地下水人工补给过程介质堵塞及控制研究进展

2022-09-20 07:22冶雪艳孙邱杰杜新强赵婧彤崔瑞娟
中国环境科学 2022年9期
关键词:悬浮物水源介质

冶雪艳,孙邱杰,杜新强*,赵婧彤,路 莹,崔瑞娟

地下水人工补给过程介质堵塞及控制研究进展

冶雪艳1,2,孙邱杰1,杜新强1,2*,赵婧彤1,路 莹1,2,崔瑞娟1

(1.吉林大学新能源与环境学院,吉林长春 130021;2.吉林大学地下水资源与环境教育部重点实验室,吉林 长春 130021)

人工补给作为解决地下水超采及其环境负效应的有效措施,在全球得到广泛应用.但人工补给过程中的介质堵塞问题对补给效率、运行成本及工程寿命有着显著不利影响.在收集整理已有研究资料的基础上,对人工补给类型,过程中介质堵塞机理、预测、控制和治理方法进行了详细归纳和总结.分析表明,介质堵塞受到介质、水源物化特征和水文地球化学条件等因素影响;堵塞预测方法有水质指标法、经验公式法、数学模型法;堵塞的预防目前以水质控制为主;堵塞的治理需综合物理和化学方法.尽管有关人工补给的多种技术已日益成熟,但结合介质空间差异特征和水源条件复杂性开展的人工补给促渗技术还需进一步研究.

人工补给;堵塞机理;堵塞预防;堵塞治理;堵塞监测

由于地下水易抽取、难补给的特殊性,经近几十年开发利用,全国20多个省(区)存在地下水超采问题,超采面积近30万km2,年超采量达170亿m3,由此引发了地下水水位下降、地面沉降、地裂缝、湖泊湿地萎缩、泉水干涸、海水入侵、水质恶化等一系列生态环境问题[1-2],对地下水超采问题进行控制和治理现已刻不容缓[3].地下水人工补给是国际认可的一种基于自然-人工耦合体系的水资源循环利用和水质安全保障技术,是缓解或解决上述问题的最快捷和最有效的方法[4-7].充足的储水空间、优质的水源是保障其运行的关键,地下水长期开采腾出的巨大储水空间,以及雨洪水、再生水等非常规水源的资源化利用需求,为地下水人工补给提供了巨大潜力和广阔前景[6,8-11].

地下水人工补给技术虽具有许多优点,但在地表雨洪调控、地下水资源管理与保护方面均未得到广泛应用,重要的原因是在补给工程运行过程中会不可避免地发生介质堵塞问题,从而严重影响工程的补给效率、使用寿命及维护成本[12-13].例如,2013年,Bloetscher等[14-15]对美国204个ASR站点调查分析表明,存在堵塞的站点有29个,其中11个因堵塞而停运,2019年数据更新,站点总数为233个,存在堵塞的站点上升到33个[16];武晓峰等[17]对Dillon关于澳大利亚40口补给井调查结果进行整理,有80%的井存在堵塞问题,其中70%由悬浮物和气体引起, 15%由微生物引起,10%由化学沉淀引起,5%由其他原因引起;1999年,孙颖等[18]对北京深井人工回灌进行调查,64个回灌单位中,由堵塞导致回灌量减少而停灌的有23个,堵塞原因包括井壁结垢、气相淤塞,泥沙淤积等.另外,在恒定注入流量下,堵塞会导致过高的压力水头,进而引发含水层或隔水顶板破坏等地质问题[19-20].人工补给过程中的介质堵塞与补给水源水质特征、入渗介质矿物成分及粒度特征、水文地球化学条件等多方面因素有关,是一个物理-化学-生物交互作用的复杂过程[5-8,13],堵塞的机理、预防、控制及治理的理论和技术体系仍待进一步深入研究.

本文分别从地下水人工补给技术、入渗介质堵塞机理、堵塞预防和治理技术、堵塞监测和识别技术等方面进行整理和探讨,针对各部分的关键技术方法进行了归纳总结,以期为人工补给理论与关键技术的研究与推广提供参考.

1 人工补给技术

地下水获得补给的方式主要分两种:一种是通过自然入渗,如降水入渗、江河湖泊渗漏、农业灌溉回渗等(图1a);另一种是通过人工补给,如入渗池补给(spreading basin)、注水井补给(injection well)、河岸过滤(river bank filtration)、河道改造(in-channel modifications)及雨洪径流集蓄入渗(runoff harvesting)等[21-23](图1b).国际水文地质协会地下水人工补给委员会(IAH-MAR Commission)将人工补给分为促进水源直接补给和拦截水源间接补给两类[24].考虑到实际工程情况,按照地表入渗、地下灌注及其它补给方法进行归纳(表1).

图1 地下水补给示意

根据文献[23]修订

不同补给方法有各自的优点和适用条件,具体选择需要根据场地的地质条件、水文地质条件、水源条件以及补给目的、回收用途和工程预算等综合确定(表1).

表1 人工补给技术方法

续表1

图2 地表入渗示意[23,37]

图3 地下灌注示意[23,31,37]

图4 河岸过滤示意[23,37]

图5 河道改造示意[23,31,37]

图6 雨洪径流集蓄入渗示意[23,37]

图7 复合补给示意[23,37]

2 地下水人工补给过程中的介质堵塞

人工补给过程中的介质堵塞是指入渗介质孔隙空间减小、有效孔隙度降低,水流运移通道变窄、数量变少,表现为介质渗透系数减小或设施补给能力降低[7-8,19].堵塞发生与补给水源水质、入渗介质颗粒粒径、排列方式及矿物成分等因素有关.根据堵塞物质的来源,分为物理堵塞、化学堵塞、生物堵塞和气体堵塞4类[7-8,13,38].目前关于堵塞的研究主要集中在以下两方面.

2.1 堵塞机理

2.1.1 物理堵塞 物理堵塞是发生最频繁的堵塞类型,并以悬浮物堵塞最为常见.悬浮物颗粒可由水源携带,也可在水动力或水化学作用下含水层内部产生[25,38].堵塞发生在入渗介质表面[39],也可发生在介质内部,取决于介质类型、水源水质、悬浮物粒径和理化性质、入渗速率和时间等[40-41].按堵塞发生位置分为表面堵塞、内部堵塞和内部-表面复合堵塞[41].多孔介质孔径越小,悬浮物粒径越大和浓度越高,更易发生表面堵塞;悬浮物粒径越小,渗流速度越大,内部堵塞越深[42-43].其主要形成机理可归结为过滤作用和吸附作用[29].

2.1.2 化学堵塞 外来补给水源进入含水层,可能改变原有水-岩平衡状态,发生复杂水文地球化学反应,如有沉淀产生可导致介质渗透性降低[13,29].化学堵塞常与其他堵塞同时发生,主要受水源与地下水化学组成、含水层矿物成分、溶液氧化还原电位(h)、pH值和溶解氧浓度等化学条件,温度和压力等物理条件控制[13,29].化学堵塞物质通常是碳酸盐、硫酸盐、铁和铝的(氢)氧化物[19,44].

2.1.3 生物堵塞 水中微生物(细菌和藻类)在适宜条件下繁殖,其生物体及代谢产物在介质颗粒表面形成生物膜,或生物活动气体产物(CO2、N2)的滞留效应及以微生物为媒介的沉淀效应,均可导致介质渗透性降低[13,29],是发生频率第二高的堵塞类型[45],可导致介质渗透系数下降2~3个数量级[46],其发生和发展受温度、pH、溶解氧、溶解有机碳(DOC)、可同化有机碳(AOC)、可生物降解有机碳(BDOC)以及营养物(N、P)浓度等影响[47-49].

2.1.4 气体堵塞 补给过程中因负压作用而进入的气体、生化反应产生的气体、因温度压力变化而从水中逸出的溶解性气体[50-51],会形成“气泡”充填于孔喉中阻碍水流通过,降低有效孔隙度(可占据整个孔隙空间的7%~20%),导致介质渗透性降低[52-53].

2.2 堵塞预测方法

堵塞预测主要有水质指标法、经验公式法和数学模型法.

2.2.2 经验公式法 结合实际条件,通过建立水质指标与堵塞程度间的一系列关系式,实现堵塞的预测,但此方法对场地条件等因素考虑不全面,难以直接推广.

Thomas[58]建立了入渗速率与TSS除去率的关系式:

式中:悬浮固体去除率, %;为滤层深度, m;为介质颗粒直径, m;为入渗速率, m/h.

Olsthoorn[59]建立了井灌中回灌水位与悬浮物沉积量的关系式:

式中:水位高度, m;为密度, kg/m3;为重力场强度, N/kg;为动力黏度, Pa×s;为渗透率, m2;为渗透速率, m/s;为每平方米悬浮物体积, m3/m2.

黄大英[60]建立了定水头情况下淤层厚度与含沙量的关系式:

式中:为淤层厚度, m;为补给时间, h;为水层厚度, m;为水源含沙量, %.

Robert等[61]建立了入渗速率与BOD、TSS的关系式:

式中:为入渗速率, cm/d;BOD为总BOD (碳质生化需氧量(BOD)和氮质生化需氧量(BOD))的负荷密度, kg/m2; TSS为总悬浮物负荷密度, kg/m2.

2.2.3 数学模型法 随着近年来计算机的发展,模拟软件的开发,越来越多的数学模型被应用于地下水人工补给研究,在一定程度上实现了堵塞过程的模拟与堵塞程度的定量评价.

1)基于对流-弥散方程的堵塞模型[62]:

2)基于化学组分迁移转化的堵塞模型,如铁堵塞模型[63]:

式中:p为亚铁浓度, mg/L;时间, h;w亚铁扩散系数,cm2/h;为介质曲折度,无量纲;t为附加细胞量, cell/L;为孔隙度,%;max为亚铁最大氧化比速率, mg/(cell×h);m为饱和常数, mg/L;为介质粒径, cm.

3)基于毛管孔径变化的生物堵塞模型[64]:

式中:流速, cm/s;单位面积管道数,无量纲;管道直径, cm;测压水头, cm;管道长度, cm;流体密度, g/cm3;为重力场强度, N/kg;为动力黏度, Pa×s.

4)基于微观微生物群落生长规律建立的营养物消耗模型和生物堵塞模型[65-66]:

式中:是微生物产量系数,无量纲;s指菌落底物利用速率, mg/s;m异养微生物体最大生长率,s-1;c单位体积菌落生物细胞量, mg/cm3;c菌落体积, cm3;是菌落底物浓度,mg/L;为菌落氧气浓度, mg/L;s为底物饱和度, mg/L;o为氧饱和度, mg/L.

其中

式中:,0分别为某时刻和初始时刻介质渗透系数,m/d;()为深度处介质孔隙中生物堵塞物占比,无量纲;为渗透介质孔隙度, %;为介质颗粒形状因子,无量纲;为合成系数,无量纲;为微生物衰减系数, d-1;s微生物密度, g/L;为回灌速率, m/d;为入渗深度, m;0为进水营养物浓度, g/L;m为营养物一级反应速率常数, m-1.

5)基于生物膜生长的生物堵塞模型[67]:

其中

式中:b为介质堵塞后的渗透率, cm2;为无量纲常数;0,b分别为堵塞前后介质孔隙度,%;f为生物膜厚度; cm;0,分别是最小和最大孔隙半径, cm;ob为堵塞后孔隙最小半径, cm;为孔隙大小分布指数,无量纲.

6)基于水文地球化学模拟软件的堵塞模拟

可利用现有成熟软件对介质堵塞程度进行定量模拟,例如TOUGHREACT、PhreeqC、COMSOL Multiphysics、Hyfrus-1D等[68-69].TOUGHREACT通过模拟多相地球化学运移及反应,可揭示人工补给过程中介质孔隙率与渗透率的关系;PhreeqC通过计算含水层中各种化学物质的分布及矿物与气体的饱和状态,模拟回灌过程中的水文地球化学反应进度;COMSOL Multiphysics以有限元法为基础,通过多物理场耦合,模拟流体运移过程中对流弥散及吸附解吸,对人工补给中的回灌流量变化、介质堵塞程度定量评价.

3 堵塞预防和治理技术

堵塞预防目前以严格控制水质为主,研究者曾对基于预防堵塞的水质建议做了全面总结[41,70-71].为及时恢复工程的补给效率,大量治理技术也被广泛使用,目前常见的治理方法包括机械刮削、水力冲洗、更换介质、周期性干燥等[70-72].

3.1 基于堵塞预防的水质处理技术

堵塞预防的关键是控制补给水源的水质,控制水质可以预防50%的潜在堵塞[6,19].根据实际经验,不同堵塞类型的预防对水质有不同要求(表2)[70].水质控制应从源头进行,如在补给区域上游修建截坝、沉淀池,种植植被等[73],人工补给的水质处理包括水质预处理和深度处理两种类型.

表2 人工补给基于堵塞预防的水质要求

3.1.1 水质预处理 水质预处理是水质深度处理的前置步骤,若补给方法对水质要求不是太高,如地表入渗补给,水源经过预处理即可.

常规方法:该方法是指对一般浊度(<100NTU)的水源采用混凝、沉淀、过滤、消毒的净水方法,以去除浊度(悬浮物)、色度和细菌为主的处理工艺.通过常规方法可以达到二级处理标准[74-76].

空气去除:要尽量消除补给过程中水源挟带空气的可能性,避免气体堵塞发生,如检查补给设施是否密封良好,使用溶解氧洗涤器或通过添加二氧化碳去除水中空气[19].

pH值和盐度调整:pH值与多种水文地球化学反应有关,如酸性时与铁的氧化还原反应、方解石溶解反应,碱性时与铁、铝沉淀反应等.可根据土壤及地下水类型对回灌水源pH值进行调整,减轻化学反应影响,水源pH值应调整到地下水pH值接近,或呈弱碱性(7.2~7.5)[19].当低盐度水源进入含水层时,可能会转化为反渗透水,盐度的突变会导致非膨胀黏土(如伊利石)矿物颗粒表面胶体脱落及运移而产生堵塞;也会导致膨胀性黏土(如蒙脱石)膨胀致使孔隙空间减小[77].调整盐度可在一定程度上避免上述问题,盐度应与地下水盐度接近,一般不能低于200mg/L[19].

3.1.2 水质深度处理 地下灌注补给对水质要求高,进行水质预处理后还应进行深度处理[78].物理方法能去除悬浮物固体颗粒、化学方法可有效去除重金属离子、物理化学法能有效吸附有机物、膜分离法能截留大分子溶质、生物方法可以吸附分解有机物(表3).

表3 水质深度处理方法说明

续表3

3.2 人工补给中的堵塞治理技术

基于对人工补给效率和地下水动态(水位、水质等)分析和评估后,需针对不同的补给设施制定单独的堵塞治理计划.治理方法分为物理方法和化学方法,物理方法一般用于表面堵塞的治理,化学方法用于内部堵塞的治理,目前二者结合是最有效的方法[88](表4).

表4 堵塞治理技术

4 人工补给过程中的堵塞监测与识别

地表入渗补给一般需要对回补水位和补给量实时监测,对入渗池底部悬浮物沉积量、地下水流场、水质变化情况定时监测.井灌补给的监测项目有补给井和监测井的水力响应(地下水位、注入速率和响应速率等)、水质参数(浊度、pH值、电导率、TSS、TDS、TOC、钙、铁、铝、锰等)、特殊项目(氮、磷、砷、铬、镉、病原体、有机物、化学药物、放射性核素等)[92-93],水力响应需连续监测,水质参数每月监测一次、特殊项目每年至少两次[92].

除了基本的监测方法,一些识别手段也被应用于实际补给工程中.根据人工补给期间的水力响应(地下水位、水头差)可以一定程度上识别堵塞类型(图8)[94].悬浮物堵塞的水力响应一般呈线性变化;气相堵塞初始发展迅速,但随着气体的积聚与溢出,堵塞程度后续可能会降低[95].生物堵塞初期近似线性变化,若营养物充足,中后期呈指数变化;若营养物匮乏,发展到一定阶段后趋于稳定[94].化学堵塞常与其他堵塞同时发生,较难通过水力响应识别.此外,一些学者将CT扫描成像技术运用在室内实验的堵塞监测和识别上,利用CT扫描图像从微观角度监测堵塞的发展进程,与实验结果进行比较,对模型参数进行校正[96].

图8 基于堵塞的水力响应[94]

5 结论和展望

5.1 尽管人工补给技术的应用积极推动了补给过程中介质堵塞研究的发展,但堵塞的时空演化与补给水源和地下水水质特征、入渗介质矿物成分以及粒度分布特征、回灌负荷及时间等多方面因素有关,是一个物理-化学-生物交互作用的复杂过程,实际堵塞过程也常常是多种堵塞类型的叠加作用,在现有研究基础上,还需深入开展人工补给过程中多种堵塞类型的交互作用机理及其识别预测方法研究,进一步完善堵塞理论.

5.2 近年来有关人工补给过程中堵塞评价、预测的定量化研究,结合了水动力模型和水文地球化学模拟模型后得到快速发展,但集成多种堵塞机理的综合预测模型还有待于进一步研究和完善.

5.3 目前已经有较系统的堵塞预防与处理技术来治理人工补给过程中发生的堵塞问题,但仍然不能完全避免堵塞的发生以及持续高效地恢复介质渗透性.考虑复杂自然和人为因素综合影响下的堵塞预防和控制技术仍然有待深入研究.

[1] 王建华,陆垂裕.华北地区地下水超采综合治理技术支撑体系探析 [J]. 中国水利, 2020,(13):19-21,25.

Wang J H, Lu C Y. Studies on technical support system for comprehensive control of groundwater overexploitation in North China [J]. China Water Resources, 2020,(13):19-21,25.

[2] 中华人民共和国水利部:走近地下水[Z]. http://szy.mwr.gov.cn/ cskp/201910/t20191024_1365927.html,2019

Ministry of Water Resources, PRC: Approaching groundwater [Z]. http://szy.mwr.gov.cn/cskp/201910/t20191024_1365927.html, 2019.

[3] 陈家琦.全球变化和水资源的可持续开发 [J]. 水科学进展, 1996, (3):4-9.

Chen J Q. Global change and sustainable development of water resources [J]. Advances in Water Science, 1996,(3):4-9.

[4] 翟远征,姜 亚,夏雪莲,等.永定河生态补水下渗对地下水质量的影响 [J]. 中国环境科学, 2022,42(4):1861-1868.

Zhai Y Z, Jiang Y, Xia X L, et al. Impact of infiltration of ecology water replenishment of the Yongding River on groundwater quality and the mechanism [J]. China Environmental Science, 2022,42(4): 1861-1868.

[5] Cui X C, Chen C L, Sun S ,et al. Acceleration of saturated porous media clogging and silicon dissolution due to low concentrations of Al(III) in the recharge of reclaimed water [J]. Water Research, 2018, 143(0):136-145.

[6] Dillon P, Stuyfzand P, Grischek T ,et al. Sixty years of global progress in managed aquifer recharge [J]. Hydrogeology Journal, 2019,27(1): 1-30.

[7] Du X Q, Ye X Y, Zhang X W. Clogging of saturated porous media by silt-sized suspended solids under varying physical conditions during managed aquifer recharge [J]. Hydrological Processes, 2018,32(14): 2254-2262.

[8] Pyne R D G. Aquifer storage recovery: A guide to groundwater recharge through wells [M]. Utrecht, The Netherlands: ASR Press 2nd edn, 2005.

[9] 王维平, Dillon P, Vanderzalm J.中国-澳大利亚含水层补给管理新进展[M]. 郑州:黄河水利出版社, 2009.

Wang W P, Dillon P, Vanderzalm J. Recent advance in China-Australia manage aquifer recharge [M]. Zhengzhou: Yellow River Water Conservancy Press, 2009.

[10] 李旺林,束龙仓,殷宗泽.地下水库的概念和设计理论[J]. 水利学报, 2006,(5):613-618.

Li W L, Shu L C, Yin Z Z. Concept and design theory of groundwater reservoir [J]. Journal of Hydraulic Engineering, 2006,(5):613-618.

[11] 杜新强,廖资生,李砚阁,等.地下水库调蓄水资源的研究现状与展望[J]. 科技进步与对策, 2005,22(2):178-180.

Du X Q, Liao Z S, Li Y G et al. Study on the distribution and storage of water resources by groundwater reservoir [J]. Science & Technology Progress and Policy, 2005,22(2):178-180.

[12] Page D, Vanderzalm J, Miotlinski K, et al. Determining treatment requirements for turbid river water to avoid clogging of aquifer storage and recovery wells in siliceous alluvium [J]. Water Research, 2014,66: 99-110.

[13] 杜新强,冶雪艳,路 莹,等.地下水人工回灌堵塞问题研究进展[J]. 地球科学进展, 2009,24(9):973-980.

Du X Q, Ye X Y, Lu Y ,et al. Advances in clogging research of artificial recharge[J]. Advances in Earth Science, 2009,24(9):973-980.

[14] Bloetscher F, Sham C H, Danko J J, et al. Status of aquifer storage and recovery in the United States–2013 [J]. British Journal of Science, 2015,12(2):70-88.

[15] Bloetscher F, Sham C H, Danko J J, et al. Lessons learned from aquifer storage and recovery (ASR) systems in the United States [J]. Journal of Water Resource and Protection, 2014,6(17):1603-1629.

[16] Bloetscher F, Sham C H, Ratick S J. Aquifer storage and recovery: Can an updated inventory predict future system success? [J]. American Water Works Association. Journal, 2020,112(10):48-55.

[17] 武晓峰,唐 杰.地下水人工回灌与再利用[J]. 工程勘察, 1998,(4): 39-41,44.

Wu X F. Tang J. Artificial recharge and reuse of groundwater [J]. Geotechnical Investigation & Surveying, 1998,(4):39-41,44.

[18] 孙 颖,苗礼文.北京市深井人工回灌现状调查与前景分析[J]. 水文地质工程地质, 2001,(1):21-23,48.

Sun Y, Miao L W,Current situation investigation and prospect analysis of artificaial recharge of ground water in Beijing city [J]. Hydrogeology & Engineering Geology, 2001,(1):21-23,48.

[19] Martin R. Clogging issues associated with managed aquifer recharge methods [R]. IAH Commission on Managing Aquifer Recharge. Australia, 2013.

[20] Dillon P, Pavelic P, Page D, et al. Managed aquifer recharge: an introduction [R]. Waterlines Report Series No.13, February 2009, National Water Commisssion, Australia, 2009.

[21] 张人权,梁 杏,靳孟贵,等.水文地质学基础(第六版) [M]. 北京:地质出版社, 2011.01

Zhang R Q, Liang X, Jin M G, et al. Fundamentals of hydrogeology (6th edition) [M]. Beijing: Geology Press, 2011.01.

[22] 房佩贤,卫中鼎,廖资生,等.专门水文地质学[M]. 北京:地质出版社, 1996,11.

Fang P X, Wei Z D, Liao Z S. Special hydrogeology [M]. Beijing: Geology Press, 1996.11.

[23] Gale I, Dillon P. Strategies for managed aquifer recharge (MAR) in semi-arid areas [R]. Paris: International Hydrological Programme (IHP), 2005.

[24] Valverde J P B, Stefan C, Nava A P, et al. Inventory of managed aquifer recharge schemes in Latin America and the Caribbean [J]. Sustainable Water Resources Management, 2018,4(2):163–178.

[25] 赵婧彤.地下水人工补给过程中的促渗技术研究[D]. 长春:吉林大学, 2021.

Zhao J T. Study on Infiltration Promotion Techniques during Artificial Recharge of Groundwater [D]. Changchun: Jilin University, 2021.

[26] Jimenez B, Chávez A. Quality assessment of an aquifer recharged with wastewater for its potential use as drinking source: “El Mezquital Valley”case [J]. Water Science Technology, 2004,50(2):269–276.

[27] Dahlke H E, Brown A G, Orloff S, et al. Managed winter flooding of alfalfa recharges groundwater with minimal crop damage [J]. California Agriculture. 2018,72(1):65–75.

[28] Drewes J E, Reinhard M, Fox P. Comparing microfiltration-reverse osmosis and soil-aquifer treatment for indirect potable reuse of water [J]. Water Research, 2003,37(15):3612-3621.

[29] Zhang H, Xu Y X, Kanyerere T. A review of the managed aquifer recharge: Historical development, current situation and perspectives [J]. Physics and Chemistry of the Earth., 2020,118:102887.

[30] Casanova J, Devau N, Pettenati M. Managed aquifer recharge: an overview of issues and options [J]. Integrated groundwater management, 2016:413-434.

[31] Herman B. Artificial recharge of groundwater: hydrogeology and engineering [J]. Hydrogeology Journal, 2002,10(1):121–142.

[32] Sprenger C, Hartog N, Hernández M,et al. Inventory of managed aquifer recharge sites in Europe: historical development, current situation and perspectives [J]. Hydrogeology Journal, 2017,25(6): 1909–1922.

[33] Boisson A, Baïsset M, Alazard M, et al. Comparison of surface and groundwater balance approaches in the evaluation of managed aquifer recharge structures: case of a percolation tank in a crystalline aquifer in India [J]. Journal of Hydrology, 2014.519(part B):1620–1633.

[34] Kim R H, Lee S, Lee J H, et al. Design of rainwater management system for Eco-Housing complex [J]. Rainwater and Urban Design, 2007,2007:634-639.

[35] 杜新强,贾思达,方 敏,等.海绵城市建设对区域地下水资源的补给效应 [J]. 水资源保护, 2019,35(2):13-17,24.

Du X Q, Jia S D, Fang M, et al. Recharge effect of sponge city construction on regional groundwater resources [J]. Water Resources Protection, 2019,35(2):13-17,24.

[36] 黄金林,迟宝明,路 莹,等.地下储水空间雨洪资源调蓄技术的研究进展[J]. 灌溉排水学报, 2008,(2):123-127.

Huang J L, Chi B M, Lu Y, et al. Advances on rain-flood regulation and storage technology by groundwater storage space [J]. Journal of Irrigation and Drainage, 2008,(2):123-127.

[37] Dillon P. Future management of aquifer recharge [J]. Hydrogeology Journal, 2005,13(1):313-316.

[38] 杜新强,路 莹,冶雪艳,等.地下水人工回灌过程中介质堵塞与水质变化研究进展[J]. 黑龙江大学工程学报, 2018,9(2):1-6,103.

Du X Q, Lu Y, Ye X Y, et al. Advances on porous medium clogging and water quality change during artificial recharge of groundwater [J]. Journal of Engineering of Heilongjiang University, 2018,9(2):1-6,103.

[39] Ren J H, Packman A I, Rehg K J. Effects of suspended sediment characteristics and bed sediment transport on streambed clogging [J]. Hydrological Processes, 2005,19(2):413-427.

[40] Vigneswaran S, Suazo R B. A detailed investigation of physical and biological clogging during artificial recharge [J]. Water, Air, and Soil Pollut, 1987,35(1):119-140.

[41] 王子佳.城市雨洪水地下回灌过程中悬浮物堵塞规律的实验研究[D]. 长春:吉林大学, 2012.

Wang Z J. Laboratory research on the law of suspended solids clogging during urban stormwater groundwater recharge [D]. Changchun: Jilin University, 2012.

[42] 路 莹,杜新强,迟宝明,等.地下水人工回灌过程中多孔介质悬浮物堵塞实验[J]. 吉林大学学报(地球科学版), 2011,41(2):448-454.

Lu Y, Du X Q, Chi B M et al. The porous media clogging due to suspended solid during the artificial recharge of groundwater [J]. Journal of Jilin University, 2011,41(2):448-454.

[43] 赵婧彤,冶雪艳,杜新强,等.不同浓度悬浮物颗粒在多孔介质中迁移特性研究[J]. 水利水电技术, 2019,50(10):25-31.

Zhao J T, Du X Q, Ye X Y, et al. Study on the migration characteristics of suspended particles inporous media during different concentration of suspension [J]. Water Resources and Hydropower Engineering, 2019,50(10):25-31.

[44] Brankica M D, Andelka P, Milan D. The effect of iron oxidation in the groundwater of the alluvial aquifer of the Velika Morava River, Serbia, on the clogging of water supply wells [J]. Journal of the Serbian Chemical Society, 2015,80(7):947-957.

[45] Oberdorfer J A, Peterson F L. Waste-water injection: geochemical and biogeochemical clogging processes [J]. Groundwater, 1985,23(6): 753–761.

[46] Thullner M. Comparison of bioclogging effects in saturated porous media within one- and two-dimensional flow systems [J]. Ecological Engineering. 2010,36(2):176-196.

[47] Xia L, Zheng X L, Shao H B, et al. Influences of environmental factors on bacterial extracellular polymeric substances production in porous media [J]. Journal of Hydrology, 2014,519(Part D):3153-3162.

[48] Roche K R, Drummond J D, Boano F, et al. Benthic biofilm controls on fine particle dynamics in streams [J]. Water Resources Research, 2017,53(1):222-236.

[49] 夏 璐,郑西来,段玉环,等.砂柱微生物堵塞过程及机理分析[J]. 水利学报, 2014,45(6):749-755.

Xia L, Zheng X L, Duan Y H, et al. Analysis of process and mechanism of bioclogging in aqueous media [J]. Journal of Hydraulic Engineering, 2014,45(6):749-755.

[50] Holocher J, Peeters F, Aeschbach-Hertig W, et al. Kinetic model of gas bubble dissolution in groundwater and its implications for the dissolved gas composition [J]. Environmental Science and Technology, 2003,37(7):1337–1343.

[51] Heilweil V M, Solomon D K, Ortiz G. Silt and gas accumulation beneath an artificial recharge spreading basin, Southwestern Utah, U.S.A [J]. Boletin Geologicoy Minero, 2009,120(2):185–196.

[52] 束龙仓,张永杰,许 杨,等.地下水人工回灌气相堵塞特征的试验研究[J]. 水科学进展, 2017,28(5):756-762.

Shu L C, Zhang Y J, Xu Y, et al. Experimental studies on gas-clogging characteristics during groundwater artificial recharge [J]. Advances in Water Science, 2017,28(5):756-762.

[53] Heilweil V M, Solomon D K, Perkins K S, et al. Gas-partitioning tracer test to quantify trapped gas during recharge [J]. Groundwater. 2004,42(4):589–600.

[54] Schippers JC, Verdouw J. The modified fouling index, a method of determining the fouling characteristics of water [J]. Desalination, 1980,32:137-148.

[55] Sultana S, Ahmed K M. Assessing risk of clogging in community scale managed aquifer recharge sites for drinking water in the coastal plain of south-west Bangladesh [J]. Bangladesh Journal of Scientific Research, 2014,27(1):75-86.

[56] Hijnen W A M, Van der Koou D. The effect of low concentrations of assimilable organic carbon (AOC) in water on biological clogging of sand beds [J]. Water Research, 1992,26(7):963-972.

[57] van der Kooij D, Vrouwenvelder H S, Veenendaal H R. Kinetic aspects of biofilm formation on surfaces exposed to drinking water [J]. Water Science and Technology, 1995,32(8):61-65.

[58] Thomas R L. Coarse filter media for artificial recharge [S]//.Report of Investigation; no. 60, Illinois State Water Survey, 1968.

[59] Olsthoorn T N. The clogging of recharge wells, main subjects [C]//KIWA-communications 72.Working Group on Recharge Wells, 1982:136.

[60] 黄大英.淤堵对人工回灌效果影响的试验研究[J]. 北京水利科技, 1993,(1):24-32.

Huang D Y. Experimental study on the effect of blockage on artificial recharge [J]. Beijing Water Resources Technology, 1993,(1):24-32.

[61] Robert L S, William C B. Wastewater-induced soil clogging development [J]. Journal of Environmental Engineering, 1987,113(3): 550-566.

[62] Osei-Bonsu K. Clogging by sediments in injected fluid flowing radially in a confined aquifer [D]. Flinders University of South Australia, 1997.

[63] Omura T, Umita T, Nenov V, et al. Biological oxidation of ferrous iron in high acid mine drainage by fluidized bed reactor [J]. Water Science & Technology, 1991,23(7-9):1447-1456.

[64] Okubo T, Matsumoto J. Effect of infiltration rate on biological clogging and water quality changes during artificial recharge [J]. Water Resources Research, 1979,15(6):1536-1542.

[65] Molz F J, Widdowson M A, Benefield L D. Simulation of microbial growth dynamics coupled to nutrient and oxygen transport in porous media [J]. Water Resources Research, 1986,22(8):1207-1216.

[66] 路 莹,杜新强,范 伟,等.地下水人工回灌过程中微生物堵塞的预测[J]. 湖南大学学报(自然科学版), 2012,39(1):77-80.

Lu Y, Du X Q, Fan W, et al. Prediction of microbial clogging in groundwater artificial recharge [J]. Journal of Hunan University, 2012,39(1):77-80.

[67] Taylor S W, Jaffé P R. Biofilm growth and the related changes in the physical properties of a porous medium: 3. Dispersivity and model verification [J]. Water Resources Research, 1990,26(9):2171-2180.

[68] 冶雪艳,李 铮,罗 冉,等.地下水人工补给过程中流速对多孔介质胶体堵塞的影响机理 [J].化工学报, 2021,72(11):5520-5532.

Ye X Y, Li Z, Luo R, et al.Mechanism of influence of flow velocity on colloid blockage in porous mediaduring artificial groundwater recharge [J]. CIESC Journal, 2021,72(11):5520-5532.

[69] Lu Y, Du X Q, Yang Y S, et al. Compatibility assessment of recharge water with native groundwater using reactive hydrogeochemical modeling in Pinggu, Beijing [J]. CLEAN – Soil, Air, Water, 2014, 42(6):722-730.

[70] Alfredo P P. Integrated modeling of clogging processes in artificial groundwater recharge [D]. Technical University of Catalonia, 2001.

[71] 王子佳.基于风险评价的北京平谷盆地雨洪水回灌水质标准研究[D]. 长春:吉林大学, 2009.

Wang Z J. Study on Water Quality Standards for Storm Water Infiltration Based on Risk Assessment in Pinggu Basin of Beijing [D]. Changchun: Jilin University, 2009.

[72] Ferná E E. Practical management to minimize the effects of clogging in managed aquifer recharge wells at two sites in the Guadiana Basin, Spain [J]. Journal of Hydrologic Engineering, 2014,20(3):1.

[73] Mohammed Z, Nasre-Dine A, Abdellah A, et al. Assessment of clogging of managed aquifer recharge in a semi-arid region [J]. Science of the Total Environment, 2020,730:139107.

[74] 白芝兰,赵乐军.高效强化常规水处理技术综述[C]//2008年全国给水排水技术交流会暨全国水网理事会换届大会论文集.中国四川成都, 2008.

Bai Z L, Zhao L J. Review on efficient enhancement of conventional water treatment technology [C]//Proceedings of 2008National Water Supply and Drainage Technology Exchange Conference and National Water Network Council Meeting. Chengdu, Sichuan, China, 2008.

[75] 郝晓地,仇付国,张璐平,等.应用数学模拟技术升级改造二级污水处理工艺[J]. 中国给水排水, 2007,(16):25-29.

Hao X D, Qiu F G, Zhang L P, et al. Upgrading of secondary wastewater treatment process by using mathematical simulation technology [J]. China Water & Wastewater, 2007,(16):25-29.

[76] 白晓慧,贺兰喜,王宝贞.常规饮用水净化技术面临的挑战及对策[J]. 水科学进展, 2002,(1):122-127.

Bai X H, He L X, Wang B Z. Conventional drinking water treatment technologies:existing problems and countermeasures [J]. Advances in Water Science, 2002,(1):122-127.

[77] Jeong H Y, Jun S C, Cheon J Y, et al. A review on clogging mechanisms and managements in aquifer storage and recovery (ASR) applications [J]. Geosciences Journal, 2018,22(4):667-679.

[78] 王占生,刘文君.我国给水深度处理应用状况与发展趋势[J]. 中国给水排水, 2005,(9):29-33.

Wang Z S, Liu W J. Application of advanced treatment of drinking water and its perspective [J]. China Water & Wastewater, 2005,(9):29- 33.

[79] J·鲁比奥,崔洪山,李长根.作为废水处理技术中的浮选法[J]. 国外金属矿选矿, 2002,(6):4-13.

Rubio J, Cui H S, Li C G. As the flotation method in wastewater treatment technology [J]. Metallic Ore Dressing Abroad, 2002,(6): 4-13.

[80] Al-Faqheri W, Thio T H G, Qasaimeh M A, et al. Particle/cell separation on microfluidic platforms based on centrifugation effect: a review [J]. Microfluidics and Nanofluidics, 2017,21(6):102.

[81] Yeap S P, Lim J K, Ooi B S, et al. Agglomeration, colloidal stability, and magnetic separation of magnetic nanoparticles: collective influences on environmental engineering applications [J]. Journal of Nanoparticle Research, 2017,19(11):1-15.

[82] Liu Z, Yan M F, Gao Y H, et al. Research progress of electrostatic water treatment technology [J]. IOP Conference Series: Earth and Environmental Science, 2021,831:012028.

[83] 汪 艳.曝气吹脱技术去除水源水氯苯的初步研究[D]. 哈尔滨:哈尔滨工业大学, 2011.

Wang Y. Preliminary research on aeration and stripping technology to remove chlorobenzene in source wate [D]. Harbin: Harbin Institute of Technology, 2011.

[84] 刘洪涛,徐冠华,朱果逸.先进水处理技术研究进展[J]. 水处理技术, 2008,(4):1-7,30.

Liu H T, Xu G H, Zhu G Y. Progress of research on advanced water treatment technology [J]. Technology of Water Treatment, 2008,(4): 1-7,30.

[85] Jie Y, Michele I V D, Peter M H. Selection and evaluation of water pretreatment technologies for managed aquifer recharge (MAR) with reclaimed wate [J]. Chemosphere, 2019,(236):124886.

[86] Lin X C, Shamsaei E, Kong B, et al. Porous diffusion dialysis membranes for rapid acid recovery [J]. Journal of Membrane Science, 2016,502:76-83.

[87] 刘欣颖,肖慧杰.几种中水处理技术简介[J]. 内蒙古石油化工, 2010, 36(3):98-99.

Liu X Y, Xiao H J. Brief of intermediate water treatment technologies [J]. Inner Mongulia Petrochemical Industry, 2010,36(3):98-99.

[88] Deed M E R; Preene M. Managing the clogging of groundwater wells [C]//16th European Conference on Soil Mechanics and Geotechnical Engineering (ECSMGE), Edinburgh, United kingdom, 2015.

[89] 路 莹.北京平谷地区雨洪水地下回灌堵塞机理分析与模拟研究[D]. 长春:吉林大学, 2009.

Lu Y. Mechanism and modeling of clogging during groundwater recharge with stormwater in Pinggu of Beijing [D]. Changchun: Jilin University, 2009.

[90] Driscoll F G. Groundwater and Wells (2nd edition) [M]. St. Paul: Johnson Screens, 1986.

[91] 张永发,祝济之,胡长华.超声波地层解堵机理研究初步[J]. 北京理工大学学报, 2006,(5):397-400.

Zhang Y F, Zhu J Z, Hu C H. Preliminary study on the mechanism of removal of bridge formation by ultrasonic waves [J]. Journal of Beijing Institute of Technology, 2006,(5):397-400.

[92] GB/T 14848-2017 地下水质量标准[S].

GB/T 14848-2017 Quality standard for ground water [S].

[93] Richard D H B, Nebo J, Sumaya I, et al. Four decades of water recycling in Atlantis (Western Cape, South Africa):Past, present and future [J]. Water SA. 2016,42(4):577-594.

[94] Pyne R D G. Groundwater recharge and wells: A guide to aquifer storage recovery [M]. Boca Raton: Lewis Publishers, CRC Press, 1995.

[95] Stuyfzand P J, Osma J. Clogging issues with aquifer storage and recovery of reclaimed water in the Brackish Werribee Aquifer, Melbourne, Australia [J]. Water, 2019,11(9):1807.

[96] Wang Z K, Shu L C, Su X R ,et al. Evaluating particle deposition in the artificial groundwater recharge process by physical and CT imaging experiments [J]. Water Resources Management, 2021,35(14): 4789-4807.

A review on the progresses in medium clogging and its control during groundwater artificial recharge.

YE xue-yan1,2, SUN qiu-jie1, DU xin-qiang1,2*, ZHAO jing-tong1, LU ying1,2, CUI rui-juan1

(1.College of New Energy and Environment, Jilin University, Changchun 130021, China;2.Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China)., 2022,42(9):4145~4156

Artificial recharge has been widely utilized as an effective method for solving groundwater over-extraction and its adverse environmental impacts. However, the clogging issue during artificial recharge is one of the factorslimiting its application; because the clogging affects the infiltration rate, running cost and engineering longevity of recharge facilities. We have reviewed to summarize the current state of artificial recharge types, clogging mechanisms, clogging prediction and approaches for clogging prevention and control. This review suggests that the medium clogging is basically dependent on medium attributes, physical and chemical characteristics of water source and hydrogeochemical conditions. And clogging prediction methods include water quality index, empirical formula and mathematical model; while clogging prevention is mainly based on water quality control, and clogging treatment requires a combination of physical and chemical methods. Current approaches for artificial recharge are increasingly well-developed, but the infiltration promotion technologies of artificial recharge based on the spatial differences in infiltration media and the complexity of water source conditions need further investigation.

artificial recharge;clogging mechanisms;clogging prevision;clogging control;clogging monitor

X523,P641

A

1000-6923(2022)09-4145-12

2022-01-24

国家自然科学基金资助项目(41672231);国家重点研发计划(2018YFC0406503)

*责任作者, 教授, duxq@jlu.edu.cn

冶雪艳(1978-),女,青海海东人,教授,博士,从事地下水资源评价和人工回灌研究.发表论文60余篇.

猜你喜欢
悬浮物水源介质
悬浮物对水质氨氮测定的影响
线切割绝缘介质收纳系统的改进设计
重介质旋流器选煤技术在我国的创新发展与应用
信息交流介质的演化与选择偏好
燃煤电厂湿法脱硫废水悬浮物和Cl4-浓度控制优化
水体悬浮物的危害及其监测方法
水源探测器
南水源头清如许
寻找水源
浊度计法测定工业废水中的悬浮物