2020年10月27日,工信部发布了《节能与新能源汽车技术路线图2.0》,明确了传统燃油车向混合动力发展的大目标,即:2025年混动车型在传统乘用车中占比达到50%以上。国标《GB/T 19596-2004电动汽车术语》对于混合动力电动汽车是这样定义的:至少能从下述两类车载储存的能量中获得汽车动力的汽车。
三是开拓创新,求真务实,积极做好老年服务工作。创新是一个民族的灵魂,是社会发展的不竭动力,开创老年工作的新局面同样需要创新。我们要结合企业的实际,认真研究本企业老年工作的规律和特点,积极探索适合企业自身特点的老年工作方法、制度等,在具体的处理方式上要求新、求变,以不断适应改革开放新形势的发展要求。一改以往企业老年工作只要每年组织开展几次活动,仅仅停留在满足于完成上级布置的任务的心理状态,要彻底纠正这种无所作为的思想,要更新观念,重新认识该项工作的重要性,要实现企业老年服务工作的理论和实践“双创新”。
——可消耗的燃料;
——可再充电能/能量储存装置。
党内法规是中国共产党在其领导中国革命、建设和改革开放的实践中,结合中国社会的现实和发展特点,不断调整党内与社会各种关系的规范。党内法规是中国共产党结合实践的独创,为中国共产党从严治党、治国理政起到了不可估量的作用。党的纪律性法规是党内法规的一种,是党内法规中关于纪律要求的具体化。
链传动噪声控制:采用渐开线不对称齿型,使接触法线倾斜、啮合过程连续以降低多边形效应程度;链齿两侧外加带槽的橡胶环;链节间的拉伸力均小于1600N;张紧器柱塞工作时行程<2.5mm;提升链轮系共面性,制造误差控制在0.25°。
按混合方式分:串联式混合动力电动汽车、并联式混合动力电动汽车、混联式混合动力电动汽车。
按照外接充电能力划分:外接充电型混合动力电动汽车,非外接充电型混合动力电动汽车。
在纯电和混动两条技术路线中,新势力坚定选择纯电或增程,传统车企在保证传统燃油动力的前提下,纷纷选择能挂绿牌的“插电混动”,这其中自主品牌又成为主力军。比亚迪的DMI、长城的柠檬混动、奇瑞的鲲鹏DHT、长安的蓝鲸IDD混动、广汽的GMC混动、上汽的EDU混动、吉利GHS混动都在如火如荼的进行中。
从原理上,混动构型主要分为单电机构型和双电机(发电机+驱动电机)构型;从开发角度,混动构型可按是否需要多档自动变速箱进行决策。原理上,应优先选择中低车速效率更高的双电机路线;开发角度,若成本相同,应优先选择简易减速箱方案:可规避长期困扰自主品牌的自动变速箱标定和可靠性难题、以及受制于人的湿式离合器;且扭矩不受离合器约束、加速性能优异,电机传动链简单、传动和能量回收效率高,城市工程串联电驱动,平顺性极佳。因此基于“结构和控制最简化、成本最低、布置可行”原则,单档+大功率P3电机的双电机P1+P3串并联方案是当前主流选择。
P1+P3方案主要以专用混动发动机(DHE)+专用混动变速箱(DHT)+功率型锂电池+混动控制系统组成,其中专用混动变速箱由耦合器、发电机、驱动电机、逆变器组成。制动能量回收、使发动机工作在最佳经济区是混合动力的根本出发点,同时插电外充大功率锂电池,将保证混动汽车有足够的电量以更节能的EV模式在城市工况工作,进一步降低油耗。
综上,混动产品正成为主机厂的主流产品,对其进行技术研究已经迫在眉睫,本文以当前主流的P1+P3方案,从专用混动发动机NVH控制、专用混动变速箱NVH控制、混合动力总成NVH控制、混合动力总成整车匹配NVH控制四个方面对混合动力总成的NVH开发进行研究。
匹配合适的减震器和飞轮:柔性飞轮在传递发动机动力时能降低转速波动率,使其输出动力更平稳;使用双质量飞轮,衰减飞轮端转速波动;选择合适的减震皮带轮,吸收曲轴前端扭振能量,降低曲轴相对扭角。
与传统内燃机相比,混动专用高效内燃机的主要特征在于高效率,常用的提高发动机效率措施在于:高压缩比、阿特金森循环或米勒循环、废气再循环技术、取消前端轮系等开源节流方式,目前主流混动专用高效发动机热效率已高达43%。由于高效内燃机的高压缩比设计(12%-15%、将来甚至高达20%),对发动机的燃烧标定挑战更大、爆震风险提高,发动机的激励能量加大,整机振动和噪声均有较大风险。
燃料在气缸内燃烧时,气缸内压力急剧上升而产生的动载荷和冲击波的高频振动,分别通过活塞、连杆、曲轴、主轴承和气缸盖以及缸套侧壁而传到机体外表面,使发动机不同固有频率的零件被激发而振动,从而辐射出强烈的燃烧噪声。燃烧噪声和燃烧压力升高率关系密切。
3) 对防错特征采集须使用非接触式传感器,并且要快速准确,鉴于防错特征是直径的大小,选择相机作为采集硬件。
通过增加预喷、延迟喷油正时、改善燃油品质、适当减小供油提前角等措施可以合理降低缸内燃烧压力升高率,采用增压技术、废气再循环技术提高燃烧室温度、缩短滞燃期,改进燃烧室结构形状和参数等措施可以有效降低燃烧噪声。
我国在太阳能光伏发电领域虽然已经成为佼佼者,但由于起步晚,发展过于迅速等,光伏发电管理方面存在一些不足。例如,很多单位通常是在光伏发电出现问题时,才开始对设备进行检修,这不仅会影响发电效率和质量,还会给日常用电带来问题。利用电自动化技术,能够及时预测和监测出设备的运行状态,对其进行全面监控,以便检修人员能及时制订检修计划,延长设备的使用周期和使用质量。
提升曲轴自身刚度:适当增加曲轴重叠度,在满足冲程和压缩比设计的相关要求基础上,可采用长连杆设计,增大曲轴重叠度,提升曲轴刚度;选择合适的材料;设计合适的圆角,避免应力集中。
按照混合度划分(混合度=电机额定功率/总功率):微、轻混合型混合动力电动汽车,混合度10%以下;中度混合型混合动力电动汽车,10%-30%;重度混合(强混合)型混合动力电动汽车,混合度30%以上/电力系统可单独驱动车辆。
曲轴扭振是发动机振动的主要激励源,必须对曲轴扭振的扭振特性进行严格控制,才能保证发动机关键振动噪声水平。其中,曲轴的转速波动率必须低于0.15,曲轴平衡率必须大于等于80%,单阶曲轴扭转角小于0.15,合成扭转角低于0.5。
通过提升曲轴的平衡率、提升曲轴自身刚度、匹配合适的减震器与飞轮可以有效控制曲轴扭振性能。
曲轴平衡率控制:曲轴的静平衡100%,曲轴在旋转时的离心力合力为零,即质心位于旋转轴上;曲轴的动平衡平衡率≥80%,已实现静平衡的曲轴旋转质量不一定在同一个旋转平面内,因此会产生惯性力矩,引起振动称之为曲轴的动不平衡;往复惯性力与力矩平衡:直列多缸机的一级往复惯性力合力都是平衡的,二级往复惯性力合力及力矩视曲拐布置有所区别。
齿轮传动噪声控制:选用合理的齿轮参数和结构;在强度许可条件下选用较小的模数,适当加大齿高齿数;提高齿轮加工的精度和光洁度;对齿轮进行修缘处理;加大齿轮座刚度,提高齿轮同轴度;临近部件规避齿轮啮合频率。
发动机噪声振动源复杂多样,在不同工况和频率段主导振动噪声源不同,发动机噪声从传播路径来分,可分为结构传播噪声和空气传播噪声,对结构传播噪声又可划分为燃烧噪声和机械噪声,空气传播噪声主要包括:风扇噪声、进排气噪声等。
《杂文月刊》2018年10月原创版上有两篇文章涉及张居正,其一是《培养年轻干部也需“墩墩苗”》,其二是《张居正的遗憾》。前面一篇文章叙及被顾璘“墩苗”耽误了三年,张居正毫无怨言、心存感激。另一篇文章则揭出张居正“明廉暗贪”的另一面。《杂文月刊》作为“有良知、讲真话”的杂志,在同一期中刊发文章,还原同一个历史人物的全貌,正好凸显了办刊宗旨。
与传统变速箱相比,专用混动变速箱除了具有传统变速箱的齿轮敲击、齿轮啸叫等经典问题外,最突出的问题在于电驱系统噪声。电驱系统噪声以高频啸叫为主,包括电磁噪声、电控噪声、电池噪声。
配气机构噪声控制:选用优良的凸轮型线,保证平滑的加速曲线和良好的配气机构动态特性;提高配气机构刚度,减小部件的变形量,以减小振动和气门不正常运动,避免气门飞脱与落座反跳、气门早关与弹簧并圈,提高各零件之间的摩擦面精度,减小气门间隙;使摩擦面适度润滑。
电机的电磁噪声主要表现为阶次啸叫噪声,包括电机的主阶次啸叫、开关频率的调制阶次啸叫等。电机的主阶次啸叫一般频率较高,覆盖的频率范围较宽,一般为0-10000多Hz。控制系统开关频率的调制阶次噪声频率也很高,因为调制原理,频谱上以边频簇的特征分布在开关频率的两侧。
电机机械噪声主要由转子和轴承振动引起,轴承是电机转子和定子壳体的连接构件,轴承承受电机中各种力的激励并传递激励力,因而产生振动和噪声。电机的电磁噪声主要分为两部分,一种是由电机控制器开关引起的高频开关频率噪声,一种是电机气隙磁场作用于定子的铁芯,产生了电磁力激励,导致的振动噪声。电磁力可以分为切向电磁力和径向电磁力。切向电磁力产生扭矩驱动转子旋转,主要作用是维持交变磁场的建立。径向磁感应强度大于切向磁感应强度,径向电磁力不产生电磁力矩,径向力大于切向力。径向力波激励定子结构,定子结构振动从而产生辐射噪声,尤其径向电磁力波的频率与定子结构模态一致时,辐射噪声非常明显。
电机的NVH设计包括设计需求、拓扑设计、电磁设计、仿真分析、A样机测试、整改优化、B样机测试、整车匹配共八个阶段。设计需求阶段依据整车性能需求以及对标车性能参数等确定电机性能参数,对飙车NVH性能测试,确认整车级-总成级-电机本体-零部件级NVH性能指标。拓扑设计阶段依据电机用途确认电机类型、转子结构等拓扑结构的选择,确定长径比对电机周围声场的影响,整数槽、分数槽的选择,考虑不同类型和不同结构电机的NVH特征。电磁设计阶段,设计电机的几何尺寸、极槽配合、绕组、材料选型等,考虑不同极槽配合、绕组绕法和层数等对电机NVH的影响、齿槽转矩分析。仿真分析阶段包括电磁力仿真分析、结构模态分析、多源激励下的NVH响应分析等。A样机测试包括台架NVH验证测试、校验仿真分析结果、结构模态测试、台架噪声源识别测试等。整改优化阶段包括电磁方案优化分析、结构方案优化分析、平衡其他性能指标、确定最优可实施方案等。B样机阶段包括:台架NVH验证测试、校验仿真优化分析结果、装车NVH验证测试、达成单体项目标等。整车匹配阶段包括电驱动总成悬置系统解耦设计、基于统计能量分析法、吸隔声试验技术及台架NVH试验技术的电驱动总成声学包和整车声学包正向开发并达成整车项目目标。
摘 要:早期的科学教育,对于学生科学素养的形成具有不可替代的作用。而科学探究活动中最常用的办法就是实验,实验教学在小学教育中有着举足轻重的作用。因此,实验操作的规范、严谨和准确性,既有助于学生获取新知,又培养了学生正确的科学观和相应的实验技能。科学的实验教学,对教师提出了更高的要求。
电机噪声控制:1)转子槽的设计,通过降低电磁力及转矩脉动引起的电磁噪声沿径向分布的空间集中度,降低转矩脉动幅值;2)合理的极数/槽数配合,避免转矩波动及噪声的选型的首要原则;3)降低磁负荷,如齿尖加厚等;4)合理的气隙设计;5)限制导线位移:提升电机槽满率,降低槽内导线空隙,限制导线位移;定子结构的控制;壳体的控制;车身传递路径的控制。
电驱变速器的换挡噪声控制:在含DCT的混合动力总成系统中,换挡过程分为同步器预挂挡和离合器切换两个主要阶段,在这两个阶段均有发生冲击和噪声的风险。在DCT变速器中,换挡过程在机-电-液-控系统的综合作用下完成,换挡噪声需要同时与换挡时间等其他性能进行平衡。
本地区番茄无公害栽培中,春季栽培采用蔬菜大棚栽培,大概在12月到第二年3月期间播种;播种期间,结合当地气候条件选择播种时间,番茄开花期间避免高温和雨季天气。秋季番茄在8月份播种,也可以在6月份提前播种,以此来提升经济效益。番茄植株生长期间,需要充足的水分,而番茄枝叶繁茂,蒸腾作用强,所以无论是茎叶还是果实都需要充足的水分,如果水分不足将影响果实膨大,严重情况下会降低番茄的产量和品质。除了水分以外,养分的支持同样十分关键,番茄是一种耐肥作物,所以生长期间需要保证充足的肥料支持,实现氮、磷、钾肥合理搭配。
由于混动变速箱布置有双电机和电机控制单元,一般混动变速箱较传统同等动力配置变速箱重40kg以上,在同等排量发动机匹配下,混动动总模态频率会显著下降,因此对新开发的动总需有效提高发动机缸体、油底壳强度并增加与变速箱结合面强度,提高动总弯扭模态。同时主机厂需具备混合动力总成台架测试能力和优秀的混动控制匹配逻辑能力,使动总在动力性、经济性与NVH性能方面保持平衡。
与传统燃油车相比,混动车辆NVH性能涉及更多的控制参数及匹配,调整控制策略已成为解决NVH问题的重要手段之一。通过矩阵式扫点,选取最优的发动机运行点,解决强制充电的噪声振动大问题;通过电机扭矩调整,解决冲击性NVH问题。
开放平台针对各类图书馆馆藏资源的开放数据建立统一、标准的外部访问接口,同时采用成熟的接口管理系统对包括API、Web Service、SPARQL Endpoint、关联数据发布接口等在内的各项服务进行有效的监控和管理;针对图书馆资源的访问方式,构建基于总线的访问接口体系结构;并针对资源的格式,利用RDF的方式进行结构化数据向三元组的转换。
与传统内燃机动力相比,混合动力总成整车匹配NVH开发,不仅需要传统动总的声学包设计能力、进排气系统NVH设计能力、调校能力,还需具备更优秀的悬置匹配能力。
本研究结果显示,观察组出院时主观幸福感及护理满意度均高于对照组(P<0.05),主观幸福感是患者生活质量的整体评价,受健康状态、心理特质等多种因素影响[12]。观察组接受护理措施后促进呼吸功能明显改善,提高其舒适感受,有助于提高生活质量,增强口腔护理促进口臭指数明显下降,有利于减轻患者口腔异味,增强患者进食欲望,而促进其身体健康。提高口腔护理效果在一定程度上帮助患者维护自我形象,对于提高患者自尊水平有积极意义,从而提高其主观幸福感[13]。
与传统内燃机悬置系统相比,混动内燃机悬置系统需适应频繁启停冲击、适应多模式工况极限姿态控制,经典问题包括:点火冲击、发动机抽动、怠速抖动、轰鸣/啸叫等。悬置具体开发过程简单分为9个开发内容,分别为:动力总成参数获取、布置方案确定、模态策略确定、解耦分析、结构设计、结构CAE分析、样件验证、整车调教,其中布置、模态分析、刚度曲线设计、结构仿真及样车调校阶段尤为重要。
综上,混合动力总成的NVH开发难度较传统动力总成有明显的提升,在国产品牌越来越得到国人认可,新能源汽车销售份额突破25%的关键时期,各主机厂需要加强对混动NVH研发的投入程度,在历史变革时期抓住机遇、迎接挑战,为国产车的辉煌贡献应有的力量。
[1]庞剑. 汽车噪声与振动 [M]. 北京:北京理工大学出版社,2006.
[2]丁艳平等. 发动机正时皮带噪声分析与改进 [J].汽车技术,2015.
[3]陈楠. 汽车振动与噪声控制 [M]. 北京:人民交通出版社,2005.
[4]欧阳彩云,陈友祥,等. 某发动机正时带传动系统噪声分析及优化 [J]. 汽车实用技术,2016.