胡诤贇,史建伟,周国平
1南京医科大学第一附属医院儿科,江苏 南京 210029;2上海市松江区中心医院儿科,上海 201600;3南京医科大学附属脑科医院神经外科,江苏 南京 210024
作为肿瘤坏死因子(tumor necrosis factor,TNF)超家族成员之一,淋巴毒素α(lymphotoxin α,LTα),也称为肿瘤坏死因子β,最初被描述为一种由活化淋巴细胞产生的细胞毒性因子,LTα能形成可溶性同源三聚体(lymphotoxin α3,LTα3)。当LTα与具有跨膜结构域的淋巴毒素β(lymphotoxin β,LTβ)共定位时,能形成细胞表面结合的异源三聚体(lymphotoxin α1β2,LTα1β2)。LTβ受体(lymphotoxin beta receptor,LTBR)能与LTα1β2 配体特异性结合,介导淋巴组织形成、T 淋巴细胞和B 淋巴细胞在脾脏中分化以及生发中心形成的功能,并诱导细胞程序性死亡。LTBR 有第2 个配体LIGHT(lymphotoxin like,exhibits inducible expression and competes with HSV glycoprotein D for HVEM,a receptor expressed by T lymphocytes)[1],能激活淋巴细胞并介导细胞周期停滞引发细胞凋亡效应。LIGHT 另外两个已被证实的受体是疱疹病毒进入介质(herpes virus entry mediator,HVEM)和诱饵受体3(decoy receptor 3,DcR3),上述配体受体结合具体方式见图1[2-3]。LTBR 已被证明由基质细胞(上皮细胞和内皮细胞、成纤维细胞)和髓系细胞(单核细胞、树突状细胞和巨噬细胞)等多种细胞组成性表达[4],但不在淋巴细胞上表达。而LTα1β2 能由淋巴细胞表达,如活化的T 淋巴细胞、B 细胞、自然杀伤(natural kill,NK)细胞和3 型天然淋巴细胞。LTα1β2/LTBR 及LIGHT/LTBR 特定表达模式的相互作用充当了淋巴细胞和基质细胞及髓系细胞之间的通讯信号[5]。
图1 肿瘤坏死因子核心家族信号通路Figure 1 Tumor necrosis factor core family signaling pathways
聚集在核因子-κB(nuclear factor-kappa B,NF-κB)通路上的信号已被证明在早期发育以及淋巴器官结构的维持中都发挥着重要作用。LTBR信号参与的非经典NF-κB 信号通路依赖NIK 和IKKα连接诱导NF-κB2/p100前体加工产生成熟的p52亚基,然后通过p52-RelB 复合物易位到细胞核发挥作用,LTBR介导的p52/RelB异二聚体激活导致淋巴趋化因子的产生[6],如C-C 基序趋化因子19(chemokine C-C motif ligand 19,CCL19)、C-C 基序趋化因子21(chemokine C-C motif ligand 21,CCL21)、C-X-C基序趋化因子12[chemokine(C-X-C motif)ligand 12,CXCL12]、C-X-C 基序趋化因子13[chemokine(C-X-C motif)ligand 13,CXCL13]和B 细胞激活因子(B-cell activation factor,BAFF)[7],该通路对于脾脏结构的发育和稳定、滤泡树突细胞成熟、淋巴结、派尔氏斑发生以及B 细胞存活的调节至关重要。研究表明,胆固醇的消耗增加了LTBR 依赖性的NF-κB 经典途径的发生[8],经典NF-κB 活性由p50-RelA 异源二聚体组成,需要IKK 复合体的IKKγ和IKKβ亚基以及IκB的降解[9],但其他可能的同源和异源二聚体复合体也可能发生,具体取决于细胞类型和激活状态。通过p50/RelA 异二聚体的激活,LTBR 信号转导促进促炎因子的上调,包括巨噬细胞炎性蛋白-1β(macrophage inflammatory protein-1β,MIP-1β)、巨噬细胞炎性蛋白2(macrophage inflammatory protein 2,MIP2)、血管细胞黏附分子1(vascular cell adhesion molecule-1,VCAM-1)、C-X-C基序趋化因子1[chemokine(C-X-C motif)ligand 1,CXCL1]、细胞间黏附分子1(intercellular cell adhesion molecule-1,ICAM-1)和E-选择素。
研究发现,LTBR 缺陷的小鼠模型常见的表型为免疫识别异种抗原的派尔氏结的缺乏以及脾脏结构紊乱[10],而派尔氏结及脾脏功能与淋巴组织微环境息息相关,这证明了LTBR 对淋巴组织的个体发育的重要性。不少研究表明,LTα1β2/LTBR信号通过调节高内皮微静脉(high endothelial venule,HEV)基因和淋巴趋化因子的表达来控制次级淋巴器官的发育。LTα3/TNFR1 主要和LTα1β2/LTBR信号通路协同诱导构建三级淋巴器官所需的趋化因子、黏附分子和淋巴因子的基因转录调控[11]。
针对淋巴结增生有多种机制的讨论,其中一种与免疫相关的机制研究认为,由LIGHT/LTBR 相互作用激活基质细胞表达LTBR,释放趋化因子、上调黏附分子,从而将组织来源的树突状细胞(dendritic cell,DC)吸引到淋巴结来行使其免疫功能[7,12]。其他涉及基质重塑、趋化因子和黏附分子的产生,以及免疫细胞募集的研究,同样丰富了病理刺激下淋巴结微环境稳态的理论基础。
LIGHT/LTBR/HVEM 通路增强了同种异体反应性T细胞的频率,加快了T细胞增殖的速率,从而促进了T 细胞向效应T 细胞的分化[13]。而LTBR 调节经T 细胞进入胸腺中的黏附分子的表达,胸腺基质的LTBR 表达对于淋巴祖细胞进入胸腺至关重要,这种作用也延伸到骨髓移植后的胸腺恢复上,表明LTBR 可促进T 细胞重建及治疗后基本免疫系统功能的恢复,有作为免疫治疗靶点的潜力[14]。
现已明确干扰素(interferon,IFN)在调节DC 和NK细胞的分化中起重要作用,而IFN的抗病毒调节作用受LT途径的影响[15],提示了在机体宿主防御的固有性免疫反应中LT 占有一席之地。调节性T 细胞(regulatory T cell,Treg)调节淋巴管内皮细胞(lymphatic endothelial cell,LEC),使其更容易进行其他白细胞的跨内皮迁移(transendothelial migration,TEM)。炎症期间Treg 上Toll 样受体2 的激活会特异性地增强Treg LTα1β2 的表达,加强LEC 中的LTBR信号转导,从而增强免疫细胞TEM[12],另外胸腺内皮细胞依赖于LTBR 选择T 细胞协调胸腺造血祖细胞归位[16]。总之,LTBR 通路在宿主防御的适应性免疫反应中具有重要意义。
有研究报道LTα1β2/LTBR 信号在胸腺髓质上皮细胞的发育和功能中起关键作用,胸腺成纤维细胞中LTBR 的缺失会造成成纤维细胞特异性抗原的表达降低,导致胸腺髓质上皮细胞建立的自身抗原减少,从而引起中枢免疫耐受性的破坏[17]。已有报道在胸腺损伤后,LTBR 能促进胸腺的T 细胞再生[16,18]。LTα1β2/LTBR 轴通过调节趋化因子和黏附分子以及胸腺门静脉内皮细胞的稳态发育来控制淋巴祖细胞的归巢,从而影响着胸腺再生的两个重要方面,包括淋巴祖细胞的胸腺归位和胸腺上皮细胞的增殖[5]。
研究表明DC 表达LTα1β2 后刺激了内皮细胞中的LTBR 信号转导,介导T 细胞进入淋巴结状HEV 的发育和维持。而Wnt 信号是正常胚胎发育和组织稳态所需要的重要信号转导途径[19]。Ⅱ型肺泡上皮细胞中LTBR信号转导的激活通过非经典NF-κB信号转导诱导激酶NIK,降低了Wnt/β-catenin活性。阻断LTBR 信号转导限制了支气管相关淋巴组织的形成,减少肺泡上皮细胞的凋亡并重新启动了内源性Wnt/β-catenin,从而驱动肺泡再生[20]。LTBR信号为肺病新疗法的机制研究提供了思路。
Sorg等[21]明确了在小鼠模型中LTBR与TNFRp55协同促进了有效的肝脏再生,通过生物信息学比对发现Ccnl2、Fbf、Gadd45、Ifrd1、Lars2、Lgals4 是小鼠部分肝切手术后肝再生的潜在上调靶基因[22]。在慢性肝损伤小鼠模型中,Ruddell等[23]提出了肝星型细胞响应LTBR刺激产生的趋化因子引起白细胞和肝祖细胞的募集,从而促进伤口愈合和再生的可能机制。也有报道指出LTβ、LTβ受体和IFN-γ参与肝脏卵圆细胞介导的肝再生,但不参与肝细胞介导的肝再生[24]。一种针对淋巴毒素β受体的激动型抗体能够通过减少肝损伤、增加白介素-6(interleukin-6,IL-6)的产生、肝细胞DNA 合成来促进肝脏再生,从而使部分肝切除后淋巴细胞缺陷小鼠得到存活[25]。而在一项转基因小鼠模型中,研究建立了淋巴细胞衍生配体LIGHT及LTα和肝细胞之间的关键相互作用,并揭示了LTBR及其配体在部分肝切除后启动DNA合成[26],使之成为肝脏再生过程中的新途径。
Francipane 等[27]指出宿主LTBR 信号转导对于淋巴部位肾移植物成功血管化和成熟的重要性,这充分说明了二级淋巴器官介导的LTBR 信号可被用于支持肾脏发育。肠上皮来源的IL-23 依赖于LTBR 信号转导,通过CD4-淋巴组织诱导细胞(lymphtissue inducer,LTi)分泌IL-22 介导细胞增殖和存活以及黏液产生,从而促进上皮损伤后的伤口愈合[28]。因此作者提出了LTBR 介导的上皮细胞和LTi细胞之间的合作调节肠道稳态以限制黏膜损伤的新颖观点。在人骨髓源性间充质干细胞中,LIGHT/LTBR的相互作用通过激活了WNT/β-catenin通路介导了成骨作用,揭示了LIGHT 的骨再生潜力[29]。另外LIGHT/LTBR 的结合激活了Akt 通路介导了成肌细胞的分化,为骨骼肌的再生治疗提供了新的理论基础[30]。
当然也有LTBR 信号抑制组织再生的论证,研究表明在小鼠模型中出现LTBR 信号越强,越能抑制植入脾脏的再生并减慢脾组织的发育[31]。已有研究明确LTBR-Ig 处理野生型小鼠后,明显延迟了脱髓鞘并加速了髓鞘再生,这也反映了LTBR 信号对于小鼠神经再生的影响[32]。
综上所述,LTBR 在淋巴器官发育,肺、肝脏、肾脏、脾脏、肠黏膜、骨骼肌、神经元发育以及胸腺再生方面发挥着重要作用。LTBR 信号介导的组织再生机制在再生医学中具有良好的研究前景。
考虑到淋巴毒素信号的免疫系统功能,其调节失控常可导致自身免疫和炎症性疾病的发生,如类风湿性关节炎、自身免疫性胰腺炎、结肠炎、肝炎、肾炎、多发性硬化症和干燥综合征等[33-36]。
已有报道在炎症性肌病和肌营养不良的患者中的肌纤维高表达LTβ,这可能反映了LTβ参与了早期肌纤维损伤[37],进一步支持了淋巴毒素在免疫系统中的作用。研究发现LTBR 缺陷的中性粒细胞的糖酵解和活性氧升高,引起葡聚糖硫酸钠(dextran sodium sulfate,DSS)诱导的结肠炎模型病情加重[33],而LTBR 通路的激活在DSS 诱导的结肠炎治疗中可能具有潜在的保护作用。LTβ信号缺失也被证明可导致淋巴器官受损,从而引起机体抗病毒免疫反应的缺陷[38]。研究报道乙肝病毒或丙肝病毒诱导的淋巴毒素信号激活可通过淋巴细胞间接引起肝炎乃至炎症性肝细胞癌的发生[39]。LTBR信号还会导致非肥胖糖尿病小鼠唾液腺中的淋巴组织冗余,通过阻断LTBR 通路会改善唾液腺功能[40]。Seleznik 等[35]通过基因芯片检测明确了LTβ和LTBR 在狼疮性肾炎患者的肾活检组织中高表达,并在BWF1 狼疮肾炎小鼠模型上验证到同样结果,通过LTBR-Ig的4周治疗,使狼疮性肾炎小鼠的肾功能得到明显改善,同时LTBR 下游靶基因趋化因子CCL2、CCL20、CXCL10表达量显著下降,LTBR通路成为肾炎疾病的可能治疗靶点。总之,LTBR信号在自身免疫病中更像一把双刃剑,其作用机制的合理运用对于相关疾病的治疗十分重要。
LTBR及其配体LIGHT也参与了慢性哮喘支气管重塑的关键过程。LIGHT 直接通过刺激肺巨噬细胞上LTBR 介导TGFβ和IL-13 的产生[41],随后协同刺激支气管上皮细胞中的胸腺基质淋巴细胞生成素(thymic stromal lymphopoietin,TSLP)生成[42],导致支气管壁纤维化和平滑肌增生,同时也增加气道高反应性。有人在支气管上皮细胞和原代支气管上皮细胞中,发现LIGHT通过LTBR信号转导,激活Erk和NF-κB通路,从而产生IL-8等炎性因子,导致气道炎症恶化[43]。因此,LTBR 信号通路也是哮喘重要的潜在治疗靶点。
由天然淋巴细胞(innate lymphoid cell,ILC)产生的LTα1β2能通过控制DC的功能,在肠道黏膜固有层中诱导IgA的产生[43],而IgA可在黏膜组织中调节共生微生物群的组成[44]。因此,ILC 产生的膜结合淋巴毒素通过参与肠道中的适应性免疫反应影响了共生微生物群的组成。
在幼年载脂蛋白E缺乏的小鼠模型中,LTBR可通过增加CCL5 介导的单核细胞募集,促使巨噬细胞驱动动脉粥样硬化发生炎症病变加重病情[45]。而在老年载脂蛋白E 缺乏小鼠中,血管平滑肌细胞LTBR 通过维持动脉三级淋巴器官的结构却能防止动脉粥样硬化[46]。不同小鼠年龄的模型和LTBR基质细胞来源不同的差异化结果可能导致了关于脂质代谢的矛盾结论。
4.5.1 LTBR信号与肿瘤侵袭
在癌细胞中LTα1β2/LIGHT/LTBR 轴调节趋化因子及促血管生成因子的分泌,并诱导血管生成,支持癌细胞增殖和存活,从而形成促癌性炎症微环境[2,47]。LTBR 下游信号可通过经典和非经典途径激活NF-κB通路,而NF-κB 的异常激活会使癌细胞高度增殖,通过刺激血管新生、诱导促侵袭和促转移的炎症微环境,发挥内在促肿瘤作用[48]。阻断LTα1β2-LTBR 信号轴能将肿瘤反应性效应T 细胞从胸腺克隆缺失中释放,对抗肿瘤的进展。在前列腺癌双转基因小鼠模型[49]中的LTBR-Ig治疗或LTα的耗竭,促进了效应T 细胞的产生、减小了肿瘤体积、并防止了进一步转移,反映了LTBR信号所具备的促癌功能。
4.5.2 LTBR信号与肿瘤免疫
LTBR 能通过招募TRAF3 与LIGHT 交互达到LIGHT 介导的细胞死亡信号作用从而达到抑癌作用[50]。除了穿孔素和Fas介导的细胞毒性外,LTBR介导的信号通路代表了活化T淋巴细胞的另一种细胞接触依赖性细胞毒性机制。LTBR 在体内可以直接介导细胞毒性T淋巴细胞(cytotoxic T lymphocyte,CTL)定向的肿瘤排斥,使用靶向LTBR的肿瘤特异性CTL 是一种潜在的肿瘤治疗方法[51]。研究发现刺激LTBR 的LIGHT 配体依赖性通路产生的T 细胞识别肿瘤抗原后产生的IFN-γ,作用于大多数肿瘤细胞表达的受体,通过可诱导的蛋白酶体亚基以及主要组织相容性复合体I 类分子显著增加抗原递呈[52]。此外,IFN-γ在塑造免疫反应尤其是抗肿瘤T细胞反应中起着重要作用,会触发趋化因子,将更多的细胞毒性效应T 细胞驱动到恶性组织微环境中,从而限制肿瘤细胞生长[53]。表达LTα1β2 的DC细胞对内皮细胞产生LTBR的刺激能引发HEV新生及三级淋巴结构相关的抗肿瘤免疫反应增强[54]。研究表明,激动型LTBR 抗体的治疗能够在同源结肠肿瘤模型中诱导淋巴细胞浸润和促使肿瘤细胞坏死。其潜在的机制可能是诱导肿瘤特异性效应T细胞的LT 与肿瘤细胞上的LTBR 交联,以刺激它们分泌对巨噬细胞具有趋化性的趋化因子表达[55],作为T细胞、NK和DC的化学引诱物,驱动肿瘤破坏。
淋巴毒素受体LTBR相关信号通路参与了机体的固有免疫和适应性免疫。转录因子NF-κB 家族的调节是这些信号通路的主要目标,参与调节多种关键靶基因,包括选定的趋化因子和黏附分子来控制次级淋巴器官的发育和维持淋巴组织微结构的稳态,促进淋巴祖细胞的胸腺归位和胸腺上皮细胞的再生,从而在相关器官和组织发育以及免疫效应中发挥作用。目前已经发现LTBR信号涉及诸多生理病理过程,包括免疫应答、组织再生、器官发育、脂质平衡、肠道菌群共生等。在免疫系统中,一旦LTBR 信号的异常调节将会导致自身免疫和炎症性疾病的发生。另外,LTBR 信号也被报道参与了肿瘤的发生发展。尽管LTBR-Ig 融合蛋白和激动型LTBR 抗体已在部分自身免疫性疾病和肿瘤的动物模型中试用,为免疫性疾病和相关肿瘤的治疗提供多种具有潜力的策略,但仍有许多问题尚待解决:①LTBR 在肿瘤治疗中的双向作用机制尚未阐明。②相关研究仅限于动物模型,缺乏人体临床验证。③LTBR 信号的激活机制涉及表达量升高后自身寡聚而引起结构性激活,或是通过相应配体结合后激活发挥作用。LTBR 与不同配体结合后在细胞中发挥的作用不同,无论膜结合配体、可溶性配体、或者激动性自身抗体都会导致差异化的细胞反应,这些作用在动物研究中已得到证实,为后续的临床实践提供了理论基础。总之,LTBR 信号为组织再生机制的研究提供了崭新的视角,有望成为未来再生医学治疗的重要靶点。