The existence and blow-up of the radial solutions of a (k1, k2)-Hessian system involving a nonlinear operator and gradient

2022-08-25 08:52:14GuotaoWANG王国涛ZedongYANG杨泽栋
关键词:徐家王国

Guotao WANG(王国涛)Zedong YANG(杨泽栋)

School of Mathematics and Computer Science,Shanai Normal University,Taiyuan 030031,China E-mail: wgt2512@163.com; yangzd1229@163.com.

JiafaXU (徐家发)*

School of Mathematical Sciences,Chongqing Normal University,Chongqing 401331,China E-mail: rujiafa.292@sina.com

Lihong ZHANG(张丽红)

School of Mathematics and Computer Science,Shanai Normal University,Taigyuan 030031,China E-mail: zhanglih149@126.com

1 Introduction

The aim of this paper is to show the positive radial solutions of the following(k1,k2)-Hessian system involving a nonlinear operator and gradient:

where N ≥2, G is a nonlinear operator on Λ={G ∈C2([0,+∞),(0,+∞))|, and there exists a constant α >0 such that for all 0 <l <1,G(ls)≤lαG(s)}.

Inspired by the above works, by using the monotone iterative method, we investigate the existence of entire positive bounded and blow-up radial solutions of the nonlinear (k1,k2)-Hessian system (1.1) involving a nonlinear operator. Our results complement the works of many authors([1–15,18–24]),and are also closely related to some recent works by the iterative method ([25–29]) for various differential equations.

2 Main Results

3 Proofs of the Main Results

3.1 Proof of Theorem 2.4

3.2 Proof of Theorem 2.5

3.3 Proof of Theorem 2.6

猜你喜欢
徐家王国
徐家珏作品
美术界(2022年4期)2022-04-26 11:07:00
STABILITY ANALYSIS OF CAUSAL INTEGRAL EVOLUTION IMPULSIVE SYSTEMS ON TIME SCALES∗
一滴水中的王国
趣味(语文)(2020年5期)2020-11-16 01:34:54
地下王国
她的2000亿打工王国
逃离鼠王国
南京市栖霞区徐家村M4 出土器物
南京市栖霞区徐家村M1 出土器物
徐家柱 用爱唤醒沉睡12年的妻子
今日农业(2019年10期)2019-01-04 04:28:15
建立新王国
NBA特刊(2018年21期)2018-11-24 02:47:48