炎症性肠病(inflammatory bowel disease,IBD)是一种病因未明的慢性非特异性肠道炎性疾病,主要包括溃疡性结肠炎(ulcerative colitis,UC)和克罗恩病(Crohn's disease,CD)。IBD在西方国家多见,随着生活方式的改变,其在我国的发病率呈上升趋势。IBD通常与肠道菌群的组成和功能改变有关。与健康个体相比,IBD患者的黏膜和粪便中产生短链脂肪酸(short chain fat acid,SCFAs)的细菌通常减少。SCFAs中的丁酸盐是维持肠道稳态的重要代谢产物
。这篇综述总结了丁酸盐改善IBD作用机制的研究进展,包括维持肠屏障功能、抗炎、诱导细胞自噬、调节肠道菌群失调、维持厌氧微环境及促进肠肝轴能量代谢
。本文对丁酸盐在IBD疾病发生发展中作用机制的探究进一步展望了未来口服丁酸盐治疗IBD的可能。同时希望借此进一步认识IBD的发病机制,以期开拓IBD诊疗的新思路。
1.1.1 促进紧密连接形成:缺氧诱导因子-1(hypoxia inducible factor-1,HIF-1)是协调屏障保护的转录因子
,丁酸盐可作其稳定剂。HIF-1存在时,丁酸盐可以促进紧密连接蛋白的表达进而诱导屏障功能
。丁酸盐通过激活编码紧密连接成分的基因和通过转录因子重组蛋白来促进屏障完整性,如信号传导和转录因子3(signal transduction and transcription factor 3,STAT3)
。这种激活导致象征上皮功能改善的跨上皮电阻(transepithelial electrical resistance,TEER)的维持和/或增加
。
建功新时代,扬帆新征程。当前,苏州正在以习近平新时代中国特色社会主义思想为指导,自觉用新思想定向领航,以新思想对标找差,从新思想寻策问道,按照省委决策部署和对苏州工作提出的新要求,围绕推动高质量发展,深化实施十二项“三年行动计划”,为再创新辉煌夯实坚固基础、注入强劲活力、再添秀美气质、绘就艳丽华章。
1.1.2 诱导宿主防御肽表达:肠道上皮细胞(intestinal epithelial cells,IECs)产生抗菌肽(antimicrobial peptides,AMPs)参与上皮屏障功能。G蛋白偶联受体43(G protein-coupled receptor 43,GPR43)通过激活雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)和STAT3介导微生物群代谢产物SCFAs如丁酸盐调节肠上皮细胞中AMPs的表达
。Dou等
的研究表明,丁酸钠(sodium butyrate,SB)通过Toll样受体2(Toll-like receptor 2,TLR2)和表皮生长因子受体(epidermal growth factor receptor ,EGFR)在猪肠上皮细胞J2(porcine intestinal epithelium cell J2,IPEC J2)中诱导猪β-防御素3(porcine β-defensin 3,pBD3)和猪附睾蛋白2剪接变体C(porcine epididymal protein 2 splice variant C,pEP2C),而不增加炎症风险。潘氏细胞表达 GPR41、GPR43和GPR109A,并在丁酸盐刺激下增强α-防御素分泌。丁酸盐也可通过抑制组蛋白脱乙酰基酶(histone deacetylase,HDAC)增加AMPs表达
。丁酸盐还可以增加肠三叶因子和抵抗素样分子β(resistin-like molecule β,RELM-β)的表达逆转炎症,保护肠屏障功能
。
热休克蛋白(heat shock protein,HSP)已被证明与丁酸盐诱导的自噬有关。热休克转录因子2(heat shock transcription factor 2,HSF2)作为HSP的重要调节因子,已被确定在 UC 中高表达。人结直肠癌细胞HT-29中过表达HSF2促进SB诱导的自噬
。此外,过表达HSF2降低了SB诱导的PI3K、Akt和mTOR的表达和磷酸化水平。HSF2可能由SB和炎症诱导,并通过增强IECs的自噬在UC中发挥保护作用。
1.2.1 依赖GPR109A抑制炎症信号通路:对比LPS诱导的GPR109A
小鼠,SB明显抑制脂多糖(lipopolysaccharide,LPS)诱导的野生型(wild type,WT)小鼠原代腹膜巨噬细胞中AKT和NF-κB p65的磷酸化来减轻肠道炎症,但未在LPS诱导的GPR109A
小鼠中发挥抑制作用
。SB尚可通过激活2,4,6-三硝基苯磺酸(2,4,6-trinitrobenzene sulfonic acid,TNBS)诱导的小鼠的GPR109A降低肠通透性并维持适当的紧密连接和黏蛋白2(mucin 2,MUC2)
。这表明SB通过依赖GPR109A的方式改善了TNBS诱导的炎症反应和肠上皮屏障功能障碍。
肝脏通过门静脉循环与肠道直接建立解剖联系,从而不断暴露于细菌产物中(例如SCFAs),其中该连接被视为“肠肝轴”。Han等
研究发现,丁酸盐补充剂显著增加了结肠和门静脉循环中丁酸的浓度,并通过调动氨基酸和B族维生素作为辅酶,增强了肠肝轴中的三羧酸循环(tricarboxylic acid cycle,TCA)。丁酸盐促进乙酸盐生成。乙酸盐可继续转化为首选的呼吸燃料谷氨酸,进一步为哺乳动物的肠道提供能量,并增强肠道屏障和抗氧化功能
。丁酸盐降低了由LPS刺激导致的结肠和肝脏中酰基肉碱和肌酐水平的增加
。酰基肉碱和肌酐的含量与结肠中的促炎因子显著正相关。HIF-1α是激活NF-κB炎症反应的主调节剂
,产生促炎细胞因子和诱导型一氧化氮合酶(inducible nitric oxide synthase,iNOS)
。破坏TCA循环可以稳定HIF-1
。丁酸盐延长了TCA周期,进一步抑制HIF-1α及其下游响应元件环氧合酶 2(cyclooxygenase 2,COX-2)和iNOS。
1.1.4 诱导IgA反应:分泌性免疫球蛋白A(secretory immunoglobulin A,SIgA)在黏膜表面起主要的屏障作用。研究发现,丁酸盐促进小鼠结肠中不依赖T细胞的IgA类转换重组(class switch recombination,CSR)
。丁酸盐上调CD103
CD11b
树突状细胞(dendritic cells,DCs)转化生长因子β1(transforming growth factor β1,TGFβ1)和全反式维甲酸(all-trans retinoic acid,ATRA)的产生,这两种物质对不依赖T细胞的IgA CSR至关重要。这种作用通过激活GPR41和GPR109A信号传导以及抑制HDAC介导。丁酸盐诱导的IgA反应增强了结肠屏障功能,防止炎症条件下细菌播散。
1.2.2 调节免疫细胞和细胞因子:丁酸盐释放的衍生物N-(1-氨基甲酰基-2-苯基-乙基)丁酰胺能够抵消由葡聚糖硫酸钠(dextran sulfate sodium,DSS)诱导引起的中性粒细胞浸润。M2巨噬细胞产生有益于解决炎症、伤口愈合及组织修复
的精氨酸酶1(arginase 1,Arg1)。Ji等
发现,丁酸盐作用于M2巨噬细胞可以减轻DSS诱导小鼠的结肠炎,表现为疾病活动指数(disease activity index,DAI)、血清中IL-6、TNF-α和IL-1β降低,结肠组织中Arg1蛋白表达升高。丁酸盐通过抑制HDAC1基因表达和增加组蛋白H3第9位赖氨酸乙酰化而部分增强STAT6磷酸化,进而增强M2巨噬细胞极化,从而介导其对M2巨噬细胞的作用
。然而有研究发现,Arg1在小鼠结肠炎中发挥促炎作用
。SB尚可通过抑制巨噬细胞促炎性介质的分泌抑制紧密连接蛋白基因表达降低从而维持适当的上皮屏障
。表皮生长因子(epidermal growth factor,EGF)中的双调蛋白(amphiregulin,AREG)调节细胞增殖和组织修复。GPR43和Blimp-1蛋白介导DCs中丁酸盐诱导的AREG表达
。AREG对于预防结肠炎至关重要。IBD患者的DCs中AREG表达显著降低。丁酸盐减少DCs分泌IL-6、IL-12和IL-23
。丁酸盐可能通过影响抗原呈递DCs来抑制抗原特异性细胞毒性CD8
T细胞的活化和扩增
。丁酸盐还可抑制HDAC3增强乙酰化促进细胞代谢调节因子c-Myc的降解来减少Th17分化并减轻结肠炎
。丁酸盐促进Treg细胞产生更多IL-10防止过度的T细胞反应,调节肠道稳态并防御IBD
。丁酸盐刺激产生的TGF-β促进上皮恢复、改善炎症过程,而TGF-β缺乏会加速免疫系统功能障碍并导致严重的IBD
。丁酸盐抑制HDAC和刺激GPR41促进IL-22的产生
,进而诱导AMPs分泌并促进上皮屏障功能。
丁酸盐的作用可能与应用剂量成反比。在体外,低浓度(1~10 mmol/L)的SB显著改善人结肠细胞E12的上皮屏障功能,而高浓度(50~100 mmol/L)无益处
。这些结果与Peng等
的研究一致,低浓度丁酸盐改善屏障功能,过量则诱导肠细胞凋亡并降低TEER。
再次,行政执法程序不规范。“重实体、轻程序”的传统观念在当前的行政执法活动中依然存在。某些地方行政机关片面追求执法效率,忽视程序的重要性,在执法过程中不出示执法证件、告知说明理由,更别说行政相对人行使陈述申辩权,其执法的程序性依据是自身的警服和所谓的执法气场。有的行政执法机关随意执法,滥用行政自由裁量权,执法人员根据个人意愿、价值评判进行裁量,甚至以人情、物质作为自由裁量的交易砝码,行政执法程序束之高阁。
1.1.3 调节突触足蛋白(synaptopodin,SYNPO):丁酸盐调节肌动蛋白相关蛋白SYNPO促进肠屏障功能并加速IECS伤口修复。SYNPO可通过调节肌动蛋白组装、应力纤维形成以及紧密连接形成和维持来实现细胞间相互作用,从而调节细胞的形状和运动
。丁酸盐处理无法补偿SYNPO 敲除细胞屏障形成的损失,且TEER不会增加
。
结肠细胞中表达的一氧化氮合酶2 (nitric oxide synthase 2,NOS
) 产生的硝酸盐
是兼性厌氧菌增殖的重要能源,可致肠道菌群失调
。丁酸盐激活核受体过氧化物酶体增殖物激活的受体-γ(peroxisome proliferator-activated receptor-γ,PPAR-γ),抑制NOS2的表达并降低硝酸盐的含量。IBD 治疗药物5-氨基水杨酸(5-aminosalicylic acid,5-ASA)就是通过激动 PPAR-γ使上皮缺氧和改善肠道菌群失调。最新研究发现,硝酸盐通过抑制NF-κB信号通路以及减少线粒体活性氧(reactive oxygen species,ROS)产生部分抑制LPS诱导的炎症反应
。
将真菌测得ITS rDNA序列以及放线菌16 S rDNA与GenBank数据库中已有的序列进行BLAST比对。结果证明菌株YX-25与Alternaria sp. 的同源性最高为99%。结合已观察到的菌落特征,鉴定为Alternariaalternate。菌株YX-32与Streptomyces sp. 的同源性最高为100%。结合已观察到的菌落特征,鉴定为Streptomycesexfoliatus,见图6、7。
肠道菌群组成失衡促进IBD的发展。Dou等
发现,SB可增加肠道菌群多样性及改善肠道菌群失调以缓解结肠炎。SB显著增加了结肠炎小鼠的α多样性,增加了有抗炎作用的毛梭菌属、毛螺菌科_NK4A136_组的属丰度
,降低了结肠炎指标瘤胃梭菌6的丰度
。
饮食中添加丁酸盐会显著增加乳杆菌和普拉梭菌的相对含量。乳杆菌减少促炎细胞因子TNF-α和IL-6、提高ZO-1蛋白的表达水平促进肠屏障恢复从而缓解结肠炎
。普拉梭菌减少促炎细胞因子如IFN-γ和IL-12的增加,增加抗炎细胞因子IL-10的分泌
。它还可以减弱IBD模型的肠通透性
。Dact3是一种与Wnt/JNK通路相关的基因,是肠上皮细胞炎症的潜在的主要调节剂。研究发现,丁酸盐通过Dact3介导普拉梭菌对肠道上皮细胞的抗炎作用
。
IBD个体中专性厌氧菌减少,兼性厌氧菌的丰度显著增加
。丁酸盐抑制兼性厌氧菌的增殖
。成熟结肠细胞中的丁酸盐β-氧化消耗细胞内O
,阻止其扩散到腔内并维持专性厌氧菌所必需的厌氧环境。HIF在低PO
(<7.6 mmHg,即<1%O
)条件下的表达稳定。较高的PO
导致 HIF表达降低影响上皮屏障功能。因此,降低肠道PO
可以作为恢复微生物群和减少 IBD 患者炎症的新策略。
非侵袭性远端肢体缺血后适应对后循环缺血功能恢复的影响 … ……………… 阚培林,李晓燕,孙静,等 19
1.2.3 作为芳烃受体的配体:丁酸盐可作为芳烃受体(aryl hydrocarbon receptor,AhR)的激活剂,AhR是一种细胞质、配体激活的转录因子
。依赖Notch1途径激活的AhR促进上皮屏障稳态,增加上皮IL-10 受体表达,并调节免疫细胞,如抗原呈递细胞、上皮内淋巴细胞、Th17/Th22 细胞、Treg 细胞和3型先天淋巴细胞(innate lymphoid cells,ILC)。AhR 敲除小鼠易受 DSS 诱导的结肠炎症的影响,IBD患者表现出AhR激活比例的下调
。
穿过格斗笼拍摄是一个好主意,使这幅作品看起来尤为别致。网眼的清晰度处理的正合适,透过网眼,画面正确对焦在了Dylan的脸上。苛刻地说,如果这幅作品里能同时看到Carys的两条腿就更完美了。但“不完美”本就是拍摄动态场景的精髓所在,你几乎不可能完全掌控所有的元素,只能在机会出现的时候,尽可能地把握住它。虽然Craig自己还不太满意,但他已经做得很出色了!
Vancamelbeke等
证明,补充丁酸盐不能抵消TNFα和IFNγ对上皮屏障功能的负面影响,甚至会加剧对TEER的负面影响,并强烈上调炎症 mRNA 和蛋白质表达。对比疾病活动期的UC模型,非炎症对照中丁酸盐更有效地下调诱导炎症通路的基因
。原因可能是TNFα会降低肠上皮吸收和代谢丁酸盐的能力
。最新研究
表明,可能是在疾病活动期UC模型的T细胞中,丁酸盐对促炎细胞因子的下调受损和其诱导T细胞表面细胞毒性T淋巴细胞相关抗原4(cytotoxic T-lymphocyte antigen 4,CTLA-4)表达的能力受损。上述表明,丁酸盐对宿主的影响会因炎症而改变,单独补充丁酸盐可能不足以解决炎症和恢复肠道稳态。
已有丁酸盐口服给药抗炎的研究
,然而其作用于细胞因子的抗炎作用有限,可能是丁酸盐易于在小肠吸收,导致到达结肠的浓度不够高,抑或是其对HDAC的作用时间不够长。
他脸上一呆,但是立刻明白了,跳起来夺门而出,门口虽然没人,需要一把抓住门框,因为一踏出去马上要抓住楼梯扶手,楼梯既窄又黑赳赳的。她听见他连蹭带跑,三脚两步下去,梯级上不规则的咕咚嘁嚓声。
有研究
开发了聚丁酸乙烯酯(polyvinyl butyrate,PVBu)纳米粒子(nano particles,NPs)作为口服丁酸盐供体,保护丁酸盐不在小肠迅速吸收。他们发现100 nm和200 nm的PVBu NPs均显著抑制体外巨噬细胞的炎症反应,200 nm PVBu NPs改善结肠炎的效果更好,且其与ATRA结合效果更胜一筹。ATRA与丁酸盐的协同作用可视为IBD 治疗的另一种有前途的方法。
丁酸盐维持肠道稳态的机制众多,目前HSF2、降低肠道氧分压、普拉梭菌是IBD治疗的新靶点。由丁酸盐直接或间接介导的HIF、Arg1及硝酸盐在IBD中的作用有两面性。因此,我们应该辩证地看待丁酸盐的作用,找寻治疗IBD的新靶点。高浓度的丁酸盐激活线粒体损伤、诱导细胞毒性和凋亡。丁酸盐需要被控制在适宜浓度,最适浓度亟待进一步研究。在患有活动性炎症和已存在屏障缺陷的UC模型中,丁酸盐不能改善屏障的破坏。对此应重新了解丁酸盐对上皮屏障功能的影响。丁酸盐口服给药有望成为可能。
[1]Parada Venegas D, De la Fuente MK, Landskron G, et al. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases [J]. Front Immunol, 2019, 10: 277. DOI: 10.3389/fimmu.2019.00277.
[2]Kelly CJ, Zheng L, Campbell EL, et al. Crosstalk between microbiota-derived short-chain fatty acids and intestinal epithelial HIF augments tissue barrier function [J]. Cell Host Microbe, 2015, 17(5): 662-671. DOI: 10.1016/j.chom.2015.03.005.
[3]Yin J, Zhou C, Yang K, et al. Mutual regulation between butyrate and hypoxia-inducible factor-1α in epithelial cell promotes expression of tight junction proteins [J]. Cell Biol Int, 2020, 44(6): 1405-1414. DOI: 10.1002/cbin.11336.
[4]Zheng L, Kelly CJ, Battista KD, et al. Microbial-derived butyrate promotes epithelial barrier function through IL-10 receptor-dependent repression of claudin-2 [J]. J Immunol, 2017, 199(8): 2976-2984. DOI: 10.4049/jimmunol.1700105.
[5]Zhao Y, Chen FD, Wu W, et al. GPR43 mediates microbiota metabolite SCFA regulation of antimicrobial peptide expression in intestinal epithelial cells via activation of mTOR and STAT3 [J]. Mucosal Immunol, 2018, 11(3): 752-762. DOI: 10.1038/mi.2017.118.
[6]Dou XJ, Gao N, Lan J, et al. TLR2/EGFR are two Sensors for pBD3 and pEP2C induction by Sodium Butyrate independent on HDAC inhibition [J]. J Agric Food Chem, 2020, 68(2): 512-522. DOI: 10.1021/acs.jafc.9b06569.
[7]Schulthess J, Pandey S, Capitani M, et al. The short chain fatty acid butyrate imprints an antimicrobial program in macrophages [J]. Immunity, 2019, 50(2): 432-445. e7. DOI: 10.1016/j.immuni.2018.12.018.
[8]Jiminez JA, Uwiera TC, Abbott DW, et al. Butyrate supplementation at high concentrations alters enteric bacterial communities and reduces intestinal inflammation in mice infected with citrobacter rodentium [J]. mSphere, 2017, 2(4): e00243-17. DOI: 10.1128/mSphere.00243-17.
[9]Wang RX, Lee JS, Campbell EL, et al. Microbiota-derived butyrate dynamically regulates intestinal homeostasis through regulation of actin-associated protein synaptopodin [J]. Proc Natl Acad Sci U S A, 2020, 117(21): 11648-11657. DOI: 10.1073/pnas.1917597117.
[10]Isobe J, Maeda S, Obata Y, et al. Commensal-bacteria-derived butyrate promotes the T-cell-independent IgA response in the colon [J]. Int Immunol, 2020, 32(4): 243-258. DOI: 10.1093/intimm/dxz078.
[11]Chen GX, Ran X, Li B, et al. Sodium butyrate inhibits inflammation and maintains epithelium barrier integrity in a TNBS-induced inflammatory bowel disease mice model [J]. EBioMedicine, 2018, 30: 317-325. DOI: 10.1016/j.ebiom.2018.03.030.
[12]Arlauckas SP, Garren SB, Garris CS, et al. Arg1 expression defines immunosuppressive subsets of tumor-associated macrophages [J]. Theranostics, 2018, 8(21): 5842-5854. DOI: 10.7150/thno.26888.
[13]Ma ZC, Zhen Y, Hu C, et al. Myeloid-derived suppressor cell-derived arginase-1 oppositely modulates IL-17A and IL-17F through the ESR/STAT3 pathway during colitis in mice [J]. Front Immunol, 2020, 11: 687. DOI: 10.3389/fimmu.2020.00687.
[14]Ji J, Shu D, Zheng M, et al. Microbial metabolite butyrate facilitates M2 macrophage polarization and function [J]. Sci Rep, 2016, 6: 24838. DOI: 10.1038/srep24838.
[15]Baier J, Gänsbauer M, Giessler C, et al. Arginase impedes the resolution of colitis by altering the microbiome and metabolome [J]. J Clin Invest, 2020, 130(11): 5703-5720. DOI: 10.1172/JCI126923.
[16]Xiu WB, Chen QY, Wang Z, et al. Microbiota-derived short chain fatty acid promotion of Amphiregulin expression by dendritic cells is regulated by GPR43 and Blimp-1 [J]. Biochem Biophys Res Commun, 2020, 533(3): 282-288. DOI: 10.1016/j.bbrc.2020.09.027.
[17]Nastasi C, Fredholm S, Willerslev-Olsen A, et al. Butyrate and propionate inhibit antigen-specific CD8 T cell activation by suppressing IL-12 production by antigen-presenting cells [J]. Sc Rep, 2017, 7(1): 14516. DOI: 10.1038/s41598-017-15099-w.
[18]Zhang MM, Zhou LX, Wang YM, et al. Faecalibacterium prausnitzii produces butyrate to decrease c-Myc-related metabolism and Th17 differentiation by inhibiting histone deacetylase 3 [J]. Int Immunol, 2019, 31(8): 499-514. DOI: 10.1093/intimm/dxz022.
[19]Neumann C, Scheffold A, Rutz S. Functions and regulation of T cell-derived interleukin-10 [J]. Semin Immunol, 2019, 44: 101344. DOI: 10.1016/j.smim.2019.101344.
[20]Geng SJ, Cheng SS, Li Y, et al. Faecal microbiota transplantation reduces susceptibility to epithelial injury and modulates tryptophan metabolism of the microbial community in a piglet model [J]. J Crohns Colitis, 2018, 12(11): 1359-1374. DOI: 10.1093/ecco-jcc/jjy103.
[21]Yang WJ, Yu TM, Huang XS, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity [J]. Nat Commun, 2020, 11(1): 4457. DOI: 10.1038/s41467-020-18262-6.
[22]Gao J, Xu K, Liu HN, et al. Impact of the Gut Microbiota on Intestinal Immunity Mediated by Tryptophan Metabolism [J]. Front Cell Infect Microbiol, 2018, 8: 13. DOI: 10.3389/fcimb.2018.00013.
[23]Qiu J, Zhou L. Aryl hydrocarbon receptor promotes RORγt+ group 3 ILCs and controls intestinal immunity and inflammation [J]. Semin Immunopathol, 2013, 35(6): 657-670. DOI: 10.1007/s00281-013-0393-5.
[24]Monteleone I, Rizzo A, Sarra M, et al. Aryl hydrocarbon receptor-induced signals up-regulate IL-22 production and inhibit inflammation in the gastrointestinal tract [J]. Gastroenterology, 2011, 141(1): 237-248. e1. DOI: 10.1053/j.gastro.2011.04.007.
[25]Zhang FR, Wang W, Niu JK, et al. Heat-shock transcription factor 2 promotes sodium butyrate-induced autophagy by inhibiting mTOR in ulcerative colitis [J]. Exp Cell Res, 2020, 388(1): 111820. DOI: 10.1016/j.yexcr.2020.111820.
[26]Dou XJ, Gao N, Yan D, et al. Sodium butyrate alleviates mouse colitis by regulating gut microbiota dysbiosis [J]. Animals (Basel), 2020, 10(7): 1154. DOI: 10.3390/ani10071154.
[27]Li P, Wu M, Xiong WC, et al. Saikosaponin-d ameliorates dextran sulfate sodium-induced colitis by suppressing NF-κB activation and modulating the gut microbiota in mice [J]. Int Immunopharmacol, 2020, 81: 106288. DOI: 10.1016/j.intimp.2020.106288.
[28]Liu GW, Pang B, Li N, et al. Therapeutic effect of Lactobacillus rhamnosus SHA113 on intestinal infection by multi-drug-resistant Staphylococcus aureus and its underlying mechanisms [J]. Food Funct, 2020, 11(7): 6226-6239. DOI: 10.1039/d0fo00969e.
[29]Shin MY, Yong CC, Oh S. Lactobacillus brevis regulatory effect of bmb6 on gut barrier functions in experimental colitis [J]. Foods, 2020, 9(7): 864. DOI: 10.3390/foods9070864.
[30]van Soest APM, Hermes GDA, Berendsen AAM, et al. Associations between pro- and anti-inflammatory gastro-intestinal microbiota, diet, and cognitive functioning in dutch healthy older adults: the NU-AGE study [J]. Nutrients, 2020, 12(11): 3471. DOI: 10.3390/nu12113471.
[31]Martín R, Miquel S, Chain F, et al. Faecalibacterium prausnitzii prevents physiological damages in a chronic low-grade inflammation murine model [J]. BMC Microbiol, 2015, 15: 67. DOI: 10.1186/s12866-015-0400-1.
[32]Lenoir M, Martín R, Chadi S, et al. Butyrate mediates anti-inflammatory effects of Faecalibacterium prausnitzii in intestinal epithelial cells through Dact3 [J]. Gut Microbes, 2020, 12(1): 1-16. DOI: 10.1080/19490976.2020.1826748.
[33]Lloyd-Price J, Arze C, Ananthakrishnan AN. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases [J]. Nature, 2019, 569(7758): 655-662. DOI: 10.1038/s41586-019-1237-9.
[34]Fang WJ, Xue HL, Chen X, et al. Supplementation with sodium butyrate modulates the composition of the gut microbiota and ameliorates high-fat diet-induced obesity in mice [J]. J Nutr, 2019, 149(5): 747-754. DOI: 10.1093/jn/nxy324.
[35]Byndloss MX, Olsan EE, Rivera-Chávez F, et al. Microbiota-activated PPAR-g signaling inhibits dysbiotic Enterobacteriaceae expansion [J]. Science, 2017, 357(6351): 570-575. DOI: 10.1126/science.aam9949.
[36]Wang S, El-Fahmawi A, Christian DA, et al. Infection-induced intestinal dysbiosis is mediated by macrophage activation and nitrate production [J]. mBio, 2019, 10(3): e00935-19. DOI: 10.1128/mBio.00935-19.
[37]Yang Y, Li SQ, Qu Y, et al. Nitrate partially inhibits lipopolysaccharide-in duced inflammation by maintaining mitochondrial function [J]. J Int Med Res, 2020, 48(2): 300060520902605. DOI: 10.1177/0300060520902605.
[38]Han YS, Zhao QY, Tang CH, et al. Butyrate mitigates weanling piglets from lipopolysaccharide-induced colitis by regulating microbiota and energy metabolism of the gut-liver axis [J]. Front Microbiol, 2020, 11: 588666. DOI: 10.3389/fmicb.2020.588666.
[39]Jiao N, Wu ZL, Ji Y, et al. L-glutamate enhances barrier and antioxidative functions in intestinal porcine epithelial cells [J]. J Nutr, 2015, 145(10): 2258-2264. DOI: 10.3945/jn.115.217661.
[40]Wang XJ, de Carvalho Ribeiro M, Iracheta-Vellve A, et al. Macrophage-specific hypoxia-inducible factor-1α contributes to impaired autophagic flux in nonalcoholic steatohepatitis [J]. Hepatology, 2019, 69(2): 545-563. DOI: 10.1002/hep.30215.
[41]Fan CY, Han J, Liu XJ, et al. Modulation of hypoxia-inducible factor-1α/cyclo-oxygenase-2 pathway associated with attenuation of intestinal mucosa inflammatory damage by Acanthopanax senticosus polysaccharides in lipopolysaccharide-challenged piglets [J]. Br J Nutr, 2019, 122(6): 666-675. DOI: 10.1017/S0007114519001363.
[42]Nielsen DSG, Jensen BB, Theil PK, et al. Effect of butyrate and fermentation products on epithelial integrity in a mucus-secreting human colon cell line [J]. Journal of Functional Foods, 2018, 40: 9-17. DOI: 10.1016/j.jff.2017.10.023.
[43]Peng LY, He ZJ, Chen W, et al. Effects of butyrate on intestinal barrier function in a Caco-2 cell monolayer model of intestinal barrier [J]. Pediatr Res, 2007, 61(1): 37-41. DOI: 10.1203/01.pdr.0000250014.92242.f3.
[44]Vancamelbeke M, Laeremans T, Vanhove W, et al. Butyrate does not protect against inflammation-induced loss of epithelial barrier function and cytokine production in primary cell monolayers from patients with ulcerative colitis [J]. J Crohns Colitis, 2019, 13(10): 1351-1361. DOI: 10.1093/ecco-jcc/jjz064.
[45]Magnusson MK, Isaksson S, Öhman L. The anti-inflammatory immune regulation induced by butyrate is impaired in inflamed intestinal mucosa from patients with ulcerative colitis [J]. Inflammation, 2020, 43(2): 507-517. DOI: 10.1007/s10753-019-01133-8.
[46]Ferrer-Picón E, Dotti I, Corraliza AM, et al. Intestinal inflammation modulates the epithelial response to butyrate in patients with inflammatory bowel disease [J]. Inflamm Bowel Dis, 2020, 26(1): 43-55. DOI: 10.1093/ibd/izz119.
[47]Magnusson MK, Vidal A, Maasfeh L, et al. Impaired butyrate induced regulation of T cell surface expression of CTLA-4 in patients with ulcerative colitis [J]. Int J Mol Sci, 2021, 22(6): 3084. DOI: 10.3390/ijms22063084.
[48]Cleophas MCP, Ratter JM, Bekkering S, et al. Effects of oral butyrate supplementation on inflammatory potential of circulating peripheral blood mononuclear cells in healthy and obese males [J]. Sci Rep, 2019, 9(1): 775. DOI: 10.1038/s41598-018-37246-7.
[49]Li JT, Mu YM, Liu YW, et al. Effect of size and loading of retinoic acid in polyvinyl butyrate nanoparticles on amelioration of colitis [J]. Polymers (Basel), 2021, 13(9): 1472. DOI: 10.3390/polym13091472.