冯欣怡, 孙祥凯
(重庆工商大学 数学与统计学院 经济社会应用统计重庆市重点实验室,重庆 400067)
作为非线性优化问题的一个重要模型,分式优化在资源分配、投资组合和生产计划等问题中具有广泛的应用,因此在过去几十年里引起众多学者的广泛关注,如文献[1-5].在研究分式优化问题时,近似解的最优性条件和对偶理论是其研究的重点内容,近些年取得了丰硕成果,如文献[6-9].
值得注意的是,上述文献在研究近似解的最优性和对偶性时,常常需要假定所考虑优化问题模型的数据是精确的.然而由于实际应用中测量或制作误差、以及不精确信息的存在等诸多原因,许多优化问题都会涉及到不确定数据.这些不确定数据对问题求解有着不同程度的影响.因此,带不确定参数的优化问题引起了广泛关注.譬如,Li 等[10]建立了带不确定参数的凸优化问题与其不确定共轭对偶问题之间的鲁棒强对偶关系,并应用到数据分类问题中;Sun 等[11]借助一种标量化方法,刻画了不确定多目标优化问题的鲁棒近似弱有效解的最优性条件和对偶理论;通过引入一类新的广义凸性概念,Fakhar 等[12]刻画了鲁棒弱有效解的充分最优性条件与对偶理论,并应用到投资组合优化问题中;借助一类次微分约束规格,Sun 等[13]刻画了一类不确定半无限优化问题拟近似最优解的最优性条件和混合型对偶理论;赵丹和孙祥凯[14]研究了一类目标函数和约束函数均带不确定参数的多目标优化问题的鲁棒拟近似有效解的最优性条件;Lee 等[15]讨论了不确定分式优化问题鲁棒近似最优性条件和对偶理论;借助一类鲁棒型约束规格,Zeng 等[16]刻画了带不确定参数的半无限分式优化问题的鲁棒近似最优性条件和混合型对偶理论.
受上述文献启发,本文考虑如下多目标分式半无限优化问题:
又由式(1)、引理2 和引理3,可知
从而,由式(8)可知
注5 若(UMP)中的i=1以及不确定集Vt,t∈T,为单点集,则(UMP)退化为经典的单目标半无限优化问题,文献[20]详细刻画了这类问题的最优性条件.若(UMP)中的不确定集Vt,t∈T,为单点集,则(UMP)退化为经典的多目标半无限优化问题,这类问题的最优性条件和对偶问题也得到详细刻画,如文献[21]详细刻画了其对偶问题.
本文主要对一类带不确定参数的多目标分式半无限优化问题进行了研究.首先结合鲁棒方法和Dinkelbach 方法,将该问题的鲁棒对应模型转化为一般的多目标优化问题.再借助标量化方法,建立了该多目标优化问题的标量化问题,得到了它们拟近似解之间的关系.最后,借助一类鲁棒型次微分约束规格,建立了该不确定多目标分式半无限优化问题拟近似有效解的鲁棒最优性条件.本文推广了文献[16,19]的相关结果.另一方面,对偶理论也是最优化理论研究的重点内容,因此如何用本文的方法刻画带有不确定参数的多目标分式半无限优化问题的鲁棒对偶理论,这将是我们进一步要研究的课题.
致谢 本文作者衷心感谢重庆工商大学科研团队项目(ZDPTTD201908)以及重庆工商大学研究生“创新型科研项目”(yjscxx2021-112-58)对本文的资助.
参考文献( References ) :
[1]D INKELBACH W. On nonlinear fractional programming[J].Management Science, 1967, 13(7): 492-498.
[2]Y ANG X M, TEO K L, YANG X Q. Symmetric duality for a class of nonlinear fractional programming problems[J].Journal of Mathematical Analysis and Applications, 2002, 271(1): 7-15.
[3]L ONG X J, HUANG N J, LIU Z B. Optimality conditions, duality and saddle points for nondifferentiable multiobjective fractional programs[J].Journal of Industrial and Management Optimization, 2008, 4(2): 287-298.
[4]S UN X K, CHAI Y, ZENG J. Farkas-type results for constrained fractional programming with DC functions[J].Optimization Letters, 2014, 8: 2299-2313.
[5]Z HOU Z A, CHEN W. Optimality conditions and duality of the set-valued fractional programming[J].Pacific Journal of Optimization, 2019, 15(4): 639-651.
[6]L IU J C, YOKOYAMA K. ε-optimality and duality for multiobjective fractional programming[J].Computers and Mathematics With Applications, 1999, 37(8): 119-128.
[7]G UPTA P, SHIRAISHI S, YOKOYAMA K. ε-optimality without constraint qualification for multiobjective fractional problem[J].Journal of Nonlinear and Convex Analysis, 2005, 6(2): 347-357.
[8]V ERMA R U. Weak ε-efficiency conditions for multiobjective fractional programming[J].Applied Mathematics and Computation, 2013, 219(12): 6819-6827.
[9]K IM M H, KIM G S, LEE G M. On ε-optimality conditions for multiobjective fractional optimization problems[J].Fixed Point Theory and Applications, 2011, 2011: 6.
[10]L I G Y, JEYAKUMAR V, LEE G M. Robust conjugate duality for convex optimization under uncertainty with application to data classification[J].Nonlinear Analysis, 2011, 74(6): 2327-2341.
[11]S UN X K, LI X B, LONG X J, et al. On robust approximate optimal solutions for uncertain convex optimization and applications to multi-objective optimization[J].Pacific Journal of Optimization, 2017, 13(4): 621-643.
[12]F AKHAR M, MAHYARINIA M, ZAFARANI J. On nonsmooth robust multiobjective optimization under generalized convexity with applications to portfolio optimization[J].European Journal of Operational Research, 2018,265(1): 39-48.
[13]S UN X K, TEO K L, ZENG J, et al. Robust approximate optimal solutions for nonlinear semi-infinite programming with uncertainty[J].Optimization, 2020, 69(9): 2109-2129.
[14]赵 丹, 孙祥凯. 非凸多目标优化模型的一类鲁棒逼近最优性条件[J]. 应用数学和力学, 2019, 40(6): 694-700.(ZHANG Dan, SUN Xiangkai. Some robust approximate optimality conditions for nonconvex multi-objective optimization problems[J].Applied Mathematics and Mechanics, 2019, 40(6): 694-700.(in Chinese))
[15]L EE J H, LEE G M. On ε-solutions for robust fractional optimization problems[J].Journal of Inequalities and Applications, 2014, 2014: 501.
[16]Z ENG J, XU P, FU H Y. On robust approximate optimal solutions for fractional semi-infinite optimization with uncertainty data[J].Journal of Inequalities and Applications, 2019, 2019: 45.
[17]B EN-TAL A, GHAOUI L E, NEMIROVSKI A.Robust Optimization[M]. Princeton: Princeton University Press,2009.
[18]C LARKE F H.Optimization and Nonsmooth Analysis[M]. New York: John Wiley and Sons Inc, 1983.
[19]A NTCZAK T. Parametric approach for approximate efficiency of robust multiobjective fractional programming problems[J].Mathematical Methods in Applied Sciences, 2021, 44(14): 11211-11230.
[20]L ONG X J, XIAO Y B, HUANG N J. Optimality conditions of approximate solutions for nonsmooth semi-infinite programming problems[J].Journal of the Operations Research Society of China, 2018, 6(2): 289-299.
[21]刘 娟, 龙宪军. 非光滑多目标半无限规划问题的混合型对偶[J]. 应用数学和力学, 2021, 42(6): 595-601. (LIU Juan,LONG Xianjun. Mixed type duality for nonsmooth multiobjective semi-infinite programming problems[J].Applied Mathematics and Mechanics, 2021, 42(6): 595-601.(in Chinese))