苦参根中化学成分及其体外抗肿瘤活性研究

2022-11-15 21:49龙国清王东东胡高升魏江春王安华贾景明
中草药 2022年4期
关键词:苦参粉末甲醇

龙国清,王东东,胡高升,魏江春,王安华,贾景明

苦参根中化学成分及其体外抗肿瘤活性研究

龙国清,王东东,胡高升,魏江春,王安华*,贾景明*

沈阳药科大学中药学院,辽宁 沈阳 110016

研究苦参根的化学成分及其体外抗肿瘤活性。利用大孔树脂柱色谱、硅胶柱色谱、ODS柱色谱及半制备型HPLC等进行分离纯化,结合理化性质及波谱数据鉴定化合物的结构;评估了从苦参根提取物中分离得到的11个化合物对人乳腺鳞状癌HCC1806细胞,人乳腺癌MCF-7细胞,宫颈癌HeLa细胞,肺癌A549、H1299和H460细胞和人肝癌HepG2细胞的体外抑制活性。从苦参根70%乙醇提取物中分离得到17个化合物,分别鉴定为8-(3,3-dimethylallyl)isorhamnetin(1)、6-lavandulyl-7,4-dimethoxy-5,2-dihydroxylflavanone(2)、sophoraflavanone B(3)、5-methyl-sophoraflavanone B(4)、苦参酮(5)、苦参醇U(6)、去甲脱水淫羊藿黄素(7)、槐果碱(8)、9α-羟基槐果碱(9)、槐胺碱(10)、臭豆碱(11)、胡椒酸(12)、1-(4-ethylphenyl)-1,2-ethanediol(13)、丁香酸(14)、1,2,4-苯三酚(15)、阿魏酸(16)、羟苄基酒石酸(17)。其中化合物5对H1299和H460细胞的体外半数抑制浓度(median inhibition concentration,IC50)分别为(22.6±1.2)、(13.6±0.5)μmol/L,其抑制效果强于阳性药顺铂。此外,化合物4对A549细胞和化合物5对MCF-7细胞的抑制效果与阳性药相当。化合物1为新的天然产物,化合物2、12~15首次从该属中分离得到;化合物5对H1299细胞和H460细胞具有较好的抑制活性。苦参中的异戊烯基黄酮在抗肿瘤药物开发与应用上有良好的发展前景。

苦参;抗肿瘤活性;苦参酮;异戊烯基黄酮;胡椒酸;丁香酸;8-(3,3-dimethylallyl)isorhamnetin

苦参Alt.为豆科(Leguminosae)苦参属多年生药用植物,野生资源丰富,广泛分布于我国南北各省区。在《湖南药物志》《中国民族药志要》等多个民族药学著作中记载其具有清热燥湿、散瘀止痛、解毒杀虫等功效[1]。苦参中具有多种化学活性成分,其中以生物碱类[2]与黄酮类[3]为主。现代药理研究发现,苦参中的生物碱和黄酮具有多种生物活性,主要包括抗糖尿病[4-6]、抗肿瘤[7-9]、抗炎[10]及抗病原微生物[11]等作用。本课题组前期从苦参根中提取分离了一系列具有良好抗肿瘤活性的化合物[12-13],发现苦参的化学成分在抗肿瘤药物研究中具有重要的研究价值。因此,本实验对苦参进行了系统的化学成分研究,从中分离得到17个化合物,分别鉴定为8-(3,3- dimethylallyl) isorhamnetin(1)、6-lavandulyl-7,4- dimethoxy-5,2-dihydroxyl-flavanone(2)、sophora- flavanone B(3)、5-methyl-sophoraflavanone B(4)、苦参酮(kurarinone,5)、苦参醇U(kushenol U,6)、去甲脱水淫羊藿黄素(8-prenylkaempferol,7)、槐果碱(sophocarpine,8)、9α-羟基槐果碱(9-hydroxy- sophocarpine,9)、槐胺碱(3,4,5,6-tetradehydro- spartein-2-one,10)、臭豆碱(anagyrin,11)、胡椒酸(heliotropic acid,12)、1-(4-ethylphenyl)-1,2- ethanediol(13)、丁香酸(syringic acid,14)、1,2,4-苯三酚(1,2,4-trihydroxybenzene,15)、阿魏酸(ferulic acid,16)、羟苄基酒石酸(piscidic acid,17)。采用MTT法评估了其中11个化合物的细胞毒活性,结果显示,化合物5对肺癌H1299细胞和H460细胞具有较好的抑制活性,其抑制效果强于阳性药顺铂;化合物4对人非小细胞肺癌A549细胞和化合物5对人乳腺癌MCF-7细胞的抑制效果与阳性药相当。

1 仪器与材料

AAPI 3200质谱仪(AB SCIEX公司,Framingham,MA,美国);Bruker 601型核磁共振仪(Bruker公司,瑞士);JASCO V-650紫外-可见分光光度仪(JASCO公司,日本);UltiMate 3000分析型HPLC(Thermo公司,美国);制备型HPLC(Agela公司,美国);Waters 2545全自动制备型高效液相色谱仪(Waters公司,美国);硅胶GF254薄层预制板为烟台化学工业研究所产品;色谱硅胶(200~300目)为青岛海洋化工厂产品;制备型C18色谱柱(YMC-Pack ODS-A);Waters RP C18色谱柱(Waters公司,美国);ODS填料为日本YMC公司产品;所用色谱级甲醇和乙腈均购自康科德科技有限公司。

人乳腺鳞状癌HCC1086细胞、MCF-7细胞、人宫颈癌HeLa细胞、A549细胞、H1299细胞、H460细胞和人肝癌HepG2细胞购自于中国科学院上海生物化学与细胞生物学研究所,由本实验室保存和进行传代。

实验用苦参根于2018年5月采于我国辽宁省朝阳市凌源市宋杖子镇绿源中草药种植基地,经沈阳药科大学中药学院胡高升副教授鉴定为苦参Ait.,标本(SPU-2018-1014-06)保存于沈阳药科大学中药资源教研室。

2 提取与分离

将干燥的苦参根50 kg,切片、粉碎,70%乙醇加热回流提取3次,每次2 h。提取液浓缩后,依次用石油醚、二氯甲烷、醋酸乙酯、正丁醇进行萃取,取醋酸乙酯部位(960 g)经D101大孔柱色谱,乙醇-水系统(30%、50%、75%、95%)洗脱,合并相同部位后,共得到4个流分(Fr. 1~4)。Fr. 3(225 g)经硅胶柱色谱,二氯甲烷-甲醇(50∶1~1∶1)梯度洗脱,合并相同部位后,共得到14个流分(Fr. 3.1~3.14)。取Fr. 3.2(6.2 g)过ODS中压色谱,甲醇-水(40∶60~100∶0,5 h),体积流量15.0 mL/min,得到36个流分(Fr. 3.2.1~3.2.36);Fr.3.2.23经制备型HPLC制备,甲醇-水(50∶50),体积流量8.0 mL/min,得到化合物1(11.2 mg)、3(15.0 mg)、4(9.6 mg)和7(20.2 mg)。取Fr. 3.2.34过羟丙基葡聚糖凝胶柱(Sephadex LH-20),以纯甲醇作为流动相,得到6个流分(Fr. 3.2.34.1~3.2.34.6)。Fr. 3.2.34.1经制备型HPLC制备,甲醇-水(65∶35),体积流量8.0 mL/min,得到化合物2(9.6 mg)。Fr. 3.2.34.4经制备型HPLC制备,甲醇-水(63∶37),体积流量8.0 mL/min,得到化合物5(15.6 mg)和6(24.7 mg)。取Fr. 1(13 g)过ODS中压色谱,甲醇-水(10∶90~100∶0),体积流量15.0 mL/min,得到18个流分(Fr. 1.1~1.18);Fr. 1.3经制备型HPLC制备,甲醇-水(10∶90),体积流量8.0 mL/min,得到化合物12(10.6 mg)、14(13.5 mg)和15(6.9 mg)。Fr. 1.5经制备型HPLC制备,甲醇-水(13∶87),体积流量8.0 mL/min,得到化合物13(14.6 mg)、16(22.4 mg)和17(18.6 mg)。取二氯甲烷萃取部位(410 g)经硅胶柱色谱,石油醚-醋酸乙酯(100∶1~0∶1)梯度洗脱,合并相同部位后,共得到15个流分(A1~A15)。取A14(12 g)过ODS中压色谱,甲醇-水(60∶40~100∶0,5 h),体积流量15.0 mL/min,得到16个流分(A.14.1~A.14.16);A.14.8经制备型HPLC制备,甲醇-水(75∶25),体积流量8.0 mL/min,得到化合物9(21.1 mg);A.14.12经制备型HPLC制备,甲醇-水(83∶17),体积流量8.0 mL/min,得到化合物8(14.6 mg)、10(22.5 mg)和11(52.1 mg)。

3 结构鉴定

化合物1:黄色粉末(甲醇)。ESI-MS/: 347.4 [M+Na]+,分子式为C20H20O4。1H-NMR (600 MHz, DMSO-6): 12.38 (1H, s, 5-OH), 10.73 (1H, s, 7-OH), 9.77 (1H, s, 4′-OH), 9.41 (1H, s, 2-OH), 7.74 (1H, d,= 1.8 Hz, H-2′), 6.95 (1H, d,= 8.4 Hz, H-5′), 7.72 (1H, dd,= 8.4, 1.8 Hz, H-6′), 6.30 (1H, s, H-6), 5.23 (1H, d,= 6.0 Hz, H-2′′), 2.82 (2H, dd,= 17.1, 3.2 Hz, H-1′′), 1.73 (3H, s, 4′′-CH3), 1.62 (3H, s, 5′′-CH3);13C-NMR (150 MHz, DMSO-6): 176.6 (C-4), 161.6 (C-5), 158.7 (C-7), 153.9 (C-9), 149.2 (C-3′), 147.9 (C-4′), 147.0 (C-2), 136.2 (C-3), 131.2 (C-3′′), 123.0 (C-2′′), 122.7 (C-1′), 122.2 (C-6′), 116.0 (C-5′), 111.9 (C-2′), 106.0 (C-10), 103.5 (C-8), 98.5 (C-6), 56.0 (3′-OCH3), 25.8 (C-5′′), 21.7 (C-1′′), 18.3 (C-4′′)。以上数据与文献报道的数据一致[14],故鉴定化合物1为8-(3,3-dimethylallyl)isorhamnetin,经过Scifinder查阅发现该化合物为新的天然产物。

化合物2:黄色无定形粉末(甲醇)。ESI-MS/: 474.2 [M+Na]+,分子式为C27H32O6,ECD λmax330 nm,Δ+10;λmax290 nm,Δ−30。1H-NMR (600 MHz, CD3OD): 5.56 (1H, dd,= 13.8, 3.0 Hz, H-2), 2.89 (1H, dd,= 16.8, 13.8 Hz, H-3a), 2.65 (1H, dd,= 16.8, 3.0 Hz, H-3b), 6.14 (1H, s, H-8), 6.50 (1H, d,= 2.4 Hz, H-3′), 3.83 (3H, s, 4′-OCH3), 6.47 (1H, dd,= 8.4, 2.4 Hz, H-5′), 7.39 (1H, d,= 8.4 Hz, H-6′), 2.51 (2H, m, H-1′′), 2.63 (1H, m, H-2′′), 2.00 (2H, m, H-3′′), 4.98 (1H, t,= 7.2 Hz, H-4′′), 1.50 (3H, s, 6′′-CH3), 1.60 (3H, s, 7′′-CH3), 4.52 (1H, s, H-8′′), 4.60 (1H, s, H-9′′), 1.66 (3H, s, 10′′-CH3);13C-NMR (150 MHz, CD3OD): 75.3 (C-2), 45.5 (C-3), 193.7 (C-4), 164.7 (C-5), 109.5 (C-6), 164.8 (C-7), 93.3 (C-8), 161.9 (C-9), 105.8 (C-10), 119.0 (C-1′), 160.1 (C-2′), 99.8 (C-3′), 159.0 (C-4′), 108.1 (C-5′), 128.5 (C-6′), 28.2 (C-1′′), 48.2 (C-2′′), 32.4 (C-3′′), 124.8 (C-4′′), 132.1 (C-5′′), 17.9 (C-6′′), 25.9 (C-7′′), 149.7 (C-8′′), 111.2 (C-9′′), 19.1 (C-10′′), 55.9 (4′-OCH3), 55.8 (7-OCH3)。以上数据与文献报道的数据一致[15],故鉴定化合物2为(2,2)-6-lavandulyl-7,4-dimethoxy- 5,2-dihydroxylflavanone。

化合物3:黄色无定形粉末(甲醇)。ESI-MS/: 363.1 [M+Na]+,分子式为C20H22O5,ECD λmax330 nm,Δ+9;λmax290 nm,Δ−55。1H-NMR (600 MHz, CD3OD): 5.41 (1H, dd,= 12.6, 3.0 Hz, H-2), 3.18 (1H, dd,= 16.8, 12.6 Hz, H-3a), 2.70 (1H, dd,= 16.8, 3.0 Hz, H-3b), 5.97 (1H, s, H-6), 7.30 (2H, d,= 9.0 Hz, H-2′, 6′), 6.78 (2H, d,= 9.0 Hz, H-3′, 5′), 3.09 (2H, m, H-1′′), 5.07 (1H, m, H-2′′), 1.59 (3H, s, 4′′-CH3), 1.54 (3H, s, 5′′-CH3);13C-NMR (150 MHz, CD3OD): 77.6 (C-2), 41.3 (C-3), 196.1 (C-4), 160.5 (C-5), 94.6 (C-6), 159.1 (C-7), 106.3 (C-8), 163.7 (C-9), 101.1 (C-10), 128.6 (C-1′), 127.4 (C-2′, 6′), 114.5(C-3′, 5′), 156.9 (C-4′), 20.6 (C-1′′), 122.0 (C-2′′), 129.5 (C-3′′), 16.9 (C-4′′), 24.9 (C-5′′)。以上数据与文献报道的数据一致[16],故鉴定化合物3为sophoraflavanone B。

化合物4:黄色无定形粉末(甲醇)。ESI-MS/: 377.4 [M+Na]+,分子式为C21H22O5,ECD λmax330 nm,Δ+12;λmax290 nm,Δ−45。1H-NMR (600 MHz, CD3OD): 5.31 (1H, dd,= 12.0, 3.0 Hz, H-2), 2.90 (1H, dd,= 16.8, 12.0 Hz, H-3a), 2.55 (1H, dd,= 16.8, 3.0 Hz, H-3b), 6.14 (1H, s, H-6), 7.28 (2H, d,= 8.4 Hz, H-2′, 6′), 6.77 (2H, d,= 8.4 Hz, H-3′, 5′), 3.11 (2H, m, H-1′′), 5.10 (1H, m, H-2′′), 1.61 (3H, s, 4′′-CH3), 1.55 (3H, s, 5′′-CH3);13C-NMR (150 MHz, CD3OD): 79.9 (C-2), 46.1 (C-3), 192.8 (C-4), 163.7 (C-5), 93.2 (C-6), 164.1 (C-7), 109.8 (C-8), 163.7 (C-9), 105.7 (C-10), 131.4 (C-1′), 128.7 (C-2′, 6′), 116.0 (C-3′, 5′), 158.6 (C-4′), 22.6 (C-1′′), 123.8 (C-2′′), 131.5 (C-3′′), 17.7 (C-4′′), 22.5 (C-5′′)。以上数据与文献报道的数据一致[17],故鉴定化合物4为5-methylsophoraflavanone B。

化合物5:黄色无定形粉末(甲醇)。ESI-MS/: 461.2 [M+Na]+,分子式为C26H30O6,ECD λmax330 nm,Δ+13;λmax290 nm,Δ−58。1H-NMR (600 MHz, CD3OD): 5.60 (1H, dd,= 7.8, 2.4 Hz, H-2), 2.88 (1H, dd,= 16.8, 3.0 Hz, H-3b), 2.71 (1H, dd,= 16.8, 13.2 Hz, H-3a), 3.84 (3H, s, 5-OCH3), 6.14 (1H, s, H-6), 6.30 (1H, d,= 2.4 Hz, H-3′), 6.37(1H, dd,= 8.4, 2.4 Hz, H-5′), 7.32(1H, d,= 8.4 Hz, H-6′), 2.50 (2H, m, H-1′′), 2.64 (1H, m, H-2′′), 2.00 (2H, m, H-3′′), 4.98 (1H, t,= 7.2 Hz, H-4′′), 1.51 (3H, s, 6′′-CH3), 1.60 (3H, s, 7′′-CH3), 4.55 (1H, s, H-9′′), 4.61 (1H, s, H-9′′), 1.67 (3H, s, 10′′-CH3);13C-NMR (150 MHz, CD3OD): 74.1 (C-2), 45.6 (C-3), 193.9 (C-4), 161.8 (C-5), 93.2 (C-6), 164.9 (C-7), 109.5 (C-8), 164.8 (C-9), 105.7 (C-10), 118.4 (C-1′), 156.7 (C-2′), 107.6 (C-3′), 159.5 (C-4′), 103.3 (C-5′), 128.5 (C-6′), 28.2 (C-1′′), 48.2 (C-2′′), 32.3 (C-3′′), 124.8 (C-4′′), 132.0 (C-5′′), 17.8 (C-6′′), 25.9 (C-7′′), 149.7 (C-8′′), 111.3 (C-9′′), 19.1 (C-10′′), 55.9 (5-OCH3)。以上数据与文献报道的数据一致[18],故鉴定化合物5为苦参酮。

化合物6:黄色无定形粉末(甲醇)。ESI-MS/: 445.2 [M+Na]+,分子式为C26H30O5,ECD λmax330 nm,Δ+20;λmax290 nm,Δ−62。1H-NMR (600 MHz, CD3OD): 5.24 (1H, dd,= 13.2, 3.0 Hz, H-2), 2.93 (1H, d,= 16.2 Hz, H-3a), 2.64 (1H, dd,= 16.2, 3.0 Hz, H-3b), 6.10 (1H, s, H-6), 7.32 (2H, d,= 8.4 Hz, H-2′, 6′), 6.81(2H, d,= 8.4 Hz, H-3′, 5′), 2.41 (2H, m, H-1′′), 2.58 (1H, m, H-2′′), 1.95 (2H, m, H-3′′), 4.93 (1H, t,= 7.2 Hz, H-4′′), 1.56 (3H, s, 6′′-CH3), 1.60 (3H, s, 7′′-CH3), 4.56 (1H, s, H-9′′), 4.46 (1H, s, H-9′′), 1.47 (3H, s, 10′′-CH3), 3.80 (3H, s, 5-OCH3);13C-NMR (150 MHz, CD3OD): 80.1 (C-2), 46.4 (C-3), 193.1 (C-4), 161.9 (C-5), 93.4 (C-6), 164.9 (C-7), 109.5 (C-8), 164.3 (C-9), 105.7 (C-10), 131.5 (C-1′), 128.9 (C-2′, 6′), 116.3(C-3′, 5′), 158.9 (C-4′), 28.2 (C-1′′), 48.5 (C-2′′), 32.4 (C-3′′), 124.7 (C-4′′), 132.1 (C-5′′), 17.9 (C-6′′), 25.9 (C-7′′), 149.6 (C-8′′), 111.3 (C-9′′), 19.1 (C-10′′), 55.9 (5-OCH3)。以上数据与文献报道的数据一致[19],故鉴定化合物6为苦参醇U。

化合物7:黄色无定形粉末(甲醇)。ESI-MS/: 377.1 [M+Na]+,分子式为C20H18O6。1H-NMR (600 MHz, CD3OD): 6.23 (1H, s, H-6), 8.10 (2H, d,= 9.0 Hz, H-2′, 6′), 6.90 (2H, d,= 9.0 Hz, H-3′, 5′), 3.50 (2H, m, H-1′′), 5.22 (1H, t,= 7.6 Hz, H-2′′), 1.80 (3H, s, 4′′-CH3), 1.67 (3H, s, 5′′-CH3);13C-NMR (150 MHz, CD3OD): 148.0 (C-2), 137.0 (C-3), 177.6 (C-4), 160.1 (C-5), 98.7 (C-6), 162.8 (C-7), 107.6 (C-8), 160.1 (C-9), 104.5 (C-10), 124.0 (C-1′), 130.5 (C-2′, 6′), 116.3(C-3′, 5′), 155.5 (C-4′), 22.4 (C-1′′), 123.9 (C-2′′), 132.4 (C-3′′), 25.9 (C-4′′), 18.2(C-5′′)。以上数据与文献报道的数据一致[20],故鉴定化合物7为去甲脱水淫羊藿黄素。

化合物8:无色油状物(甲醇)。ESI-MS/: 285.3 [M+K]+,分子式为C15H22N2O。1H-NMR (600 MHz, CD3OD): 2.82 (1H, m, H-2a), 2.00 (1H, m, H-2b), 1.75 (2H, m, H-3), 2.26 (1H, m, H-4a), 1.85 (1H, m, H-4b), 2.22 (1H, m, H-5), 2.70 (1H, m, H-6), 1.91 (1H, m, H-7), 1.75 (1H, m, H-8a), 1.68 (1H, m, H-8b), 1.48 (1H, m, H-9a), 1.61 (1H, m, H-9b), 2.82 (1H, m, H-10a), 2.00 (1H, m, H-10b), 3.97 (1H, m, H-11), 1.46 (1H, m, H-12a), 2.22 (1H, m, H-12b), 6.64 (1H, m, H-13), 5.81 (1H, m, H-14), 4.05 (1H, dd,= 13.2, 4.8 Hz, H-17a), 3.15 (1H, t,= 13.2 Hz, H-17b);13C-NMR (150 MHz, CD3OD): 58.3 (C-2), 22.1 (C-3), 28.7 (C-4), 36.0 (C-5), 64.7 (C-6), 42.8 (C-7), 27.3 (C-8), 21.6 (C-9), 58.3 (C-10), 52.9 (C-11), 28.3 (C-12), 140.9 (C-13′), 124.2 (C-14), 167.7 (C-15), 43.1 (C-17)。以上数据与文献报道的数据一致[21],故鉴定化合物8为槐果碱。

化合物9:无色油状物(甲醇)。ESI-MS/: 285.1 [M+Na]+,分子式为C15H22N2O2。1H-NMR (600 MHz, CD3OD): 2.82 (2H, m, H-2), 1.75 (2H, m, H-3), 2.26 (1H, m, H-4a), 1.85 (1H, m, H-4b), 2.22 (1H, m, H-5), 1.63 (1H, m, H-6), 1.91 (1H, m, H-7), 1.75 (1H, m, H-8a), 1.68 (1H, m, H-8b), 3.83 (1H, m, H-9), 3.47 (1H, m, H-10a), 4.03 (1H, m, H-10b), 1.46 (1H, m, H-11), 2.22 (2H, m, H-12), 6.62 (1H, m, H-13), 5.77 (1H, m, H-14), 4.05 (1H, dd,= 13.2, 4.8 Hz, H-17a), 3.15 (1H, t,= 13.2 Hz, H-17b);13C-NMR (150 MHz, CD3OD): 54.7 (C-2), 18.5 (C-3), 24.9 (C-4), 27.1 (C-5), 61.9 (C-6), 27.1 (C-7), 23.3 (C-8), 18.2 (C-9), 54.6 (C-10), 38.8 (C-11), 32.0 (C-12), 139.4 (C-13), 123.3 (C-14), 165.2 (C-15), 49.8 (C-17)。以上数据与文献报道的数据一致[22],故鉴定化合物9为9α-羟基槐果碱。

化合物10:无色油状物(甲醇)。ESI-MS/: 267.3 [M+Na]+,分子式为C15H20N2O。1H-NMR (600 MHz, CD3OD): 3.78 (1H, m, H-2a), 3.22 (1H, m, H-2b), 3.22 (1H, s, H-3a), 2.25 (1H, m, H-3b), 3.22 (2H, s, H-4), 4.07 (1H, m, H-5), 4.01 (1H, m, H-6), 2.36 (1H, m, H-7), 2.36 (2H, m, H-8), 1.66 (2H, m, H-9), 3.49 (2H, m, H-10), 6.23 (H, m, H-12), 6.40 (1H, m, H-13), 7.45 (1H, m, H-14), 4.25 (1H, dd,= 13.2, 4.8 Hz, H-17a), 2.63 (1H, t,= 13.2 Hz, H-17b);13C-NMR (150 MHz, CD3OD): 52.0 (C-2), 19.4 (C-3), 24.0 (C-4), 34.5 (C-5), 64.2 (C-6), 33.1 (C-7), 23.3 (C-8), 18.9 (C-9), 52.0 (C-10), 148.3 (C-11), 109.1 (C-12), 141.5 (C-13), 118.8 (C-14), 165.3 (C-15), 50.6 (C-17)。以上数据与文献报道的数据一致[21],故鉴定化合物10为槐胺碱。

化合物11:无色油状物(甲醇)。ESI-MS/: 267.4 [M+Na]+,分子式为C15H20N2O。1H-NMR (600 MHz, CD3OD): 6.54 (1H, d,9.6 Hz, H-3), 7.53 (1H, dd,9.0, 1.8 Hz, H-4), 6.41 (1H, d,6.6 Hz, H-5), 3.20 (1H, m, H-7), 2.26 (1H, m, H-8a), 1.64 (1H, m, H-8b), 3.68 (1H, d,12.6 Hz, H-9), 4.15 (1H, d,15.6 Hz, H-10a), 3.68 (1H, m, H-10b), 3.48 (1H, s, H-11), 2.34 (1H, d,13.8 Hz, H-12a), 1.90 (1H, m, H-12b), 2.62 (1H, s, H-13a), 1.32 (1H, s, H-13b), 1.93 (1H, m, H-14a), 1.80 (1H, t,10.8 Hz, H-14b), 4.07 (1H, m, H-15a), 3.18 (1H, m, H-15b), 4.07 (1H, m, H-15a), 3.48 (1H, s, H-17b);13C-NMR (150 MHz, CD3OD): 58.3 (C-2), 22.1 (C-3), 28.7 (C-4), 36.0 (C-5), 64.7 (C-6), 42.8 (C-7), 27.3 (C-8), 21.6 (C-9), 58.3(C-10), 52.9 (C-11), 28.3 (C-12), 140.9 (C-13), 124.2 (C-14), 167.7 (C-15), 43.1 (C-17)。以上数据与文献报道的数据一致[23],故鉴定化合物11为臭豆碱。

化合物12:白色粉末(甲醇)。ESI-MS/: 198.7 [M+Na]+,分子式为C8H6O4。1H-NMR (600 MHz, CD3OD): 7.36 (1H, s, H-2), 6.99 (1H, d,= 8.4 Hz, H-5), 7.53 (1H, d,= 8.4 Hz, H-6), 6.12 (2H, s, -OCH2O), 12.75 (1H, s, -OH);13C-NMR (150 MHz, CD3OD): 125.1 (C-1), 108.9 (C-2), 147.6 (C-3), 151.2 (C-4), 108.2 (C-5), 124.9 (C-6), 101.3 (OCH2O), 166.8 (COOH)。以上数据与文献报道的数据一致[24],故鉴定化合物12为胡椒酸。

化合物13:白色粉末(甲醇)。ESI-MS/: 189.1 [M+Na]+,分子式为C10H14O2。1H-NMR (600 MHz, CD3OD): 7.19 (2H, d,= 7.5 Hz, H-2, 6), 7.09 (2H, d,= 7.5 Hz, H-3, 5), 5.16 (1H, d,= 4.2 Hz, 7-OH), 4.68 (1H, t,= 5.8 Hz, 8-OH), 4.49 (1H, dd,= 10.3, 5.9 Hz, H-8a), 3.37 (1H, m, H-8b), 2.60 (2H, m, H-9), 1.17 (3H, t,= 7.6 Hz, H-10);13C-NMR (150 MHz, CD3OD): 143.4 (C-4), 143.1 (C-1), 127.7 (C-3, 5), 125.6 (C-2, 6), 73.9 (C-7), 67.5 (C-8), 28.2 (C-9), 15.6 (C-10)。以上数据与文献报道的数据一致[25],故鉴定化合物13为1-(4-ethylphenyl)-1,2-ethanediol。

化合物14:白色粉末(甲醇)。ESI-MS/: 221.2 [M+Na]+,分子式为C9H10O5。1H-NMR (600 MHz, CD3OD): 7.33 (2H, s, H-2, 6), 3.88 (3H, s, 3, 5-OCH3);13C-NMR (150 MHz, CD3OD): 169.9 (COOH), 148.8 (C-3, 5), 141.70 (C-4), 122.0 (C-1), 108.3 (C-2, 6), 56.7 (3, 5-OCH3)。以上数据与文献报道的数据一致[26],故鉴定化合物14为丁香酸。

化合物15:白色粉末(甲醇)。ESI-MS/149.3 [M+Na]+,分子式为C6H6O3。1H-NMR (600 MHz, CD3OD): 6.52 (1H, d,= 8.7 Hz, H-6), 6.55 (1H, dd,= 8.6, 2.1 Hz, H-5), 6.27 (1H, d,= 1.8 Hz, H-3);13C-NMR (150 MHz, CD3OD): 140.9 (C-1), 151.2 (C-2), 107.9 (C-3), 152.8 (C-4), 110.2 (C-5), 121.3 (C-6)。以上数据与文献报道的数据一致[27],故鉴定化合物15为1,2,4-苯三酚。

化合物16:白色粉末(甲醇)。ESI-MS/: 217.4 [M+Na]+,分子式为C10H10O4。1H-NMR (600 MHz, CD3OD): 7.14 (1H, d,= 1.8 Hz, H-2), 7.02 (1H, d,= 8.6 Hz, H-5), 6.68 (1H, dd,= 8.6, 1.8 Hz, H-6), 7.55 (1H, d,= 16.8 Hz, H-7), 6.32 (1H, d,= 16.8 Hz, H-8), 3.80 (3H, s, 3-OCH3);13C-NMR (150 MHz, CD3OD): 126.2 (C-1), 111.6 (C-2), 149.5 (C-3), 148.3 (C-4), 115.9 (C-5), 121.3 (C-6), 144.9 (C-7), 116.0 (C-8), 168.5 (C-9), 56.2 (3-OCH3)。以上数据与文献报道的数据一致[28],故鉴定化合物16为阿魏酸。

化合物17:白色粉末(甲醇)。ESI-MS/: 279.2 [M+Na]+,分子式为C11H12O7。1H-NMR (600 MHz, CD3OD): 4.52 (1H, s, H-2), 3.14 (1H, d,= 13.9 Hz, H-3a), 2.99 (1H, d,= 13.9 Hz, H-3b), 7.07 (2H, d,= 8.5 Hz, H-2′, 6′), 6.66 (1H, d,= 8.5 Hz, H-3′, 5′);13C-NMR (150 MHz, CD3OD): 174.9 (C-1), 76.3 (C-2), 81.4 (C-3), 42.0 (C-4), 175.8 (C-5), 128.0 (C-1′), 132.5 (C-2′, 6′), 115.7 (C-3′, 5′), 157.2 (C-4′)。以上数据与文献报道的数据一致[29],故鉴定化合物17为羟苄基酒石酸。

4 抗肿瘤活性测试

采用MTT法评估了从苦参根提取物中分离得到的7个异戊烯基黄酮(1~7)和4个生物碱(8~11)分别对人肿瘤细胞的生长抑制作用,结果见表1。实验对HepG2、HeLa 2种细胞选择5-氟尿嘧啶(5-fluorouracil,5-FU)作为阳性药,对H460、A549、H1299、HCC1806、MCF-7细胞选择顺铂作为阳性药,结果显示,4种生物碱对肿瘤细胞均无抑制作用,7种异戊烯基黄酮对肿瘤细胞均表现出较强的抑制作用,其中化合物5对H1299和H460具有良好的抑制活性,其抑制效果强于阳性药顺铂。化合物4对A549和化合物5对MCF-7的抑制效果与阳性药相当。

表1 化合物1~11对肿瘤细胞的抑制作用

Table 1 Anti-tumor activities of compounds 1—11

化合物IC50/(μmol·L−1)A549H1299H460HCC1806MCF-7HepG2HeLa 126.3±0.960.1±1.528.3±1.566.7±2.261.5±1.745.8±2.148.5±1.1 247.6±2.270.8±0.654.2±2.578.3±1.569.1±1.260.5±3.351.3±4.6 320.1±1.258.2±1.624.2±0.656.7±1.359.4±1.339.5±1.544.9±1.8 415.2±1.349.2±1.868.4±1.671.2±0.955.2±2.529.8±0.867.8±1.6 525.2±0.822.6±1.213.6±0.549.5±1.118.6±0.835.1±1.932.8±0.9 630.5±2.537.8±4.126.6±1.352.7±1.882.3±1.993.4±1.697.2±1.2 736.4±2.655.2±1.635.9±2.269.9±5.575.1±2.337.5±3.839.4±3.3 8>100>100>100>100>100>100>100 9>100>100>100>100>100>100>100 10>100>100>100>100>100>100>100 11>100>100>100>100>100>100>100 5-FU/////14.5±1.215.9±0.2 顺铂12.6±1.224.5±1.018.2±1.133.2±0.816.2±1.2//

5 讨论

苦参为我国传统中药,用药历史悠久。苦参中的活性成分主要为生物碱类和黄酮类化合物,而黄酮类化合物主要以二氢黄酮为主。在结构解析方面,本研究运用一维核磁(1H-NMR、13C-NMR)确定二氢黄酮化合物(2~6)的平面构型,并用ECD谱的Cotton效应来确定化合物2位手性碳的绝对构型,即在280~300 nm为负Cotton效应,且在320~340 nm为正Cotton效应,则表明二氢黄酮的2位碳为型;若在280~300 nm为正Cotton效应,且在320~340 nm为负Cotton效应,则表明二氢黄酮的2位碳为型[30],这大大提高了化合物结构解析的准确性。大量的药理研究发现,苦参中的化合物具有良好的抗肿瘤活性,在体外活性筛选方面,本研究发现在相同给药剂量浓度下异戊烯基黄酮类化合物比生物碱具有更好的抗肿瘤活性,为进一步研究抗肿瘤药物提供一定的借鉴意义。

利益冲突 所有作者均声明不存在利益冲突

[1] 中国药典[S]. 一部. 2020: 211.

[2] Li J C, Zhang Z J, Liu D,. Quinolizidine alkaloids from the roots of[J]., 2020: 1-8.

[3] Ma J Y, Zhao D R, Yang T,. Prenylflavanones isolated from[J]., 2019, 29: 138-141.

[4] Yan H W, Zhu H, Yuan X,. Eight new biflavonoids with lavandulyl units from the roots ofand their inhibitory effect on PTP1B [J]., 2019, 86: 679-685.

[5] Kim J H, Cho C W, Kim H Y,. Α-Glucosidase inhibition by prenylated and lavandulyl compounds fromroots andanalysis [J]., 2017, 102: 960-969.

[6] Yang X Z, Yang J, Xu C,. Antidiabetic effects of flavonoids fromEtOAc extract in type 2 diabetic KK-ay mice [J]., 2015, 171: 161-170.

[7] Chung T W, Lin C C, Lin S C,. Antitumor effect of kurarinone and underlying mechanism in small cell lung carcinoma cells [J]., 2019, 12: 6119-6131.

[8] 张明发. 苦参碱抗肝癌药理作用及临床应用的研究进展 [J]. 药物评价研究, 2020, 43(1): 157-165.

[9] 张元元, 李旭, 廖子君, 等. 基于网络药理学预测苦参治疗肝癌的分子机制 [J]. 世界中医药, 2021, 16(5): 751-757.

[10] Ma A L, Yang Y Y, Wang Q Y,. Anti-inflammatory effects of oxymatrine on rheumatoid arthritis in rats via regulating the imbalance between Treg and Th17 cells [J]., 2017, 15(6): 3615-3622.

[11] Yu N, He L, Liu N,. Antimicrobial action of an endophytic fungi fromand structure identification of its active constituent [J]., 2014, 28(2): 327-332.

[12] Long G Q, Hu G S, Gao X X,. Sophoranone A and B: Two new cytotoxic prenylated metabolites and their analogs from the root bark of[J]., 2021, doi: 10.1080/14786419.2021.1894562.

[13] Long G Q, Wang D D, Wang J,. Chemical constituents ofAit. and cytotoxic activities of two new compounds [J]., 2020, 36(1): 1-6.

[14] Nemoto H, Kawamura T, Hayashi M,. An efficient method for C8-prenylation of flavonols and flavanones [J]., 2012, 44(9): 1308-1314.

[15] Cao D D, Trinh T T V, Mai H D T,. Antimicrobial lavandulylated flavonoids from a sponge-derivedsp. G248 in east Vietnam sea [J]., 2019, 17(9): E529.

[16] 赵玉英, 王邠, 雷黎明, 等. 苦参黄酮类成分的研究 [J]. 植物学报, 1993, 35(4): 304-306.

[17] Kang S S, Kim J S, Son K H,. A new prenylated flavanone from the roots of[J]., 2000, 71(5): 511-515.

[18] Kuroyanagi M, Arakawa T, Hirayama Y,. Antibacterial and antiandrogen flavonoids from[J]., 1999, 62(12): 1595-1599.

[19] Wu L J, Miyase T, Ueno A,. Studies on the constituents ofAit. iii [J]., 1985, 105(8): 736-741.

[20] Komatsu M, Tomimori T, Hatayama K,. Isolation and structure of new flavonoids, sophoradochromene and[J]., 1970, 18(4): 741-745.

[21] Okuda S, Murakoshi I, Kamata H,. Studies on lupin alkaloids. I. the minor alkaloids of Japanese[J]., 1965, 13(4): 482-487.

[22] 邸大琳, 李法庆, 陈蕾, 等. 苦参体外抑菌作用的研究 [J]. 时珍国医国药, 2006, 17(10): 1974.

[23] Bohlmann F, Rahtz D, Arndt C. Lupinen-alkaloide, XI. Die alkaloide aus[J]., 1958, 91(10): 2189-2193.

[24] 程凡, 徐帮, 郭玲芝, 等. 宜昌润楠中酚类成分的研究 [J]. 华中师范大学学报: 自然科学版, 2012, 46(6): 695-699.

[25] Yang W Q, Qin X D, Shao H J,. New phenyl-ethanediols from the culture broth of[J]., 2007, 47(2): 191-193.

[26] Nguyen N T, Tran T T T, Dang P H,. A new 8, 3′-neolignan fromLour [J]., 2021, doi: 10.1080/14786419.2021.1916746.

[27] 姚学军, 孟素蕊, 王喆. 泽漆的化学成分及其抗肿瘤转移活性研究 [J]. 现代药物与临床, 2013, 28(6): 826-829.

[28] 毕跃峰, 郑晓珂, 冯卫生, 等. 卷柏中化学成分的分离与结构鉴定 [J]. 药学学报, 2004, 39(1): 41-45.

[29] Masayukui T, Akiko K, Makio S,. Piscidic acid and fukiic acid esters from[J]., 1998, 49(7): 2115-2119.

[30] Gaffield W. Circular dichroism, optical rotatory dispersion and absolute configuration of flavanones, 3-hydroxyflavanones and their glycosides: Determination of aglycone chirality in flavanone glycosides [J]., 1970, 26(17): 4093-4108.

Chemical constituents ofand its antitumor activities

LONG Guo-qing, WANG Dong-dong, HU Gao-sheng, WEI Jiang-chun, WANG An-hua, JIA Jing-ming

School of Traditional Chinese Medicine, Shenyang Pharmaceutical University, Shenyang 110016, China

To study the chemical constituents of Kushen () and its antitumor activities.The compounds were isolated and purified using macroporous resin column chromatography, silica gel column chromatography, ODS column chromatography and semi-preparative HPLC, and their structures were elucidated by means of physicochemical properties and spectroscopic analysis. And the 11 compounds were evaluated using relevantanti-tumor activities against breast squamous carcinoma cells (HCC1806), human breast cancer cells (MCF-7), human cervical cancer cells (HeLa), human lung cancer cells (A549, H1299 and H460), and human hepatoma cells(HepG2).Seventeen compounds were isolated from 70% ethyl alcohol extract from the roots ofand identified as 8-(3,3- dimethylallyl)isorhamnetin (1), 6-lavandulyl-7,4-dimethoxy-5,2-dihydroxylflavanone (2), sophoraflavanone B (3), 5- methylsophoraflavanone B (4), kurarinone (5), kushenol U (6), 8-prenylkaempferol (7), sophocarpine (8), 9αhydroxysophocarpine (9), sophoramine (10), anagyrine (11), piperic acid (12), 1-(4-ethylphenyl)-1,2-ethanediol (13), syringic acid (14), 1,2,4-benzenetriol (15), ferulic acid (16), and piscidic acid (17). Compound 5 showed good inhibitory activities against H1299 and H460, and its inhibitory effect was stronger than that of cisplatin with IC50values of (22.6 ± 1.2) μmol/L and (13.6 ± 0.5) μmol/L, respectively. In addition, the inhibitory activities of compound 4 against A549 cells and compound 5 against MCF-7 cells were comparable to that of the positive drug.Among them, compound 1 is a new natural product, and compounds 2, 12—15 are isolated from genusfor the first time. Compound 5 showed good inhibitory activities against H1299 and H460, which provide scientific basis for further research on new anti-tumor drugs of isopentenyl flavonoids in.

Ait.; antitumor activity; kurarinone; isopentenyl flavonoids; piperic acid; syringic acid; 8-(3,3-dimethylallyl)isorhamnetin

R284.1

A

0253 - 2670(2022)04 - 0978 - 07

10.7501/j.issn.0253-2670.2022.04.003

2021-09-20

国家重点研发计划项目(2017YFC1701200);辽宁省“兴辽英才计划”项目(XLYC1902101)

龙国清(1994—),男,博士,湖南凤凰人,主要研究方向为天然产物化学与活性研究。E-mail:sylongguoqing@163.com

贾景明,教授,研究方向为中药资源及有效成分代谢调控。E-mail: jiajingming@163.com

王安华,讲师,博士,主要从事中药及天然产物的成分分离及活性评价。E-mail: sywanganhua@163.com

[责任编辑 王文倩]

猜你喜欢
苦参粉末甲醇
以苦参为主治疗心律失常的疗效观察
Fe基非晶粉末降解性能研究
苦参生品及其炮制品的2种不同提取方法的抗菌药效研究
硅胶吸附管采集甲醇汽车尾气排放中甲醇的方法研究
喜迎春天
PREP法和AA法制取Inconel718粉末对比分析
浅谈天然气制甲醇与煤制甲醇的区别
含漱苦参茶止牙痛
低温甲醇洗装置甲醇消耗高原因与应对措施
巧开锈锁