刘春雪
分类讨论思想是根据题目的特点和要求,把所有研究的问题分成若干类,转化成若干个小问题,按不同情况分类,然后再逐一进行讨论、求解的思想.分类讨论思想是解答复杂问题的重要工具,尤其对于一些结论不唯一,表示形式不唯一,含有参数的复杂问题,运用分类讨论思想求解最为有效.
运用分类讨论思想解题的步骤可以概括为以下几步:
1.明确研究的对象.仔细分析题意,明确哪些变量、参数可直接影响所求的结果,据此确定研究的对象.常见的研究对象有参数、自变量、绝对值内部式子、方程的根,函数的定义域、直线的位置、角度等.
2.明确分类标准.在确定了需要讨论的对象后,就可以选择合适的分类标准,按照其特征将所有可能会出现的情况全部罗列出来.常见的分类标准有概念、公式、定理的应用条件,代数式的意义,曲线的范围等.
3.逐级讨论.在分类后,原先的复杂、困难的问题已经被分为若干个简单、容易的子问题,把所有子问题逐个逐级进行解答,计算出结果即可.当子问题也无法解答时,需要对子问题进一步分类,并且依然要遵循分类标准统一的原则,分类时要做到不重复、不遗漏任何一种情况.
4.得出结论.最后需要将所有子问题的结果进行汇总,得到完整的结论.
下面举例说明.
例1.
对于集合中求参数的值和参数的取值范围问题,通常要运用分类讨论思想求解.往往需讨论集合中元素的取值,集合是否为空集,含参方程是否有解.只有明确参数的不同取值会导致哪些不同的结果,找到进行分类讨论的原因,才能确定问题研究的对象和分类原则,合理进行分类.
例 2.
含参函数问题主要有两种类型,一是由于函数的概念或性质的限制,需要分类讨论参数的取值或取值范围;二是当参数为函数的系数时,需对参数进行分类讨论,此时要根据函数图象及函数对应方程的判别式来确定分类討论的分界点.对于二次函数 y = ax2 +bx + c ,当二次项的系数 a > 0 时,二次函数图象的开口向上;当 a = 0 时,该函数为一次函数;当 a < 0 时,二次函数图象的开口向下.二次方程 ax2 + bx + c = 0 的判别式 ? 又决定了二次函数的零点的个数,如下表所示.因此,在讨论二次函数的零点时,可以分 ? > 0、= 0、< 0 三种情况来进行分类讨论.
例 3.
解答含参不等式问题,通常需要运用分类讨论思想对不等式的二次项系数以及一元二次不等式对应的方程的根来进行分类讨论.若含参一元二次不等式对应的方程存在两个根,则需要讨论两根的大小关系,进而确定解集.
例 4.
要求 |PF1||PF2|,需寻找满足|PF1|>|PF2|的条件,分两种情况讨论 Rt△PF1F2的直角所在的位置.解答几何问题,经常要讨论图形中点、直线、曲线的位置,图形的形状、角的取值范围等.
总之,对于某些不确定的数量、不确定图形的形状或位置、不确定的结论等,都需运用分类讨论思想,通过分类讨论,保证其完整性,使之具有确定性.分类讨论思想是解答含参集合问题、含参函数问题、含参不等式问题、含参解析几何问题、含参数列问题的重要工具.同学们要熟练掌握分类讨论思想的应用技巧和步骤,使复杂问题简单化.
(作者单位:哈尔滨师范大学教师教育学院)