电力系统工频过电压的计算与仿真

2022-07-01 17:01孙熙晨
科技资讯 2022年14期
关键词:电抗器输电线路

孙熙晨

摘要:日常的绝大多数的负载为感性负载,增加电抗器,可以使线路更加稳定的运行。该文在没有电抗器和有电抗器的情况下,对空载线路分别求解首末端电压关系,发现在有电抗器的情况下,末端电压波动要小,首末端电压比较小。最后使用EMTP进行仿真,搭建了没有电抗器和有电抗器的空载线路,采集了输入输出点电压的波形,然后画出首末端电压图,发现首末端电压波形都是标准的正弦,而且是同相位,只有幅值大小不等,仿真结果和理论相一致。

关键词:容性功率  输电线路  工频过电压  电磁暂态分析  电抗器

中图分类号: TM744    文獻标识码:A   文章编号:1672-3791(2022)07(b)-0000-00

Calculation and Simulation of Power Frequency Overvoltage in Power System

SUN  Xichen

(Government Affairs Guarantee Center of Shandong Provincial Party Committee, Jinan, Shandong Province, 250004 China)

Abstract: Most of the daily loads are inductive loads. Adding reactors can make the line run more stably. In this paper, the head and end voltage relationship of no-load line is solved respectively without reactor and with reactor. It is found that in the case of reactor, the end voltage fluctuation is small and the head and end voltage is relatively small. Finally, EMTP is used for simulation, no-load lines without reactor and with reactor are built, the voltage waveforms of input and output points are collected, and then the head and end voltage diagram is drawn. It is found that the head and end voltage waveforms are standard sinusoidal and in the same phase, only the amplitude is different, and the simulation results are consistent with the theory.

Key Words: Capacitive power; Transmission line; Power frequency overvoltage;Electromagnetic transient analysis; Reactor

1电力系统工频过电压

1.1电力系统工频过电压的产生的基本机理

电力系统的内部过电压是指系统中的电磁能由于系统故障或开关操作而发生较大的变化,发生电力系统内部过电压时会发生电压从额定允许值瞬间或长期上升。这种不正常的电压增长会对电气设备构成威胁,因此尽量减小电力系统发生内部过电压的次数。电力系统内部过电压可以分为操作过电压和暂时过电压这两类,操作过电压是指在电力系统运行过程中不正确的操作导致电压异常增长超过了允许值,而暂时过电压是由于环境等原因发生了电压的振荡,一般而言,顺态过电压可以在比较短的时间内经过电力系统自身内部的调节而消除,从而达到一种电力系统稳定运行的状态[1-3]。

在瞬态转换完成后持续数秒或数小时(持续 0.1 s(5 个工频周期)或更长时间)的持续过电压称为暂时过电压。 由于现代超高压电力系统的保护日益完善,超高压电网中的暂时过电压很少持续超过几秒钟,因此这种过电压称为顺态过电压,由于瞬时过电压的存在的时间不是很长,因此更容易进行调节,尽量减小顺时过电压发生的次数,可以保障电力系统稳态的运行。

该文设计内容有:(1)掌握电力系统工频过电压的产生的基本机理、计算方法和抑制措施。(2)掌握电力系统电磁暂态仿真软件ATP-EMTP的基本使用方法和分析方法。(3)设计一个500 kV输电系统的仿真模型,分析不同工况条件产生工频过电压的情况,对理论分析和抑制方法进行验证。

该文首先介绍电力系统工频过电压的计算方法,涵盖空载长线路的沿线电压分布,并联电抗器的补偿作用。然后,进行参数计算和EMTP的仿真,对没有电抗器和有电抗器两种情形进行仿真,发现电抗器的在抑制工频过电压中的作用,总结抑制工频过电压的方法。

1.2电力系统工频过电压的计算方法

1.2.1空载长线路的沿线电压分布

工频过电压是电力系统中的一种电磁暂态现象,属于电力系统内部过电压,是暂时过电压的一种。

对于长输电线路的入口阻抗为容性时,末端往往是空载的,容性阻抗产生的电容效应会使线路首段电压低于末端电压,此时线路的首、末端电压高于电源电动势,这就是空载长线路的工频过电压产生的原因之一。

同时,线路首端的电压高于电源电动势,这个原因就是在电源电抗上由于电容电流的上升,使得电压也会上升,从而进一步增加了工频过电压。

根据式(1)推得电源电动势与线路末端电压的关系为:

定义电源电动势的传递系数,这是令阻抗角,阻抗角代入式(2)式中得传递系数为:

,,可见,当考虑电源电抗时,相当于增加了线路长度,使谐振点提前了,由此可以看出电容效应和电源电抗都会增加了工频过电压倍数。

1.2.2并联电抗器的补偿作用

采用并联电抗器來补偿线路的电容电流可以限制电容效应引起的工频过电压,以削弱其电容效应XP,因此本节考虑并联电抗器来补偿线路的电容电流,从而对比在有电抗器和没有电抗器时工频过电压的大小。

在线路末端并接电抗器,降低了电压传递系数,这是由于电抗器等效的缩短了线路长度,因而此时由首端看进去,输入端阻抗将会增大,用式(1)同样可以求出线路末端开路时输入端阻抗为:

根据式(4)和式(5),首端对电源的电压传递系数,通过化简可得

由式(4)和式(5)可求得线路末端对电源的电压传递系数,化简可得:

因此,并联电抗器的可以降低工频过电压,电路运行会更加稳定,在建设初期,电抗补偿控制在80%~90%就可以,对于短的输电线路,补偿控制可以更低,这样电网运行会更稳定。

2参数计算和ATP仿真

2.1例题参数计算

2.2工频过电压的EMTP仿真

双击“Clarke模型”图标,参数设定。其他元件参数参照例题的仿真设定。线路末端电抗器参数:电阻为0,电感值为3291 mH。为了更直观地显示输入电压和输出电压的关系,线路未装设电抗器时的末端电压与电源电势波形如图4所示。

0时刻开始的波形代表线路首端电压波形,可以看到是标准的正弦波,0.04 s时刻开始的波形代表线路末端的波形,可以发现在0.04 s合闸后,线路末端电压产生了很短暂的波动,在0.08 s以后末端电压恢复成标准的正弦,而且和线路首端电压同相位。

可以发现末端电压幅值为540 kV, 电源电压幅值为408 kV,末端电压对电源电动势的比值为=1.32,与计算值相符。

在线路末端加入电抗器,电抗器是一个电感性负载,组建带有电抗器的计算模型电路,如图5所示。在线路装设有并联电抗器时,为了更直观地显示输入电压和输出电压的关系,线路未装设电抗器时的末端电压与电源电势波形如图6所示。

0时刻开始的波形代表线路首端电压波形,可以看到是标准的正弦波,0.04 s时刻开始的波形代表线路末端的波形,可以发现在0.04 s合闸后,线路末端电压产生了很短暂的波动,在0.07 s以后末端电压恢复成标准的正弦,而且和线路首端电压同相位。

由图6可测得线路装设有并联电抗器时的首端电压幅值为429 kV,电源电压幅值为 408kV,末端电压对电源电动势的比值为 = l.05,与计算值也相吻合。

从图4和图6的波形对比可知,在设有电抗器的情况下,线路末端电压波动要小,在同样是首端电压408 kV的情况下,未设有电抗器的末端电压为540 kV,有电抗器的情况下末端电压为429 kV,可以看出末端设有电抗器,可以使末端电压波形波动更小。

在未设有和设有电抗器的情况下,首末端电压比都是标准的正弦,而且是同相位,只有幅值大小不等。

可见,在线路空载或轻载时,负载较少,绝大多数的负载为感性负载,所以此时的线路的容性就显得比较厉害,容性功率能够对发电机的主磁通产生增磁作用(容性电流产生的磁通和主磁通方向相同),所以会提高发电机的电压,从而使得线路末端的电压高于线路首端的电压,所以此时应增加电抗器,来吸收容性功率,使线路更好的输送电能[4-7]。

3结语

日常的绝大多数的负载为感性负载,在线路空载或轻载时,负载较少,线路的感性较弱,容性较强,由于容性电流产生的磁通和发电机的主磁通方向相同,所以容性功率能够对发电机的主磁通产生增磁作用,从而提高了发电机的电压,使得线路末端的电压高于线路首端的电压,所以此时应增加电抗器,来吸收容性功率,避免线路末端电压过高而影响运行。

在没有电抗器和有电抗器的情况下,对空载线路分别求解首末端电压关系,发现在有电抗器的情况下,末端电压波动要小,首末端电压比较小。最后使用EMTP进行仿真,搭建了没有电抗器和有电抗器的空载线路,设置了输入输出采集点采集电压的波形,然后用plot画出首末端电压图,发现首末端电压的波形都是标准的正弦,而且是同相位,只有幅值大小不等,仿真结果和理论相一致。

在线路空载或轻载时线路末端电压会比首段电压高以及采用何种手段来抑制过高的工频过电压现象,同时使用EMTP进行仿真,仿真结果和理论近似相同,结果是比较可观的。

参考文献

[1] 董毅峰,王彦良,韩佶,等.电力系统高效电磁暂态仿真技术综述[J].中国电机工程学报,2018,38(8):2213-2231,2532.

[2] 杨孟飞.电力系统恢复过程中的工频过电压动态优化控制[J].自动化应用,2018(6):102-103.

[3] 侯新春.浅析10kV配电架空线路的运行维护措施[J].电子制作,2017(14):63-64.

[4] 韩志锟,王震泉,许文超,等.500kV变电站主变中性点小电抗工频过电压计算研究[J].电力勘测设计,2016(3):72-76.

[5] 姜为元,杨玉姣,唐小龙.基于曲线拟合的可控电抗器电压自动控制系统[J].微型电脑应用,2021,37(11):121-124,129.

[6] 李清,彭光强,何东林,等.电力系统受迫振荡检测与自适应振荡抑制研究[J/OL].电测与仪表: (2022-01-10)[2022-01-13].http://kns.cnki.net/kcms/detail/23.1202.TH.20220110.1300.002.html.

[7] 張天民. 铁路电力供电系统铁磁谐振过电压抑制技术研究[D].北京:中国铁道科学研究院,2021.

猜你喜欢
电抗器输电线路
对地铁车辆滤波电抗器日常维护及常见故障探究
6Kv串联电抗器的应用
500kV电抗器乙炔超标原因探讨
一种齿形磁楔快速可调电抗器
输电线路运行事故及其解决对策
高压输电线路防雷接地技术与措施
110kV架空输电线路防雷措施研究
浅浅输电线路安全运行影响因素及保护措施
GIS电压互感器现场校验用工频谐振升压电源