赖锦,凡雪纯,黎雨航,赵鑫,刘士琛,刘小平,李栋,庞小娇,李红斌,罗瑀峰 1)油气资源与探测国家重点实验室(中国石油大学(北京)),北京,102249;中国石油大学(北京)地球科学学院,北京,102249;中石油浙江油田分公司勘探开发研究院,杭州,310023
内容提要: 通过岩芯、薄片、扫描电镜等岩石物理实验结合常规、成像以及核磁共振等测井资料,对苏北盆地古近系阜宁组阜二段页岩“七性关系”和“三品质”进行研究。结果表明阜二段页岩储集空间包括粒间孔、颗粒溶孔、晶间孔、有机质孔以及微裂缝,不同孔径孔隙含油性均较好。根据物性参数、孔隙空间建立了储层品质划分标准,由I类到Ⅳ类束缚水饱和度逐渐变大。阜二段烃源岩有机质类型好,TOC基本都大于1%,根据自然伽马能谱测井 K 含量和ΔlgR建立了TOC测井模型,并根据TOC大小实现烃源岩品质划分。地应力方向主要为北东—南西向,阜二段脆性指数基本都大于40%,可压裂性好,根据脆性指数实现工程品质划分。在“七性关系”研究基础上,通过对储层品质、烃源岩品质以及工程品质三者叠加完成了单井“甜点”段优选,甜点主要分布在泥脖子、七尖峰、四尖峰和上山字和中山字段,结果与试油资料相吻合。研究成果可为页岩油测井评价和甜点预测提供理论指导和技术支撑。
页岩油(广义)泛指蕴藏在富有机质页岩层系(包含页岩层系中的致密碳酸盐岩和碎屑岩夹层)中的石油资源(邹才能等,2015;金之钧等,2019;付金华等,2019;赵贤正等,2020)。狭义页岩油则指滞留于页岩层中尚未排出、相对原位存储的石油(赵贤正等,2020)。页岩油通常富集于有机质丰富的细粒沉积岩层系内,储层可为致密碎屑岩、碳酸盐岩和泥页岩,依靠常规开发技术难以开采,需通过压裂改造(邹才能等,2013;金之钧等,2019;付金华等,2019;杨智等,2021)。近年来,随着页岩油勘探开发理论和工程上的突破,页岩油在全球各个盆地获得广泛突破,如美国和加拿大交界处Williston盆地的巴肯页岩(Saidian and Prasad, 2015)、渤海湾盆地沧东凹陷孔店组孔二段(鄢继华等,2017;Guan Ming et al., 2020)、鄂尔多斯盆地延长组7段细粒沉积岩(邹才能等,2015;袁选俊等,2015;Lai Jin et al., 2016)、准噶尔盆地吉木萨尔凹陷二叠系芦草沟组(王小军等,2019;支东明等,2019;王剑等,2020)、苏北盆地古新统阜宁组阜二段(Liu Xiaoping et al., 2020)等,证实了页岩油具有巨大的资源勘探潜力(李晓光等,2019;邹才能等,2019;胡宗全等,2021)。
测井技术作为重要的技术手段在页岩油理论研究与勘探开发实践中发挥了不可替代的作用(蒋云箭等,2020;李宁等,2021)。众多专家学者针对页岩测井评价做了很多卓有成效的工作,在页岩层序地层(熊绍云等,2020)、岩相(匡立春等,2015;张超等,2017)、孔隙结构(Loucks et al., 2012)、裂缝识别(Lyu Wenya et al., 2016;吕文雅等,2021)、储层参数计算(张晋言,2012)、脆性指数(Lai Jin et al., 2015)、地层压力(钟淑敏等,2016)和源储配置关系(钟高润等,2016)等精细评价与测井表征取得系列成果。然而总体而言,非常规油气的快速兴起使得现今测井评价技术正面临不适应勘探开发对象的艰难时期(李浩等,2015;刘国强,2021;赖锦等,2021)。致密、页岩油气评价提出的“七性关系”(岩性、物性、电性、含油性、脆性、烃源岩特性和地应力各向异性)和“三品质”(烃源岩品质、储层品质和工程品质)评价使测井评价技术面临多重挑战和全新探索(李浩等,2015;刘国强,2021;赖锦等,2021)。勘探目标的转变以及技术需求的提高对测井评价技术提出了新的要求(李宁等,2020;蒋云箭等,2020),即由原来的常规储层“四性关系”研究逐渐转向非常规油气“七性关系”和“三品质”评价(赵政璋等,2012;闫伟林等,2014;蒋云箭等,2020;赖锦等,2021)。
然而目前缺乏一套可推广的针对页岩油的“七性关系”和“三品质”测井评价体系,本文基于以上研究现状和存在的问题,以苏北盆地古近系阜宁组阜二段典型狭义页岩油(Zhang et al., 2014)为例,首先分别阐明其岩性、物性、电性、含油性、脆性、烃源岩特性和地应力各向异性等七性特征,然后通过岩芯分析化验资料以及常规测井结合新技术测井资料实现页岩“七性关系”测井表征;在此基础上分别建立页岩油“三品质”分类标准与对应测井评价体系。以期为页岩油测井评价提供了新思路和新方法,并为非常规油气测井评价体系提供理论依据与技术示范。
苏北盆地是在白垩系基底之上形成的中新生代断陷湖盆,行政区划上属于安徽和江苏地界,并向东延伸入黄海,其面积约3.5×104km2(Qiao Xiaojuan et al., 2012;Quaye et al., 2019;李维等,2020)。苏北盆地构造演化可以分为3个阶段:早期拉伸断裂阶段、晚期断陷阶段以及坳陷阶段(Liu Chao et al., 2016)。形成现今的近东西向“一隆两坳”构造格局:盐阜坳陷、建湖隆起、东台坳陷(图1)(骆卫峰等,2018)。钻孔揭示苏北盆地中新生代沉积物厚度可达7000 m,发育地层包括上白垩统泰州组(K2t),古近系阜宁组(E1f)、戴南组(E2d)和三垛组(E2s)以及新近系盐城组(N2y)和第四系东台组(Qd)(Chen Liqiong, 2009;Qiao Xiaojuan et al., 2012;Liu Chao et al., 2016;李维等,2020)。
图1 苏北盆地构造带划分图(据Zhang et al., 2014; Liu Jingshou et al., 2018;王旭影和姜在兴,2021修改)Fig. 1 Tectonic location and units of Subei Basin (modified from Zhang et al., 2014; Liu Jingshou et al., 2018;Wang Xuying and Jiang Zaixing,2021&)
阜宁组自下而上可以划分为4段,即阜一—阜四段(E1f1—E1f4)(Qi Kun et al., 2018)。其中,阜一段和阜三段沉积以河流—三角洲相为主,其岩性主要为砂岩、粉砂岩;而阜二段和阜四段以湖泊相深灰色泥页岩为主,是苏北盆地广泛发育的烃源岩层(Qi Kun et al., 2018;王旭影和姜在兴, 2018;彭金宁等,2020;Liu Xiaoping et al., 2020)。近年来随着“进源找油”理论的革新以及水平井钻井、体积压裂等技术的进步,该套烃源岩层也逐渐成为产油的目的层并受到广泛关注(Cheng Qingsong et al., 2019;Liu Xiaoping et al., 2020)。目前在苏北盆地金湖凹陷和高邮凹陷钻遇的阜宁组(阜二段和阜四段)泥页岩层系200余井中见油气显示,试油有4 口井累计产油在1000 t以上,显示了优越的页岩油聚集条件和良好的油气勘探前景(段宏亮等,2020;付茜等,2020)。
岩性的识别与划分是进行页岩油甜点评价预测、探井部署的基础(赵贤正等,2017)。阜二段页岩主要形成于相对低能环境的深湖、半深湖沉积环境,且其细微的沉积环境以及沉积物来源变化也造成沉积构造、矿物组分特征等具有明显差异(李维等,2020;付茜等,2020)。结合现场岩芯描述、薄片鉴定和XRD分析,确定阜宁组阜二段岩性主要是灰黑色页岩(图2a—c)、(灰质)泥页岩(图2d—f;图2g—i)、云质或粉砂质泥岩等(图2j—l;图2m—o)(Cheng Qingsong et al., 2019; Liu Xiaoping et al., 2020)。XRD全岩分析表明主要矿物组成包括石英、长石、碳酸盐颗粒和黏土矿物(伊利石和伊蒙混层)以及黄铁矿(Liu Xiaoping et al., 2021)。
氦气孔隙度以及脉冲渗透率分析表明阜二段页岩油储层孔隙度介于0.18%~7.82%,平均仅2.14%,渗透率平均0.13×10-3μm2,分布在0.000002至 11.73×10-3μm2之间(Liu Xiaoping et al., 2020)(图3a)。核磁共振T2谱分布基本表现为单峰状,部分T2谱存在拖尾现象(图3b)。说明其孔喉体系以细小的相对连续的孔隙空间为主,较少大孔径粒间孔等(图3b)。
Loucks 等(2009,2012)研究指出页岩油孔隙空间基本为纳米级,且其孔隙类型包括粒间孔、粒内孔、有机质孔和微裂缝(Liu Xiaoping et al., 2021)。除微裂缝外,因此基于光学显微镜的铸体薄片难以探测到页岩油储层中的不同孔隙类型(图2),扫描电镜在形貌及连通性等探测方面作用凸显(Zhang Pengfei et al., 2018)。扫描电镜观察表明阜二段纳米级孔隙广泛发育,包含(1)无机成因孔隙,如颗粒(石英、长石和碳酸盐颗粒)粒间孔(图3c)、粒内(长石和白云石颗粒)溶孔(图3d)、矿物(黏土矿物和白云石)晶间孔(图3e,3f);(2)有机成因孔隙如有机质孔(图3g);(3)微裂缝(图3h)(Liu Xiaoping et al., 2020)。
页岩油微观含油性由孔隙类型及其组合特征以及矿物润湿性决定(Xi Kelai et al., 2019;Zhao Xianzheng et al., 2019;Liu Xiaoping et al., 2020)。荧光薄片视域下可见阜二段页岩全尺度孔隙均含油,矿物颗粒如长石、白云石等边缘发暗蓝或亮蓝色荧光(图4a,b),长石以及亲油性白云石颗粒内部溶蚀形成的粒内孔隙暗蓝或亮蓝色荧光特征呈分散状分布(图4a,b)(Liu Xiaoping et al., 2020)。部分陆源黏土矿物内部以及有机质内部也有分散蓝色荧光特征(图4c,d),此外,未被充填的微裂缝暗色荧光特征也很明显(图4e,f)。事实上,页岩油储层中哪怕孔径最小的有机质孔,由于其亲油性,往往也是含油的(Loucks et al., 2009; Li Maowen et al., 2019)。
图4 苏北盆地阜宁组二段不同孔隙微观含油性特征Fig. 4 Oil-bearing property of various pore spaces of the Second Member of the Paleogene Funing Formation in Subei Basin(a) 石英、白云石矿物颗粒分散分布,见生物碎屑,发育一条裂缝,Ji-19井,3828.5 m;(b)矿物颗粒边缘分散暗蓝色荧光特征,a视域荧光照片;(c) 成分主要为陆源黏土矿物(泥质),微晶方解石,有机质分散分布,发育微裂缝,Ji-19井,3847 m;(d) 陆源黏土发斑点状蓝色荧光,有机质内部荧光呈分散状,c视域荧光照片;(e) 石英长石等分散分布,有机物分散分布,发育一条微裂缝,Ji-19井,3833 m;(f) 有机质荧光呈斑点状,微裂缝边缘含油,发暗蓝色荧光,e视域荧光照片(a) quartz, dolomite mineral particles are scattered distributed, and containing bioclasts, there is a microfracture, the Well Ji-19, 3825.5 m; (b) the edges of particle emit blue fluorescences, the same filed view of a under ultraviolet (UV) light; (c) the composition is dominantly detrital clay (mudrocks), microcrystalline calcite, and the organic matters are scattered distributed, there is a microfracture, the Well Ji-19, 3847 m; (d) the detrital clay emit scattered blue fluorescences, and there are scattered blue fluorescences in organic matters, the same filed view of c under ultraviolet (UV) light; (e) the quartz and feldspare as well as the organic matters are scattered distributed, and there is a micro-fracture, the Well Ji-19, 3833 m; (f) there are scattered blue fluorescences in organic matters, the edges of the microfractures are fluorescent (dark blue), he same filed view of e under ultraviolet (UV) light
页岩电测响应表现出明显的高伽马(>60 API)、高中子(>15%)、高声波时差(>250 μs/m)、低密度(<2.55 g/cm3)、高电阻率的特征(图6)。含油性好的页岩层段又表现出特定的响应,即相对低伽马、高电阻率、深浅电阻率存在幅度差、核磁共振T2谱分布范围宽,且存在一定的拖尾现象。而相对不含油的页岩层段表现为相对高伽马、低电阻率(深浅电阻率基本重合)、高Pe值(>5 b/e)、高密度和低声波时差的特征(图6)(Liu Xiaoping et al., 2020)。
评价烃源岩特性通常依赖地球化学分析测试方法,获得其中有机质类型、有机质丰度和成熟度等参数,其中的有机质丰度常用总有机碳含量(TOC)来表征(杨涛涛等,2013;Zhao Xianzheng et al., 2019)。但受到分析样品数量和成本的限制,单井纵向上连续评价TOC的工作通常难以开展,因此利用纵向分辨率高、连续性好的测井资料势在必行(王贵文等,2002;杨涛涛等,2013)。Schmoker(1981)利用对烃源岩有机碳响应比较灵敏的自然伽马、密度和声波时差等曲线建立了烃源岩定性识别方法。Passey等(1990)提出了基于声波时差和电阻率曲线相叠合的ΔlgR方法进行TOC测井计算(Passey et al., 1990),此后国内外学者在此基础上提出了基于不同电测响应具有不同适应性的TOC测井评价模型,并取得了广泛应用(王贵文等,2002;朱光有等,2003;Zhao Peiqiang et al., 2016;Shalaby et al., 2019;Godfray and Seetharamaiah, 2019)。
ΔlgR=lg(R/R基线)+0.02(Δt-Δt基线)
(1)
TOC=ΔlgR×10(2.297-0.1688LOM)
(2)
式(1)和(2)中,ΔlgR为声波和电阻率曲线分异幅度,它包含了岩石属性和烃源岩特性,R为测井(深)电阻率,Ω·m;Δt为实测声波时差,μs/ft (1 ft=30.48 cm);R基线和Δt基线为声波和电阻率基线对应的电阻率(Ω·m)和声波时差值(50 μs/ft)。LOM为热变指数,是指示有机质成熟度的参数,与镜质体反射率(Ro)对应的常数。
实际操作过程中将声波时差(线性刻度)和电阻率测井曲线(对数刻度)叠合时通常每50 μs/ft(164 μs/m)声波时差对应一个对数电阻率刻度(如电阻率从1~10 Ω·m),在非烃源岩段两条曲线将重叠(基线处),而在二者分异处,即为烃源岩段,且分异幅度越大,一般指示有机质含量越丰富。当然实际操作过程中还需利用自然伽马曲线等识别剔除蒸发岩、火成岩、致密层段或井壁垮塌严重层段(石玉江等,2012)。
考虑到ΔlgR方法要找基线,可能存在误差,而研究表明自然伽马能谱测井能分别得到地层中铀元素、钍元素以及钾元素含量,因此也可利用自然伽马能谱测井可对烃源岩有机质丰度进行定量评价(陆巧焕等,2006)。本次研究发现其TOC含量与K元素具有良好的相关性(图5),故本论文对于采集了自然伽马能谱测井的井采用自然伽马能谱测井K元素对TOC进行定量评价,而没有采集自然伽马能谱测井的井则采取ΔlgR方法进行TOC测井计算。
图5 自然伽马能谱测井K含量与实测TOC交会图Fig. 5 Crossplot diagram of K element of natural gamma ray spectrum and the measured TOC
页岩油储层致密,非均质性较强,要采取压裂改造等才能获得工业油流,因此岩石脆性评价对优选压裂增产层段至关重要(高辉等,2018)。针对非常规油气储集层而言,岩石脆性一般定义是其发生破裂前的瞬态变化难易程度,间接反映的是储层经压裂改造后所形成裂缝的复杂程度,一般可通过脆性指数来定量表征(袁俊亮等,2014;孙建孟等,2015;Avanzini et al., 2016;赖锦等,2016;Iqbal et al., 2018)。通常脆性高的层段可压裂性越好,在压裂作业中能够迅速形成复杂的网状裂缝,有利于油气开发(Guo Tiankui et al., 2015;赖锦等,2016;Iqbal et al., 2018;刘可禹和刘畅,2019)。脆性指数的计算方法可分为3种,一是基于岩石力学参数的泊—杨法(泊松比、杨氏模量法)(式3、式4、式5);二是基于脆性矿物(石英、长石、碳酸盐等)含量计算矿物成分比值法(式6、式7);三是地区经验公式法(Jarvie et al., 2007;Lai Jin et al., 2015;赖锦等,2016;Iqbal et al., 2018;Zhao Xianzheng et al., 2019)。通常脆性矿物含量越高,将导致岩石力学参数中的泊松比减小而杨氏模量增大(Kumar et al., 2018),因此矿物组分法和泊松比—杨氏模量法二者紧密相连,矿物组分是岩石力学特征的物质基础与内因,岩石力学参数则是脆性的外在表现形式(董宁等,2013;赖锦等,2016)。
(3)
(4)
(5)
(6)
(7)
式中,BI为脆性指数,%;Qz为石英含量;Car为碳酸盐含量;Fels为长石含量;Clay为黏土总量。E为岩石的杨氏模量,GPa;ν为岩石泊松比,无量纲;下标min和max分别代表该参数在某个地层段内的最小值和最大值。BIE和BIν分别为通过杨氏模量和泊松比所计算的脆性指数。
本次研究采取了泊松比—杨氏模量法计算脆性指数,计算结果表明,脆性指数介于20%~80%(图6)。
地应力是深度、岩性、孔隙压力、结构和构造的综合反映(唐振兴等,2019)。各向异性为岩石固有属性,通常可以通过正交偶极测井提取地层各向异性参数,并结合成像测井进行最大水平地应力方向判别、裂缝评价、水力压裂和射孔方案设计(赵军等,2005;魏周拓等,2012)。其中地应力各向异性评价在非常规油气井网布置、钻完井设计、压裂改造、井壁稳定性分析中起着举足轻重的作用(赵军等,2005;刘建伟等,2016;孟宪波等,2019)。地应力方向可通过成像测井拾取诱导缝和井壁崩落方位进行判别,二者分别指示现今最大和最小水平主应力方向(Lai Jin et al., 2018;Stadtmuller et al., 2018)。此外,在三轴应力(垂向、水平最大、水平最小应力)不均衡的各向异性地层中,横波传播时将分裂成快慢横波(横波分裂),且横波在最大水平主应力方向上传播速度最快,因此通过阵列声波测井提取快慢横波方位也可以进行地应力方位拾取(陆黄生,2012;Lai Jin et al., 2019)。Schlumberger的偶极声波DSI和Baker Hughes的多极子声波XMAC均可用于横波方向的提取,同时可提供或计算①纵、横波速度;②岩石力学参数;③岩石破裂压力、地层压力、最大最小水平主应力(陆黄生,2012;Lai Jin et al., 2017;Iqbal et al., 2018)。
本次研究通过DSI提取的地层各向特征表明,单井水平最大主应力方向垂向上不断变化,但总体优势方位为北东—南西方向,偶见近东西向水平最大主应力方向(图6)。
20世纪60年代,大庆油田基于电测井序列,针对常规油气储集层,率先提出了“四性关系”(岩性、物性、含油性和电性)为依托的地层评价方法(孙建孟等,2013)。如今得益于非常规油气地质理论以及压裂改造工艺等技术的进步,致密油气、页岩油气逐渐成为勘探开发的重要目标(付金华等,2019)。勘探目标的转变以及技术需求的提高对测井评价技术提出了新的要求,即由原来的“四性关系”研究逐渐转向“七性关系”研究,因此亟需提取相关测井属性和信息,提供测井识别精度和扩展测井评价广度。当前针对非常规油气储集层,只有以大量高精度岩石物理实验为依托,刻度常规、成像和核磁等多尺度测井评价序列,建立全井段取芯、多序列测井的铁柱子井,才能实现非常规油气储集层“七性关系”综合评价(唐振兴等,2019)。如准噶尔盆地吉木萨尔凹陷芦草沟组页岩油吉174井(匡立春等,2015)、鄂尔多斯盆地延长组长7段页岩油的城96井(冉冶等,2016)以及准噶尔盆地玛湖凹陷风城组页岩玛页1井(Wang Song et al., 2021)等。
“铁柱子井”的岩石物理含义即是建立一口取芯和分析化验资料较全,同时测井采集序列也配套的标杆井,建立测井信息与地质信息的桥梁,明确甜点段在测井信息上的响应特征,后续的新井解释都可在“铁柱子井”指导下进行。铁柱子井的建立可为非常规致密、页岩油气测井评价搭建了测井和地质研究的桥梁,并可指导其他单井“七性关系”研究和“三品质”评价工作(匡立春等,2015)。本文通过综合研究,即实现了从岩性、物性、含油性、电性到脆性、烃源岩特性和地应力各向异性的Ji-19井铁柱子建立(图6)。
铁柱子研究表明电性是岩性、物性和含油性的综合响应,阜二段最顶部的泥脖子段表现出典型的高伽马、低电阻的特征,为典型泥岩层。其孔隙度较低(3%~4%),测井计算TOC(1.5%~2.5%)和脆性指数均较低(<40%),代表了岩性对其他六性的控制。而王八盖段以及下伏的七尖峰和四尖峰段为典型云质页岩的低伽马高电阻率的特征,测井计算和实测TOC均较高,实测和计算的孔隙度也较高,源岩和储层叠置发育,因此其为典型的好储集层和烃源岩层(图6)。上山子、中山子和下山子段也为典型的烃源岩与储集层叠置发育段,其中的高伽马、高电阻层段为好烃源岩层,而低伽马、中—高电阻,且深浅电阻率明显具有分异特征的层段,则为储集层发育层段,通常也对应脆性较高层段(图6)。总体上,Ji-19井单井地应力各向异性特征较强,可以看到,水平最大主应力方向垂向上不断旋转变化,但总体以近北东—南西方向为主(图6)。
针对非常规油气的“三品质”评价包括烃源岩品质评价、储层品质评价和工程品质评价。其中,烃源岩品质对应资源甜点区、储层品质对应物性甜点区,工程品质对应工程甜点区(张鹏飞等,2019)。“三品质”评价是非常规油气评价的重中之重,可以此为基础优选出致密油气物性和工程“甜点”分布(闫伟林等,2014;唐振兴等,2019;李晓光等,2019;付锁堂等,2020;王小军等,2019;匡立春等,2021)。
4.1.1烃源岩品质
烃源岩品质评价主要依托七性关系研究中的烃源岩特性。烃源岩品质决定了油气的富集程度,因此烃源岩评价是基础(杜江民等,2016)。苏北盆地阜二段烃源岩有机质类型好,以Ⅰ型和Ⅱ型有机质为主,有机质丰度高,测井TOC计算可以看出阜二段TOC基本都大于1%,由此根据烃源岩分类标准将研究区阜二段烃源岩划分为3种类型,其中好的烃源岩其TOC含量大于2%,中等烃源岩TOC含量1%~2%,差烃源岩TOC含量小于1%。
4.1.2储层品质
储层品质评价“岩性”、“物性”、“电性”和“含油性”(尹成芳等,2017)。本文选取页岩储层孔隙结构特征作为研究区阜二段页岩储层有效性的主要影响参数进而对页岩储层有效性进行研究。基于岩芯、薄片、扫描电镜分析基础上,将研究区阜二段储层孔隙结构根据毛管曲线及其参数、核磁共振T2谱以及不可动流体体积参数BVI(束缚水饱和度)将储层类型划分为四类(表1)(Liu Xiaoping et al., 2020)。同时核磁共振测井可提供核磁孔隙度、束缚水饱和度等参数(Lai Jin et al., 2020;Wang Guiwen et al., 2020),因此可用于储层类型划分。
其中,I类对应储层孔隙度>4%,渗透率大于0.02×10-3μm2,核磁孔隙度最高可达6%,存在一定的基质孔隙,部分发育粒间孔和微裂缝,流体可动性好,束缚水饱和度值相对较低(<75%)(表1)。
Ⅱ类对应储层孔隙度2%~4%,渗透率0.002×10-3μm2~0.02×10-3μm2,具有黏土矿物晶间孔和颗粒溶蚀孔形成的复杂孔隙结构特征,晶间孔主要形成于自生黏土矿物中,颗粒溶蚀孔主要为长石、白云石颗粒遭受溶蚀形成的不规则和锯齿状孔隙。核磁孔隙度可达5%以上,具有中等束缚水饱和度值(表1)。
Ⅲ类主要由有机质孔、粒内溶孔以及粒间孔构成,孔隙结构复杂,对应储层孔隙度1%~2%,渗透率0.0001×10-3μm2~0.01×10-3μm2,束缚水相对较高(表1)。
表1 苏北盆地古近系阜二段储层类型划分表Table 1 Reservoir type classification of the Second Member of the Funing Formation in Subei Basin
Ⅳ类对应的孔隙度<1%,渗透率<0.0001×10-3μm2,孔隙类型主要为有机质孔,虽然有机质孔较为
发育,但其连通性较差,导致该孔隙结构类型具有较高束缚水饱和度值,难以成为有利储层(表1)。
4.1.3工程品质
工程品质评价主要指“脆性”和“地应力和各向异性”的评价(尹成芳等,2017)。工程品质评价最终的目的是评价储层的脆性、可压裂性(覃豪和杨小磊,2019)。工程甜点区位于地应力较低、脆性较强层段(高辉等,2018)。前已述及,Ji-19井最大水平主应力方向主要为北东—南西向,而计算的脆性指数基本都大于40%,整体脆性指数较高。根据脆性指数来对页岩工程品质进行分类,其中I类工程甜点区脆性指数>60%,Ⅱ类工程甜点区则脆性介于40%~60%,Ⅲ类则脆性指数小于40%层段。
页岩油有利区既是资源甜点区、物性甜点区,又是工程甜点区(Avanzini et al., 2016;张鹏飞等,2019)。其中页岩油“三品质”评价中,烃源岩品质对应资源甜点区、储层品质对应物性甜点区,工程品质对应工程甜点区(Zhao Xianzheng et al., 2019)。对单井页岩油甜点评价而言,物性甜点和工程甜点的优选尤为重要(付锁堂等,2020)。在以上“七性关系”铁柱子井建立的基础上,对于研究区其他单井,即可实现其“三品质”测井评价以及可依托“三品质”特征实现其甜点发育区带优选(Kumar et al., 2018)。
烃源岩品质可通过ΔlgR法和自然伽马能谱统计回归法评价TOC,从而寻找优质烃源岩,确定资源甜点区带(张鹏飞等,2019;付金华等,2019;付锁堂等,2020)。储层品质评价核心为宏观物性参数和微观孔隙结构,可依托常规孔隙度测井和核磁共振测井T2谱来确定物性甜点区带(付金华等,2019;李晓光等,2019;付锁堂等,2020)。工程品质定量评价,基于阵列声波测井以及矿物组分比值法(元素俘获测井)计算岩石脆性指数,并依托成像和阵列声波测井实现地应力各向异性特征(包括现今最大水平主应力方向)的提取,确定工程甜点区带,为压裂设计优化提供技术支持(Iqbal et al., 2018;王小军等,2019;付金华等,2019;李晓光等,2019;付锁堂等,2020)。
通过自然伽马能谱测井计算的TOC,实现了吉10井单井烃源岩品质识别与划分,可以看到,好烃源岩段主要位于泥脖子、七尖峰和四尖峰段,为页岩油富集提供资源甜点(图7)。通过测井计算孔隙度以及核磁共振T2谱特征,确定了好的储集层段主要对应特征为测井解释孔隙度较高,同时具备较宽的核磁共振T2谱,甚至部分层段还存在拖尾现象。此外,高分辨率阵列感应测井(M2R1—M2Rx系列测井)往往具备明显的分异现象,即深浅电阻率具备明显的曲线幅度差(图7)。通过测井计算的脆性指数实现了工程品质的划分,有利的工程甜点发育段往往对应脆性指数较高的层段(图7)。
研究表明,页岩油物性“甜点”和工程“甜点”的有效结合体通常对应页岩油发育层段(蒋云箭等,2020;付锁堂等,2020)。通过储层品质和工程品质相耦合,最终划分出Ji 10井单井3个甜点(物性和工程甜点相叠加)发育段,主要分布在泥脖子、七尖峰、四尖峰和上山字和中山字段(图7)。优选出的物性和工程甜点段与实际试油资料吻合较好,王八盖地层、七尖峰和四尖峰三小层合试,日产油12.23 m3,累产油123.52 m3,证实了三品质划分结果的准确性(图7)。因此通过在“七性关系”研究的基础上,建立“三品质”的测井识别与评价标准,最终通过单井“三品质”划分优选页岩油甜点方法切实可行。
图7 苏北盆地古近系阜二段Ji 10单井“三品质”测井评价Fig. 7 Three property division of the Well Ji-10 of the Second Member of Paleogene Funing Formation in Subei Basin
苏北盆地古近系阜二段岩性主要是灰黑色页岩、(灰质)泥页岩、云质或粉砂质泥岩等,储集空间包括粒间孔、颗粒溶孔、晶间孔、有机质孔以及微裂缝,荧光薄片表明不同类型和不同孔径孔隙含油性均较好。核磁共振T2谱分布基本表现为单峰状,且很少出现拖尾现象。说明其孔喉体系以细小的相对连续的孔隙空间为主,较少或缺失大孔径粒间孔等。测井曲线上页岩表现为高伽马(>60 API)、高中子(>15%)、高声波时差(>250 μs/m)、低密度(<2.55 g/cm3)、高电阻率的特征。根据自然伽马能谱测井和ΔlgR建立了TOC测井模型,结果表明阜二段烃源岩有机质类型好,TOC基本都大于1%。根据泊松比—杨氏模量法计算脆性指数,结果表明脆性指数介于20%~80%。阵列声波测井提取的地应力各向异性特征表明,单井水平最大主应力方向垂向上不断变化,但总体优势方位为北东—南西方向。最终建立了包含岩性、物性、电性、含油性、脆性、烃源岩特性和地应力各向异性“七性关系”特征的铁柱子井。
根据TOC大小实现烃源岩品质划分,根据脆性指数实现工程品质划分。然后根据物性参数结合核磁共振T2谱建立了储层品质划分标准。在“七性关系”研究基础上,通过对储层品质、烃源岩品质以及工程品质三者叠加完成了单井“甜点”段优选,结果表明单井甜点主要分布在泥脖子、七尖峰、四尖峰和上山字和中山字段,结果与试油资料相吻合。在“七性关系”研究基础上,通过建立“三品质”的测井识别与评价标准,可基于单井“三品质”划分优选页岩油甜点。研究结果可为页岩油甜点综合评价和预测提供理论指导和方法支撑。
致谢:感谢中国石油浙江油田分公司勘探开发研究院提供的资料支持,同时部分测井解释成果为中国石油集团测井有限公司所提供,对他们所做的工作全体作者在此表示衷心感谢!
(The literature whose publishing year followed by a “&” is in Chinese with English abstract; The literature whose publishing year followed by a “#” is in Chinese without English abstract)
段宏亮, 刘世丽, 付茜. 2020. 苏北盆地古近系阜宁组二段富有机质页岩特征与沉积环境. 石油实验地质, 42(4): 612~617.
董宁, 许杰, 孙赞东, 路青, 周刚, 刘致水. 2013. 泥页岩脆性地球物理预测技术. 石油地球物理勘探, 48(增刊1): 69~74.
杜江民, 张小莉, 钟高润, 封从军, 郭岭, 张晓龙, 罗文行. 2016. 致密油烃源岩有机碳含量测井评价方法优选及应用——以鄂尔多斯盆地延长组长7 段烃源岩为例. 地球物理学进展, 31(6) : 2526~2533.
付茜, 刘启东, 刘世丽, 段宏亮. 2020. 苏北盆地高邮凹陷古近系阜宁组二段页岩油成藏条件分析. 石油实验地质, 42(4): 625~631.
付金华, 牛小兵, 淡卫东, 冯胜斌, 梁晓伟, 辛红刚, 尤源. 2019. 鄂尔多斯盆地中生界延长组长7段页岩油地质特征及勘探开发进展. 中国石油勘探, 24(5): 601~614.
付锁堂, 付金华, 牛小兵, 李士祥, 吴志宇, 周新平, 刘江艳. 2020. 庆城油田成藏条件及勘探开发关键技术. 石油学报, 41(7): 777~795.
高辉, 张晓, 何梦卿, 徐创朝, 窦亮彬, 朱耿博仑, 李宇. 2018. 基于测井数据体的页岩油储层可压裂性评价研究. 地球物理学进展, 33(2): 603~612.
胡宗全, 郑伦举, 申宝剑, 陈刚, 刘忠宝. 2021. 非常规与常规统一的含油气系统之初探. 地质论评, 67(4): 1007~1020.
蒋云箭, 刘惠民, 柴春艳, 辛忠斌. 2020. 页岩油油气可动性测井响应特征分析及应用. 油气地质与采收率, 27(5): 1~9.
金之钧, 白振瑞, 高波, 黎茂稳. 2019. 中国迎来页岩油气革命了吗? 石油与天然气地质, 40(3): 451~458.
匡立春, 王霞田, 郭旭光, 常秋生, 贾希玉. 2015. 吉木萨尔凹陷芦草沟组致密油地质特征与勘探实践. 新疆石油地质, 36(6): 629~634.
匡立春, 侯连华, 杨智, 吴松涛. 2021. 陆相页岩油储层评价关键参数及方法. 石油学报, 42(1): 1~14.
赖锦, 王贵文, 范卓颖, 陈晶, 王抒忱, 周正龙, 范旭强. 2016. 非常规油气储层脆性指数测井评价方法研究进展. 石油科学通报, 3: 330~341.
赖锦, 王贵文, 庞小娇, 韩宗晏, 李栋, 赵仪迪, 王松, 江程舟, 李红斌, 黎雨航. 2021. 测井地质学前世今生与未来——写在《测井地质学·第二版》出版之时. 地质论评, 67(6): 1804~1828.
李浩, 刘双莲, 王丹丹, 谭承军, 赵连水. 2015. 我国测井评价技术应用中常见地质问题分析. 地球物理学进展, 30(2): 776~782.
李宁, 闫伟林, 武宏亮, 郑建东, 冯周, 张兆谦, 王克文, 王敬岩. 2020. 松辽盆地古龙页岩油测井评价技术现状、问题及对策. 大庆石油地质与开发, 39(3): 117~128.
李宁, 徐彬森, 武宏亮, 冯周, 李雨生, 王克文, 刘鹏. 2021. 人工智能在测井地层评价中的应用现状及前景. 石油学报, 42(4): 508~522.
李维, 朱筱敏, 段宏亮, 李鹤永, 刘世丽. 2020. 苏北盆地高邮—金湖凹陷古近系阜宁组细粒沉积岩纹层特征与成因. 古地理学报, 22(3): 469~482.
李晓光, 刘兴周, 李金鹏, 田志. 2019. 辽河坳陷大民屯凹陷沙四段湖相页岩油综合评价及勘探实践. 中国石油勘探, 24(5): 636~648.
刘可禹, 刘畅. 2019. “化学-沉积相”分析: 一种研究细粒沉积岩的有效方法. 石油与天然气地质, 40(3): 491~503.
刘国强. 2021. 非常规油气勘探测井评价技术的挑战与对策. 石油勘探与开发, 48(5): 891~902.
刘建伟, 张云银, 曾联波, 高秋菊, 耿雪. 2016. 非常规油藏地应力和应力甜点地球物理预测——渤南地区沙三下亚段页岩油藏勘探实例. 石油地球物理勘探, 51(4): 792~800.
陆黄生. 2012. 测井技术在石油工程中的应用分析与发展思考. 石油钻探技术, 40(6): 1~7.
陆巧焕, 张晋言, 李绍霞. 2006. 测井资料在生油岩评价中的应用. 测井技术, 30(1): 80~83+100.
骆卫峰, 余文端, 马晓东, 周韬, 刘欣. 2018. 苏北盆地海安凹陷南部岩性油藏勘探成果及启示. 中国石油勘探, 23(3): 56~63.
吕文雅, 曾联波, 陈双全, 吕鹏, 董少群, 惠晨, 李睿琦, 王浩南. 2021. 致密低渗透砂岩储层多尺度天然裂缝表征方法. 地质论评, 67(2): 543~556.
孟宪波, 徐佑德, 张曰静, 商丰凯, 李静, 孙鲁宁, 郑海东. 2019. 多场耦合作用下致密储层地应力场变化规律研究——以准噶尔盆地某区为例. 地质力学学报, 25(4): 467~474.
覃豪, 杨小磊. 2019. 致密储层脆性测井解释方法研究. 测井技术, 43(5): 509~514.
彭金宁, 邱岐, 王东燕, 李志明, 朱建辉, 梁世友, 武英利. 2020. 苏北盆地古近系阜宁组致密油赋存状态与可动用性. 石油实验地质, 42(1): 53~59.
冉冶, 王贵文, 赖锦, 周正龙, 崔玉峰, 代全齐, 陈晶, 王抒忱. 2016. 利用测井交会图法定量表征致密油储层成岩相———以鄂尔多斯盆地华池地区长7致密油储层为例. 沉积学报, 34(4): 694~706.
石玉江, 李长喜, 李高仁, 李霞, 周金昱, 郭浩鹏. 2012. 特低渗透油藏源储配置与富集区优选测井评价方法. 岩性油气藏, 24(4): 45~50.
孙建孟. 2013. 基于新“七性”关系的煤层气、页岩气测井评价. 测井技术, 37(5): 457~465.
孙建孟, 韩志磊, 秦瑞宝, 张晋言. 2015. 致密气储层可压裂性测井评价方法. 石油学报, 36(1): 74~80.
唐振兴, 赵家宏, 王天煦. 2019. 松辽盆地南部致密油“甜点区(段)”评价与关键技术应用. 天然气地球科学, 30(8): 1114~1124.
王剑, 李二庭, 陈俊, 米巨磊, 马聪, 雷海艳, 谢礼科. 2020. 准噶尔盆地吉木萨尔凹陷二叠系芦草沟组优质烃源岩特征及其生烃机制研究. 地质论评, 66(3): 755~764.
王贵文, 朱振宇, 朱广宇. 2002. 烃源岩测井识别与评价方法研究. 石油勘探与开发, 29(4): 50~52.
王小军, 杨智峰, 郭旭光, 王霞田, 冯右伦, 黄立良. 2019. 准噶尔盆地吉木萨尔凹陷页岩油勘探实践与展望. 新疆石油地质, 40(4): 402~413.
王旭影, 姜在兴. 2018. 苏北盆地海安凹陷古近系阜三段滩坝沉积特征. 油气地质与采收率, 25(5): 57~64.
王旭影, 姜在兴. 2021. 苏北盆地古近系阜三段物源特征及其形成的构造背景分析. 地学前缘, 28(2):376~390.
魏周拓, 范宜仁, 陈雪莲. 2012. 横波各向异性在裂缝和应力分析中的应用. 地球物理学进展, 27(1): 217~224.
熊绍云, 王鹏万, 黄羚, 邹辰, 贺训云, 李昌, 徐政语. 2020. 中、上扬子龙马溪组层序划分及对页岩储层发育的控制. 地质学报, 94(11): 3471~3487.
鄢继华, 邓远, 蒲秀刚, 周立宏, 陈世悦, 焦玉玺. 2017. 渤海湾盆地沧东凹陷孔二段细粒混合沉积岩特征及控制因素. 石油与天然气地质, 38(1): 98~109.
杨智, 唐振兴, 李国会, 贾希玉, 吴颜雄, 陈旋, 黄东, 江涛, 方向, 王岚, 吴因业, 吴松涛, 付蕾, 李嘉蕊, 李奇艳, 赵家宏, 王天煦. 2021. 陆相页岩层系石油富集区带优选、甜点区段评价与关键技术应用. 地质学报, 95(8): 2257~2272.
杨涛涛, 范国章, 吕福亮, 王彬, 吴敬武, 鲁银涛. 2013. 烃源岩测井响应特征及识别评价方法. 天然气地球科学, 24(2): 414~422.
尹成芳, 柯式镇, 姜明, 康正明, 王伟东, 孙旭, 郑树桐. 2017. 测井新技术在陆相致密油“七性”评价中的应用——以松辽盆地北部高台子油层为例. 石油科学通报, 01: 32~43.
闫伟林, 赵杰, 郑建东, 董万百, 章华兵. 2014. 松辽盆地北部扶余致密油储层测井评价. 大庆石油地质与开发, 33(5): 209~214.
袁选俊, 林森虎, 刘群, 姚泾利, 王岚, 郭浩, 邓秀芹, 成大伟. 2015. 湖盆细粒沉积特征与富有机质页岩分布模式——以鄂尔多斯盆地延长组长7油层组为例. 石油勘探与开发, 42(1): 34~43.
袁俊亮, 邓金根, 张定宇, 李大华, 闫伟, 陈朝刚, 程礼军, 陈子剑. 2014. 页岩气储层可压裂性评价技术. 石油学报, 34(3): 523~527.
张超, 张立强, 陈家乐, 罗红梅, 刘书会. 2017. 渤海湾盆地东营凹陷古近系细粒沉积岩岩相类型及判别. 天然气地球科学, 28(5): 713~723.
张晋言. 2012. 页岩油测井评价方法及其应用. 地球物理学进展, 27(3): 1154~1162.
张鹏飞, 卢双舫, 李俊乾, 薛海涛, 李文镖, 张宇, 王思远, 冯文俊. 2019. 湖相页岩油有利甜点区优选方法及应用——以渤海湾盆地东营凹陷沙河街组为例. 石油与天然气地质, 40(6): 1339~1350.
支东明, 唐勇, 杨智峰, 郭旭光, 郑孟林, 万敏, 黄立良. 2019. 准噶尔盆地吉木萨尔凹陷陆相页岩油地质特征与聚集机理. 石油与天然气地质, 40(3): 524~534.
赵军, 秦伟强, 张莉, 邓宁. 2005. 偶极横波各向异性特征及其在地应力评价中的应用. 石油学报, 26(4): 54~57.
赵贤正, 蒲秀刚, 韩文中, 周立宏, 时战楠, 陈世悦, 肖敦清. 2017. 细粒沉积岩性识别新方法与储集层甜点分析: 以渤海湾盆地沧东凹陷孔店组二段为例. 石油勘探与开发, 44(4): 492~502.
赵贤正, 周立宏, 蒲秀刚, 金凤鸣, 时战楠, 韩文中, 姜文亚, 韩国猛, 张伟, 汪虎, 马建英. 2020. 湖相页岩滞留烃形成条件与富集模式: 以渤海湾盆地黄骅坳陷古近系为例. 石油勘探与开发, 47(5): 856~869.
赵政璋, 杜金虎. 2012. 致密油气. 北京: 石油工业出版社.
钟淑敏, 谢鹏, 刘传平. 2016. 应用测井资料预测致密油有利区方法研究. 测井技术, 40(1): 85~90.
钟高润, 张小莉, 杜江民, 郑茜, 李航, 李宁, 王鹏. 2016. 鄂尔多斯盆地延长组长7段致密油源储配置关系测井评价. 地球物理学进展, 31(5): 2285~2291.
朱光有, 金强, 张林晔. 2003. 用测井信息获取烃源岩的地球化学参数研究. 测井技术, 27(2): 104~109.
邹才能, 杨智, 崔景伟, 朱如凯, 侯连华, 陶士振, 袁选俊, 吴松涛, 林森虎, 王岚, 白斌, 姚泾利. 2013. 页岩油形成机制、地质特征及发展对策. 石油勘探与开发, 40(1): 14~26.
邹才能, 朱如凯, 白斌, 杨智, 侯连华, 查明, 付金华, 邵雨, 刘可禹, 曹宏, 袁选俊, 陶士振, 唐晓明, 王岚, 李婷婷. 2015. 致密油与页岩油内涵、特征、潜力及挑战. 矿物岩石地球化学通报, 34(1): 3~19.
邹才能, 杨智, 王红岩, 董大忠, 刘洪林, 施振生, 张斌, 孙莎莎, 刘德勋, 李贵中, 吴松涛, 庞正炼, 潘松圻, 袁懿琳. 2019. “进源找油”: 论四川盆地非常规陆相大型页岩油气田. 地质学报, 93(7): 1551~1562.
Avanzini A, Balossino P, Brignoli M, Spelta E, Tarchiani C. 2016. Lithologic and geomechanical facies classification for sweet spot identification in gas shale reservoir. Interpretation, 4(3): 21~31.
Chen Liqiong. 2009. Estimation of the amount of erosion at unconformities in the last stage ofthe Eocene Sanduo period in the Subei Basin, China. Petroleum Science, 6: 383~388.
Cheng Qingsong, Zhang Min, Li Hongbo. 2019. Anomalous distribution of steranes in deep lacustrine facies low maturity source rocks and oil of Funing formation in Subei Basin. Journal of Petroleum Science and Engineering, 181: 106~190.
Dong Ning, Xu Jie, Sun Zandong, Lu Jing, Zhou Gang, Liu Zhishui. 2013&. Shale brittleness prediction by geophysical methods. Oil Geophysical Prospecting, 48(supplement 1) : 69~74.
Duan Hongliang, Liu Shili, Fu Qian. 2020&. Characteristics and sedimentary environment of organic-rich shale in the second member of Paleogene Funing Formation, Subei Basin. Petroleum Geology & Experiment, 42(4): 612~617.
Du Jiangmin, Zhang Xiaoli, Zhong Gaorun, Feng Congjun, Guo Ling, Zhang Xiaolong, Luo Wenxing. 2016&. Analysis on the optimization and application of well logs indentification methods for organic carbon content in source rocks of the tight oil——illustrated by the example of the source rocks of Chang 7 member of Yanchang Formation in Ordos Basin. Progress in Geophysics, 31(6) : 2526~2533.
Fu Jinhua, Niu Xiaobing, Dan Weidong, Feng Shengbin, Liang Xiaowei, Xin Honggang, You Yuan. 2019&. The geological characteristics and the progress on exploration and development of shale oil in Chang7 Member of Mesozoic Yanchang Formation, Ordos Basin. China Petroleum Exploration, 24(5) : 601~614.
Fu Qian, Liu Qidong, Liu Shili, Duan Hongliang. 2020&. Shale oil accumulation conditions in the second member of Paleogene Funing Formation, Gaoyou Sag, Subei Basin. Petroleum Geology & Experiment, 42(4): 625~631.
Fu Suotang, Fu Jinhua, Niu Xiaobing, Li Shixiang, Wu Zhiyu, Zhou Xinping, Liu Jiangyan. 2020&. Accumulation conditions and key exploration and development technologies in Qingcheng oilfield. Acta Petrolei Sinica, 41(7) : 777~795.
Gao Hui, Zhang Xiao, He Mengqing, Xu Chuangchao, Dou Liangbin, Zhu Gengbolun, Li Yu. 2018&. Study on evaluation of shale oil reservoir fracability based on well logging data volume. Progress in Geophysics, 33(2) : 603~612.
Guan Ming, Liu Xiaoping, Jin Zhijun, Lai Jin. 2020. The heterogeneity of pore structure in lacustrine shales: Insights frommultifractal analysis using N2adsorption and mercury intrusion. Marine and Petroleum Geology, 114: 104150.
Godfray G, Seetharamaiah J. 2019. Geochemical and well logs evaluation of the Triassic source rocks of the Mandawa basin, SE Tanzania: Implication on richness and hydrocarbon generation potential. Journal of African Earth Sciences, 153: 9~16.
Guo Tiankui, Zhang Shicheng, Ge Hongkui, Wang Xiaoqiong, Lei Xin, Xiao Bo. 2015. A new method for evaluation of fracture network formation capacity of rock. Fuel, 140: 778~787.
Hu Zongquan, Zheng Lunju, Shen Baojian, Cheng Gang, Liu Zhongbao. 2021&. Preliminary study on unconventional and conventional oil-bearing gas systems. Geological Review, 67(4): 1007~1020.
Iqbal O, Ahmad M, Kadir A. 2018. Effective evaluation of shale gas reservoirs by means of an integrated approach to petrophysics and geomechanics for the optimization of hydraulic fracturing: A case study of the Permian Roseneath and Murteree Shale Gas reservoirs, Cooper Basin, Australia. Journal of Natural Gas Science and Engineering, 58: 34~58.
Jarvie D M, Hill R J, Ruble T E. 2007. Unconventional shale-gas systems: the Mississippian Barnett Shale of north—central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91: 475~499.
Jiang Yunjian, Liu Huimin, Chai Chunyan, Xin Zhongbin. 2020&. Analysis of hydrocarbon movability logging response features of shale oil and its applications. Petroleum Geology and Recovery Efficiency, 27(5): 1~9.
Jin Zhijun, Bai Zhenrui, Gao Bo, Li Maowen. 2019&. Has China ushered in the shale oil and gas revolution? Oil & Gas Geology, 40(3) : 451~458.
Kuang Lichun, Wang Xiatian, Guo Xuguang, Chang Qiusheng, Jia Xiyu. 2015&. Geological characteristics and exploration practice of tight oil of Lucaogou Formation in Jimsar sag. Xinjiang Petroleum Geology, 36(6) : 629~634.
Kuang Lichun, Hou Lianhua, Yang Zhi, Wu Songtao. 2021&. Key parameters and methods of lacustrine shale oil reservoir characterization. Acta Petrolei Sinica, 42(1) : 1~14.
Kumar S, Das S, Bastia R, Ojha K. 2018. Mineralogical and morphological characterization of Older Cambay Shale from North Cambay Basin, India: Implication for Shale Oil/Gas Development. Marine and Petroleum Geology, 97: 339~354.
Lai Jin, Li Dong, Wang Guiwen, Xiao Chengwen, Hao Xiaolong, Luo Qingyong, Lai Lingbin, Qin Ziqiang. 2019. Earth stress and reservoir quality evaluation in high and steep structure: The Lower Cretaceous in the Kuqa Depression, Tarim Basin, China. Marine and Petroleum Geology, 101: 43~54.
Lai Jin, Wang Guiwen, Fan Zhuoying, Chen Jing, Wang Shuchen, Zhou Zhenglong, Fan Xuqiang. 2016&. Research progress in brittleness index evaluation methods with logging data in unconventional oil and gas reservoirs. Petroleum Science Bulletin, 3: 330~341.
Lai, Jin, Wang Guiwen, Fan Zhuoying, Wang Ziyuan, Chen Jing, Zhou Zhenglong, Wang Song, Xiao Chengwen. 2017. Fracture detection in oil-based drilling mud using a combination of borehole image and sonic logs. Marine and Petroleum Geology, 84: 195~214.
Lai Jin, Wang Guiwen, Huang Longxing, Li Weiling, Ran Ye, Wang Di, Zhou Zhenglong, Chen Jing. 2015. Brittleness index estimation in a tight shaly sandstone reservoir using well logs. Journal of Natural Gas Science and Engineering, 27: 1536~1545.
Lai Jin, Wang Guiwen, Pang Xiaojiao, Han Zongyan, Li Dong, Zhao Yidi, Wang Song, Jiang Chengzhou, Li Hongbin, Li Yuhang. 2021&. The past, present and future of well logging geology: to celebrate the publication of second edition of “Well Logging Geology”. Geological Review, 67(6): 1804~1828.
Lai Jin, Wang Guiwen, Ran Ye, Zhou Zhenglong, Cui Yufeng. 2016. Impact of diagenesis on the reservoir quality of tight oil sandstones: The case of Upper Triassic Yanchang Formation Chang 7 oil layers in Ordos Basin, China. Journal of Petroleum Science and Engineering, 145: 54~65.
Lai Jin, Wang Guiwen, Wang Song, Cao Juntao, Li Mei, Pang Xiaojiao, Han Chuang, Fan Xuqiang, Yang Liu, He Zhibo, Qin, Ziqiang. 2018. A review on the applications of image logs in structural analysis and sedimentary characterization. Marine and Petroleum Geology, 95: 139~166.
Lai Jin, Wang Song, Zhang Chengsen, Wang Guiwen, Song Qiuqiang, Chen Xu, Yang Kefu, Yuan Changjian. 2020. Spectrum of pore types and networks in the deep Cambrian to Lower Ordovician dolostones in Tarim Basin, China. Marine and Petroleum Geology, 112: 104081.
Li Hao, Liu Shuanglian, Wang Dandan, Tan Chengjun, Zhao Lianshui. 2015&. The common problems analysis in logging evaluation technology application in China. Progress in Geophysics, 30(2) : 0776~0782.
Li Maowen, Chen Zhuoheng, Ma Xiaoxiao, Cao Tingting, Qian Menghui, Jiang Qigui, Tao Guoliang, Li Zhiming, Song Guoqi. 2019. Shale oil resource potential and oil mobility characteristics of the Eocene—Oligocene Shahejie Formation, Jiyang Super-Depression, Bohai Bay Basin of China. International Journal of Coal Geology, 204: 130~143.
Li Ning, Xu Binshen, Wu Hongliang, Feng Zhou, Li Yusheng, Wang Kewen, Liu Peng. 2021&. Application status and prospects of artificial intelligence in well logging and formation evaluation. Acta Petrolei Sinica, 42(4) : 508~522.
Li Ning, Yan Weilin, Wu Hongliang, Zheng Jiandong, Feng Zhou, Zhang Zhaoqian, Wang Kewen, Wang Jingyan. 2020&. Current situation, problems and countermeasures of the well-logging evaluation technology for Gulong shale oil. PetRoleum Geology & Oilfield Development in Daqing, 39(3) : 117~128.
Liu Chao, Xie Qingbin, Wang Guiwen, Zhang Chujun, Wang Lvli, Qi Kening. 2016. Reservoir properties and controlling factors of contact metamorphic zones of the diabase in the northern slope of the Gaoyou Sag, Subei Basin, eastern China. Journal of Natural Gas Science and Engineering, 35: 392~411.
Liu Jingshou, Ding Wenlong, DaiJunsheng, Gu Yang, Yang Haimeng, Sun Bo. 2018. Quantitative multiparameter prediction of fault-related fractures: a case study of the second member of the Funing Formation in the Jinhu Sag, Subei Basin. Petroleum Science, 15: 468~483.
Liu Jianwei, Zhang Yunyin, Zeng Lianbo, Gao Qiuju, Geng Xue. 2016&. Geophysical prediction of stress and stress desserts in unconventional reservoirs: an example in Bonan area. Oil Geophysical Prospecting, 51(4) : 792~800.
Liu Keyu, Liu Chang. 2019&. “Chemo-sedimentary facies” analysis: An effective method to study fine-grained sedimentary rocks. Oil $ Gas Geology, 40(3) : 491~503.
Liu Guoqiang. 2021&. Challenges and countermeasures of log evaluation in unconventional petroleum exploration. Petroleum Exploration and Development, 48(5): 891~902.
Liu Xiaoping, Lai Jin, Fan Xuechun, Shu Honglin, Wang Gaocheng, Ma Xiaoqiang, Liu Mengcai, Guan Ming, Luo Yufeng. 2020. Insights in the pore structure, fluid mobility and oiliness in oil shales of Paleogene Funing Formation in Subei Basin, China. Marine and Petroleum Geology, 114: 104228.
Liu Xiaoping, Jin Zhijun, Lai Jin, Fan Xuechun, Guan Ming, Shu Honglin, Wang Gaocheng, Liu Mengcai, Luo Yufeng. 2021. Fractal behaviors of NMR saturated and centrifugal T2spectra in oil shale reservoirs: The Paleogene Funing formation in Subei basin, China. Marine and Petroleum Geology, 129: 105069.
Li Wei, Zhu Xiaomin, DuanHongliang, Li Heyong, Liu Shili. 2020&. Characteristics and forming mechanism of laminae fine-grained sedimentary rock of the Paleogene Funing Formation in Gaoyou and Jinhusags, Subei Basin. Journal of Palaeogeography, 22(3): 469~482.
Li Xiaoguang, Liu Xingzhou, Li Jinpeng, Tian Zhi. 2019&. Comprehensive evaluation and exploration practice of Sha 4 lacustrine shale oil in Damintun sag, Liaohe depression. China Petroleum Exploration, 24(5): 636~648.
Loucks R G, Reed R M, Ruppel S C, Jarvie D M. 2009. Morphology, genesis, and distribution of nanometer-scale pores in siliceous mudstones of the Mississippian Barnett Shale. Journal of Sedimentary Research, 79: 848~861.
Loucks R G, Reed R M, Ruppel S C, Hammes U. 2012. Spectrum of pore types and networks in mudrocks and a descriptive classification for matrix-related mudrock pores. AAPG Bulletin, 96: 1071~1098.
Lu Huangsheng. 2012&. Application and development analysis of well logging information in petroleum engineering. Petroleum Drilling Techniques, 40(6) : 1~7.
Lu Qiaohuan, Zhang Jingyan, Li Shaoxia. 2006&. Application of data to oil source rock evaluation. Well Logging Technology, 30(1): 80~83+100.
Luo Weifeng, Yu Wenduan, Ma Xiaodong, Zhou Tao, Liu Xin. 2018&. Exploration achievement of lithological oil reservoirs in the south of Haian depression, the Subei Basin and its enlightenment. China Petroleum Exploration, 23(3) : 56~63.
Lyu Wenya, Zeng Lianbo, Liu Zhongqun, Liu Guoping, Zu Kewei. 2016. Fracture responses of conventional logs in tight-oil sandstones: a case study of the Upper Triassic Yanchang Formation in southwest Ordos Basin, China. AAPG Bulletin, 100 (9): 1399~1417.
Lü Wenya, Zeng Lianbo, Chen Shuangquan, Lü Peng, Dong Shaoqun, Hui Chen, Li Ruiqi, Wang Haonan. 2021&. Characterization methods of multi-scale natural fractures in tight and low permeability sandstone reservoirs. Geological Review, 67(2): 543~556.
Meng Xianbo, Xu Youde, Zhang Yuejing, Shang Fengkai, Li Jing, Sun Luning, Zheng Haidong. 2019&. Study on the variation law of crustal stress field in tight reservoir under multi field coupling. Journal of Geomechanics, 25(4) : 467~474.
Passey Q R, Creaney S, Kulla J B, Moretti F J, Stroud J D. 1990. A practical model for organic richness from porosity and resistivity logs. AAPG Bulletin, 74(12): 1777~1794.
Peng Jinning, Qiu Qi, Wang Dongyan, Li Zhiming, Zhu Jianhui, Liang Shiyou, Wu Yingli. 2020&. Occurrence and recoverability of tight oil in Paleogene Funing Formation, Subei Basin. Petroleum Geology & Experiment, 42(1): 53~59.
Qiao Xiaojuan, Li Guoming, Li Ming, Wang Zhiming. 2012. CO2storage capacity assessment of deep salineaquifers in the Subei Basin, East China. International Journal of Greenhouse Gas Control, 11: 52~63.
Qi Kun, Zhao Xiaoming, Liu Li, Su Yiqing, Wang Hua, Tan Chengpeng, Sun Yiting. 2018. Hierarchy and subsurface correlation of muddy baffles in lacustrine delta fronts: a case study in the X Oilfield, Subei Basin, China. Petroleum Science, 15: 451~467.
Quaye J A, Jiang Zaixing, Zhou Xuewen. 2019. Bioturbation influence on reservoir rock quality: A case study of Well Bian-5 from the second member Paleocene Funing Formation in the Jinhu sag, Subei basin, China. Journal of Petroleum Science and Engineering, 172: 1165~1173.
Ran Ye, Wang Guiwen, Lai Jin, Zhou Zhenglong, Cui Yufeng, Dai Quanqi, Chen Jing, Wang Shuchen. 2016&. Quantitative characterization of diagenetic facies of tight sandstone oil reservoir by using logging crossplot: A case study on Chang 7 tight sandstone oil reservoir in Huachi area, Ordos Basin. Acta Sedimentologica Sinica, 34(4) : 694~706.
Saidian M, Prasad M. 2015. Effect of mineralogy on nuclear magnetic resonance surface relaxivity: A case study of Middle Bakken and Three Forks formations. Fuel, 161: 197~206.
Schmoker J W. 1981. Determination of organic-matter content of AppalachianDevonian shales from gamma ray logs. AAPG Bulletin, 65: 1285~1298.
Shalaby M R, Jumat N, Lai D, Malik O. 2019. Integrated TOC prediction and source rock characterization using machine learning, well logs and geochemical analysis: Case study from the Jurassic source rocks in Shams Field, NW Desert, Egypt. Journal of Petroleum Science and Engineering, 176: 369~380.
Shi Yujiang, Li Changxi, Li Gaoren, Li Xia, Zhou Jinyu, Guo Haopeng. 2012&. Well logging evaluation method for hydrocarbon source rock—reservoir collocation and oil enrichment area optimization of low permeability reservoirs. Lithologic Reservoirs, 24(4) : 45~50.
Stadtmuller M, Lis-Sledziona A, Sota-Valim M. 2018. Petrophysical and geomechanical analysis of the Lower Paleozoic shale formation, North Poland. Interpretation, 6(3): SH91~SH106.
Sun Jianmeng. 2013&. Coalbed Methane and shale gas evaluation based on new seven related logging goals. Well Logging Technology, 37(5) : 457~465.
Sun Jianmeng, Han Zhilei, Qin Ruibao, Zhang Jinyan. 2015&. Log evaluation method of fracturing performance in tight gas reservoir. Acta Petrolei Sinica, 36(1) : 74~80.
Tan Hao, Yang Xiaolei. 2019&. Log interpretation methods for measuring the brittleness of tight reservoir. Well Logging Technology, 25(4): 467~474.
Tang Zhenxing, Zhao Jiahong, Wang Tianxu. 2019&. Evaluation and key technology application of “sweet area” of tight oil in southern Songliao Basin. Nature Gas Geoscience, 30(8): 1114~1124.
Wang Guiwen, Lai Jin, Liu Bingchang, Fan Zhuoying, Liu Shichen, Shi Yujiang, Zhang Haitao, Chen Jing. 2020. Fluid property discrimination in dolostone reservoirs using well logs. Acta Geologica Sinica (English Edition), 94(3): 831~846.
Wang Guiwen, Zhu Zhenyu, Zhu Guangyu. 2002&. Logging identification and evaluation of Cambrian—Ordovician source rocks in syneclise of Tarim basin. Petroleum Exploration and Development, 29(4) : 20~52.
Wang Jian, Li Erting, Chen Jun, Mi Julei, Ma Cong, Lei Haiyan, Xie Like. 2020&. Characteristics and hydrocarbon generation mechanism of high-quality source rocks in Permian Lucaogou Formation, Jimsar Sag, Junggar Basin. Geological Review, 66(3): 755~764.
Wang Song, Wang Guiwen, Huang Liliang, Song Lianteng, Zhang Yilin, Li Dong, Huang Yuyue. 2021. Logging evaluation of lamina structure and reservoir quality in shale oil reservoir of Fengcheng Formation in Mahu Sag, China. Marine and Petroleum Geology, 133: 105299.
Wang Xiaojun, Yang Zhifeng, Guo Xuguang, Wang Xiatian, Feng Youlun, Huang Liliang. 2019&. Practices and prospects of shale oil exploration in Jimsar Sag of Junggar Basin. Xinjiang Petroleum Geology, 40(4) : 402~413.
Wang Xuying, Jiang Zaixing. 2018&. Sedimentary characteristics of beach-bar in the 3rd member of Paleogene Funing Formation in Hai’an Sag, North Jiangsu Basin. Petroleum Geology and Recovery Efficiency, 25(5): 57~64.
Wang Xuying, Jiang Zaixing. 2021&. Provenance characteristics and tectonic setting analysis of the 3rd Member of the Paleogene Funing Formation, Subei Basin. Earth Science Frontiers, 28(2):376~390.
Wei Zhoutuo, Fan Yiren, Chen Xuelian. 2012&. Application of shear wave anisotropy in fractures and in-situ stress analysis. Progress in Geophysics, 27(1): 217~224.
Xi Kelai, Cao Yingchang, Liu Keyu, Jahren J, Zhu Rukai, Yuan Guanghui, Hellevang H. 2019. Authigenic minerals related to wettability and their impacts on oil accumulation in tight sandstone reservoirs: An example from the Lower Cretaceous Quantou Formation in the southern Songliao Basin, China. Journal of Asian Earth Sciences, 178: 173~192.
Xiong Shaoyun, Wang Pengwan, Huang Ling, Zou Chen, He Xunyun, Li Chang, Xu Zhenyu. 2020&. Sequence division of the Longmaxi Formation and their control on shale reservoir development in Middle—Upper Yangtze. Acta Geologica Sinica, 94(11): 3471~3487.
Yan Jihua, Deng Yuan, Pu Xiugang, Zhou Lihong, Chen Shiyue, Jiao Yuxi. 2017&. Characteristics and controlling factors of fine-grained mixed sedimentary rocks from the 2nd Member of Kongdian Formation in the Cangdong Sag, Bohai Bay Basin. Oil & Geology, 38(1): 98~109.
Yang Zhi, Tang Zhenxing, Li Guohui, Jia Xiyu, Wu Yanxiong, Chen Xuan, Huang Dong, Jiang Tao, Fang Xiang, Wang Lan, Wu Yinye, Wu Songtao, Fu Lei, Li Jiarui, Li Qiyan, Zhao Jiahong, Wang Tianxu. 2021&. Optimization of enrichment plays, evaluation of sweet area & section and application of key technologies for the continental shale strata oil in China. Acta Geologica Sinica, 95(8): 2257~2272.
Yang Taotao, Fan Guozhang, Lu Fuliang, Wang Bin, Wu Jingwu, Lu Yintao. 2013&. The logging features and identification methods of source rock. Nature Gas Geoscience, 24(2) : 414~422.
Yan Weilin, Zhao Jie, Zheng Jiandong, Dong Wanbai, Zhang Huabing. 2014&. Well logging evaluation of Fuyu tight oil reservoirs in North Songliao Basin. Petroleum Geology and Oilfield Development in Daqing, 33(5) : 209~214.
Yin Chengfang, Ke Shizhen, Jiang Ming, Kang Zhengming, Wang Weidong, Sun Xun, Zheng Shutong. 2017&. Application of new well logging technology in the evaluation of “seven properties” of continental tight oil: A case study on the Gaotaizi oil layer in the Northern Songliao Basin. Petroleum Science Bulletin, 1: 32~43.
Yuan Junliang, Deng Jingen, Zhang Dingyu, Li Dahua, Yan Wei, Chen Chaogang, Cheng Lijun, Chen Zijian. 2014&. Fracability evaluation of shale-gas reservoirs. Acta Petrolei Sinica, 34(3) : 523~527.
Yuan Xuanjun, Lin Shenhu, Liu Qun, Yao Jingli, Wang Lan, Guo Hao, Deng Xiuqin, Cheng Dawei. 2015&. Lacustrine fine-grained sedimentary features and organic-rich shale distribution pattern: A case study of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China. Petroleum Exploration and Development, 42(1) : 34~43.
Zhang Chao, Zhang Liqiang, Chen Jiale, Luo Hongmei, Liu Shuhui. 2017&. Lithofacies types and discrimination of Paleogene fine-grained sedimentary rocks in the Dongying Sag, Bohai Bay Basin, China. Nature Gas Geoscience, 28(5) : 713~723.
Zhang J L, Zhang P H, Dong Z R, Ding F, Wang J K, Ren W W. 2014. Diagenesis of the funing sandstones (Paleogene), Gaoji Oilfield, Subei Basin, East of China. Petroleum Science and Technology, 32(9): 1095~1103.
Zhang Jinyan. 2012&. Well Logging evaluation method of shale oil reservoirs and its applications. Progress in Geophysics, 27(3): 1154~1162.
Zhang Pengfei, Lu Shuangfang, Li Junqian, XueHaitao, Li Wenbiao, Zhang Yu, Wang Siyuan, Feng Wenjun. 2019&. Identification method of sweet spot zone in lacustrine shale oil reservoir and its application: A case study of the Shahejie Formation in Dongying Sag, Bohai Bay Basin. Oil & Gas Geology, 40(6) : 1339~1350.
Zhang Pengfei, Lu Shuangfang, Li Junqian, Chen Chen, Xue Haitao, Zhang Jie. 2018. Petrophysical characterization of oil-bearing shales by low-field nuclear magnetic resonance (NMR). Marine and Petroleum Geology, 89: 775~785.
Zhao Jun, Qin Weiqiang, Zhang Li, Deng Ning. 2005&. Anisotropy of dipole shear wave and its application to ground stress evaluation. Acta Petrolei Sinica, 26(4): 54~57.
Zhao Peiqiang, Mao Zhiqiang, Huang Zhenhua, Zhang Chong. 2016. A new method for estimating total organic carbon content from well logs. AAPG Bulletin, 100(8): 1311~1327.
Zhao Xianzheng, Pu Xiugang, Han Wenzhong, Zhou Lihong, Shi Zhannan, Chen Shiyue, Xiao Dunqing. 2017&. A new method for lithology identification of fine grained deposits and reservoir sweet spot analysis: A case study of Kong 2 Member in Cangdong sag, Bohai Bay Basin, China. Petroleum Exploration and Development, 44(4) : 492~502.
Zhao Xianzheng, Zhou Lihong, Pu Xiugang, Han Wenzhong, Jin Fengming, Xiao Dunqing, Shi Zhannan, Deng Yuan, Zhang Wei, Jiang Wenya. 2019. Exploration breakthroughs and geological characteristics of continental shale oil: A case study of the Kongdian Formation in the Cangdong Sag, China. Marine and Petroleum Geology, 102: 544~556.
Zhao Xianzheng, Zhou Lihong, Pu Xiugang, JinFengming, Shi Zhannan, Han Wenzhong, Jiang Wenya, Han Guomeng, Zhang Wei, Wang Hu, Ma Jianying. 2020&. Formation conditions and enrichment model of retained petroleum in lacustrine shale: A case study of the Paleogene in Huanghua depression, Bohai Bay Basin, China. Petroleum Exploration and Development, 47(5) : 856~869.
Zhao Zhengzhang, Du Jinhu. 2012#. Tight Oil and Gas. Beijing: Petroleum Industry Press.
Zhi Dongming, Tang Yong, Yang Zhifeng, Guo Xuguang, Zheng Menglin, Wan Min, Huang Liliang. 2019&. Geological characteristics and accumulation mechanism of continental shale oil in Jimusaer sag, Junggar Basin. Oil & Gas Geology, 40(3) : 524~534.
Zhong Gaorun, Zhang Xiaoli, Du Jiangmin, Zheng Qian, Li Hang, Li Ning, Wang Peng. 2016&. Source—reservoir configuration of logging evaluation for tight oil in Chang 7 member, Yanchang formation, Ordos basin. Progress in Geophysics, 31(5) : 2285~2291.
Zhong Shumin, Xie Peng, Liu Chuanping. 2016&. Using Log Data to Predict Tight Oil Distribution. Well Logging Technology, 40(1): 85~90.
Zhu Guangyou, Jin Qiang, Zhang Linye. 2003&. Using Log Information to Analyze the Geochemical Characteristics. Well Logging Technology, 27(2) : 104~109.
Zou Caineng, Yang Zhi, Cui Jingwei, Zhu Rukai, Hou Lianhua, Tao Shizhen, Yuan Xuanjun, Wu Songtao, Lin Senhu, Wang Lan, Bai Bin, Yao Jingli. 2013&. Formation mechanism, geological characteristics and development strategy of nonmarine shale oil in China. Petroleum Exploration and Development, 40(1): 14~26.
Zou Caineng, Zhu Rukai, Bai Bin, Yang Zhi, Hou Lianhua, Zha Ming, Fu Jinhua, Shao Yu, Liu Keyu, Cao Hong, Yuan Xuanjun, Tao Shizhen, Tang Xiaoming, Wang Lan, Li Tingting. 2015&. Significance, Geologic Characteristics, Resource Potential and Future Challenges of Tight Oil and Shale Oil. Bulletin of Mineralogy, Petrology and Geochemistry, 34(1): 3~19.
Zou Caineng, Yang Zhi, Wang Hongyan, Dong Dazhong, Liu Honglin, Shi Zhensheng, Zhang Bin, Sun Shasha, Liu Dexun, Li Guizhong, Wu Songtao, Pang Zhenglian, Pan Songqi, Yuan Yilin. 2019&. “Exploring petroleum inside source kitchen”: Jurassic unconventional continental giant shale oil & gas field in Sichuan basin, China. Acta Geologica Sinica, 93(7): 1551~1562.