定量分析及无损检测等5个方面对高光谱遥感在水果病虫害应用领域的研究现状进行综述分析,高光谱遥感对于水果病虫害监测具有广阔的应用前景,这5个方面的研究正成为该领域的研究热点。利用高光谱技术对水果冠层、叶片、果实内微小生理变化的识别可以在早期判定疾病的发生,从而施以措施进行提前预防。果树染病后叶绿素遭到破坏、植株水分代谢受到干扰、叶片和植株缺水导致可见光和近红外波段的反射率发生根本性变化,产生明显的光谱响应。基于特定波长及模型算法,高光谱及其成像技术为病虫害危害程度的定量分析和水果病虫害的无损检测提供了完全可能。基于高光谱图像并通过不同分类算法对不同病虫害识别已经可行,准确率也较高。
虽然高光谱技术已经在柑橘、苹果、桃子、梨、脐橙、草莓等水果病虫害研究上取得了很好的分类识别效果,但大多数处在试验和理论探索性研究阶段,样本数量相对少,对于大范围大尺度农田现实场景的病虫害监测仍然面临着多方面的问题和挑战,同时亟需提出快速高效的解决办法,以满足高光谱技术在水果病虫害遥感监测识别上更深层次的应用研究,从以下方面提出展望:
(1)大多病虫害的病原菌或其产生的霉素,在与寄主植被相互作用时均可能引起相似症状或表现,导致所谓的“同谱异物”现象,比如柑橘、脐橙及柚子等果树易产生此现象。同时,同一病原菌在同一果树不同环境下也会产生不同病症,从而表征“同物异谱”。涉及水果类的病理病害和生理病害的高光谱检测技术研究相对较少,同一病害具有不同症状或相似症状的精确识别成为该领域的瓶颈问题。因此,利用成像和非成像高光谱技术,结合光谱与图像特征的技术与分析方法,提取不同病虫害的最佳特征波段,针对不同病虫害建立图谱数据库,为同一病害不同症状以及不同病虫害相似症状的精确识别提供更高的可能性。
(2)在模型方法上选择合适高效的算法建立水果病虫害高光谱预测模型。在回归模型、主成分分析、聚类分析等经典方法上,选取优化卷积神经网络、K近邻、随机森林、极限学习机以及支持向量机等判别算法,不断发展深度学习算法、光谱角制图法、光谱信息散度法、混合调谐滤波法。
(3)开展“星-空-地”协同一体应用平台和田间(实验室)-区域-国家的小-中-大尺度的综合研究,为水果病虫害的高精度监测识别提供技术支撑。随着航空遥感技术的快速发展,基于无人机+高光谱成像系统研究越来越受到关注,利用地面非成像高光谱也是研究的热点。由于受空间分辨率的影响,以至于利用星载高光谱传感器研究水果病虫害的研究相对较少,因此利用全谱段卫星或小卫星传感器监测作物病虫害亟待发展。因此,开展结合星-空-地协同的综合平台应用,充分利用遥感技术在光谱、时间和空间分辨率的三维优势,将水果病虫害的监测识别从小尺度(田间、实验室尺度)扩展到中尺度(农场、区域尺度),再到大尺度(国家尺度),如何用好现有技术及资源,实现不同尺度、不同平台水果病虫害的高精度监测识别及预测成为了今后亟待解决的科学问题。
(4)目前,高光谱遥感技术在水果病虫害监测识别上取得了一些成果,后续研究中,应将水果病虫害监测与荧光、SAR、Lidar、伽马射线、X射线以及紫外线等各种遥感系统进行综合应用,使各系统优势发挥最大化,实现对病虫害监测的连续性、长效性。尤其是加强高光谱协同荧光、热红外等技术力度,根据荧光、热红外对周边环境信息反应的敏感性,结合历史数据、长时间序列气象数据和病虫害发展扩散模型等,分析病虫害对植被产生胁迫表征及由胁迫引起的周边环境变化,实现水果病虫害的早期诊断和提前预防。