K-12 AI curricula: A mapping of government-endorsed AI curricula(Ⅱ)

2022-05-30 10:48
江苏科技报·E教中国 2022年16期
关键词:研讨会机器框架

Product by UNESCO (United Nations Educational, Scientific and Cultural Organization) 聯合国教科文组织

第一份关于K-12(学前教育至高中教育的基础教育阶段)人工智能课程全球状况的报告,意在开发有效的支持工具和框架来促进青少年人工智能素养的发展。

AI4K12: Five Big Ideas and K-12 AI Curriculum Guidelines

The AI4K12 Initiative was launched by the Association for the Advancement of Artificial Intelligence (AAAI), the Computer Science Teachers Association (CSTA), and AI4ALL in 2018 as a joint working group that seeks to develop national guidelines for teaching K–12 students about AI (AAAI, 2018).

This group brought together academics, researchers and teachers to work towards a comprehensive AI framework based on ‘five big ideas: 1) computers perceive the world using sensors; 2) agents maintain representations of the world and use them for reasoning; 3) computers can learn from data; 4) intelligent agents require many types of knowledge to interact naturally with humans; and, at the very centre, 5) AI can impact society in both positive and negative ways. The ‘Five Big Ideas in Artificial Intelligence poster resource has been translated into 15 languages to date, and formed at least part of the basis for the development of curricula in multiple contexts, including several of the curricula researched for this study.

The working group was convened to unpack each of these ideas into a curriculum framework divided into four parts, for grades K-2; 3-5; 6-8; and 9-12. To date, curriculum guidelines for the first three ‘big ideas have been drafted and are currently available for public comment.

In the guidelines, each ‘big idea is subdivided into learning concepts, which are further split into concept components. For example, the learning concepts, concept components for ‘Big Idea 1: Perception are summarized in the table below.

Table ‘Big Idea 1: Perception concepts and Concept components

The Machine Learning Education Framework

Although it never mentions competence-based education, the Machine Learning Education Framework (Lao, 2020) follows the well-known CBE framework of knowledge, skills and attitudes  CBE has in the past been criticized by some for its lack of attention to the meaning of the task for students and a reductionist view of competence which, while firmly rooted in the context of performance, is less sensitive to individual factors like prior experience and the flexibility to tap into external resources, e.g. the knowledge of teammates. However, the gradual integration of theories such as constructivism and experiential learning has resulted in a competence-based framework that focuses on ‘head, heart and hands, in which the ‘head represents the cognitive domain, the ‘heart represents the affective domain and ‘hands represent the psychomotor domain. This integration has also expanded the concept of competence to include social and emotional skills.

The Machine Learning Education Framework consists of six ‘minimally required courses for ML-engaged citizens, and is targeted to a ‘tinker/ consumer audience. In her framework, Lao makes the argument that understanding bias and the social implications of AI are fundamental requirements for all skills, also presents a rubric for evaluating ML learning programmes against this framework.

译文

AI4K12:五个大概念及K-12人工智能课程设计指导

AI4K12计划由人工智能促进协会(AAAI)、计算机科学教师协会(CSTA)和AI4ALL于2018年联合发出起,旨在制定关于教学K-12阶段学生人工智能的国家指南(AAAI,2018)。

该团队汇集了学者、研究人员和教师,致力于研发基于“五个大概念”的综合人工智能框架:1.计算机使用传感器感知世界;2.代理现实世界进行表示与推理,并将它们用于推理;3.计算机能从数据中学习;4.智能代理需要多种类型的知识才能与人类自然交互;5.从根本上讲,人工智能可以同时对社会产生积极和消极的影响。迄今为止,“人工智能中的五个大概念”报告资源已被翻译成15种语言,并构成了在多种背景下所开发课程的一部分基础,包括本研究中的几门课程。

研究工作组召开会议,尝试将每一个想法都分解为课程框架。课程框架一共分为四个部分,分别针对幼儿园至2年级、3至5年级、6至8年级和9至12年级。至今,前三个“大概念”的课程指南已经起草完成,目前可供公众评论。

在指南中,每个“大概念”都被再细分为学习概念,这些学习概念又被进一步细分为概念组件。例如,“大概念1:感知”的学习概念、概念组件总结在下表中。

表 “大概念1:感知”的学习

概念、概念组件

机器学习教育框架

尽管机器学习教育框架(由Lao 2020年提出)从未提及基于能力的教育,但它遵循了涵盖众所周知的知识、技能和态度的CBE框架。CBE过去曾受到一些批评,因为它缺乏对学生任务意义的关注和对能力的简化主义观点,虽然牢牢扎根于表现的背景下,但对个人因素(如先前的经验)和利用外部资源的灵活性(例如队友的知识)不那么敏感。然而,建构主义和体验式学习等理论的逐渐融合形成了一个以能力为基础的框架,其重点是“头、心和手”,其中“头”代表认知領域,“心”代表情感领域,“手”代表精神运动领域。这种整合还扩展了能力的概念,包括社交和情感技能。

机器学习教育框架由六门阶梯式课程教学目标组成。在这个框架内,Lao提出了一个论点,即机器学习系统偏见和人工智能的社会影响是所有技能的基本要求,她还提出了一个根据该框架评估机器学习教学计划的准则。

国际资讯

东非区域虚拟实验室研讨会启动

近日,COL 为来自肯尼亚、马拉维、坦桑尼亚、乌干达和赞比亚的教师们组织了一次关于在教育培训中使用虚拟实验室的区域研讨会,该研讨会旨在为教师们提供必要的技能。为期三天的东非区域实验室研讨会在内罗毕肯尼亚技术培训师学院(KTTC)主办,由教育部职业和技术培训部首席秘书 Margaret Mwakima 博士发起。

活动中,Margaret Mwakima 博士强调了虚拟实验室的巨大潜力,与物理实验室相比,虚拟实验室具有成本效益。印度Amrita University的 Krishnashree Achuthan 博士领导研讨会为促进团队创建支持教师以及评估学习的工具,用以纳入虚拟实验室。COL 的区域办事处(CEMCA,德里)已开始与Amrita University合作,后者是印度教育部建立大量虚拟实验室项目的国家牵头机构,以促进在亚洲举办一些支持教师的能力建设研讨会。这次面对面的研讨会由大学指定的三位专家来培训,来自五个国家的三十多名教师参与。

(英联邦网)

首届欧洲教育和创新峰会开幕

日前,由欧盟主办的首届欧洲教育和创新峰会召开。峰会讨论了各级教育对激发创造力、促进就业和培养创业能力的重要性,并围绕促进高等教育教学创新给出了指导意见。

欧盟委员会创新、研究、文化、教育和青年事务专员玛丽亚·加布里埃尔作主旨演讲并参与讨论。她概述了教育在各个阶段(从小学到高等教育)和相关就业市场中作为创新关键驱动力的桥梁作用。同时,她宣布了为加强教育与创新之间的联系而采取的新行动,其中包括创建欧洲创新高等教育机构网络。

(欧盟委员会)

猜你喜欢
研讨会机器框架
机器狗
机器狗
框架
广义框架的不相交性
阿来长篇小说《云中记》研讨会实录
未来机器城
王国钦《知时斋说诗》研讨会在北京召开
在齐越精神研讨会上的发言
WTO框架下
2016年国际云和可信计算研讨会