任武昂,曹锋锋,鞠 恺,金鹏康,李思敏,柴蓓蓓,雷晓辉
间歇曝气-内循环生物滤池效能及生物膜特性
任武昂1,曹锋锋1,鞠 恺1,金鹏康2,李思敏3,柴蓓蓓4,5*,雷晓辉5
(1.西安科技大学建筑与土木工程学院,陕西 西安 710054;2.西安交通大学人居环境与建筑工程学院,陕西 西安 710049;3.河北省水污染控制与生态修复技术创新中心,河北 邯郸 056038;4.河北工程大学水利水电学院,河北 邯郸 056038;5.河北省智慧水利重点实验室,河北 邯郸 056038)
针对间歇曝气耦合内循环生物滤池的强化脱氮作用机制尚不明确的问题,探究了反应器沿程污染物去除特性,运用多项测试手段解析系统沿程生物量、生物活性、硝化及反硝化速率,并对反应器内沿程微生物种群特性进行分析.试验结果表明:沿程类蛋白荧光强度逐渐减弱,最终出水并未检测到类蛋白峰;反应器沿程10~50cm区段NH4+-N的降低并没有引起NO3--N大幅增长,并且在50cm处NO3--N含量有所下降,该段反硝化作用明显;沿程溶氧环境和生物量也显示,该区域具备较为明显的缺/厌氧的环境以及富集了充足的生物量;此外,50cm处的好氧速率(OUR)低但TTC-脱氢酶活性高以及反硝化速率明显强于硝化速率,均可表明系统在该区域强化了反硝化脱氮过程.另外,16S rRNA高通量测序分析显示:系统在门水平上涉及反硝化功能的微生物有更高的丰度,主要有Firmicutes (厚壁菌门:10.64%)和Bacteroidetes (拟杆菌门:22.29%);在属水平上也明显存在反硝化功能的(丛毛单胞菌属:3.11%)和(2.43%).上述研究均表明间歇曝气耦合内循环的BAF系统强化了底部区域的反硝化作用进而提升了脱氮效能.
生物滤池;间歇曝气;内循环;污染物;微生物响应
曝气生物滤池(BAF)是集生物降解和滤料物理截留为一体的生物膜处理工艺,具有抗冲击负荷能力强、不易发生污泥膨胀、管理简便等特点[1-3],对COD和NH4+-N有较高的去除效率[4].由于传统BAF具有推流反应器的特征,很难在反应器内形成硝酸盐氮与有机物同步富存的环境,限制了系统的反硝化作用导致总氮的去除效率较低[5].为强化BAF脱氮功能,一般采用构建硝化和反硝化两级曝气生物滤池的方式来实现对水中总氮的削减[6-7].在单级BAF中增加内回流,可将富含硝酸盐氮的处理水引入反应器底部区域与原水混合,为反硝化反应提供的必要的基质条件[8];此外,田兆龙等[9]改变传统BAF的供氧策略,通过间歇曝气的方式可以在反应器内创造好氧/缺氧交替的环境. 因此,构建间歇曝气耦合内循环生物滤池理论上可以提高单级BAF的总氮脱除效率.课题组前期的研究成果显示, BAF间歇曝气耦合内循环的技术措施将系统总氮去除效果从41.8%提升至75.23%[10],证实了该思路与工艺的可行性与有效性.
BAF作为一种典型的生物膜反应器,改变运行工况来提升系统处理效率的本质是通过创造适宜的基质条件与环境条件,在系统内富集功能微生物并使其充分发挥作用[11-12].本文以间歇曝气耦合内循环生物滤池实验装置为研究对象,通过检测反应器沿程水质指标变化情况,并运用多项测试手段解析系统沿程生物量、生物活性、硝化及反硝化速率;借助高通量测序技术对反应器内沿程微生物种群特性比对分析,以期揭示间歇曝气耦合内循环生物滤池反应器提升脱氮效能的作用机理.
图1 实验装置示意
a BAF实验装置;b 好氧速率装置
构建的间歇曝气耦合内循环的BAF实验装置如图1a所示,反应器主体为圆柱形,内径为15cm,外径为25cm,总体高度为240cm.底部是高为20cm的均匀配水区,上方高为30cm的衬托层,填料层高为140cm,并以20cm等距设置7个直径为8mm的采样口;顶部高为50cm的静水区,各分区之间用法兰连接.好氧速率检测装置如图1b,锥形瓶置于恒温磁力搅拌器上,DO电极穿过橡胶塞插入挂膜填料和充氧饱和的生活污水中,待DO稳定后从溶解氧仪上读取数值.
维持BAF反应器在最佳工况条件下连续运行[10],主要的运行参数为:硝化液回流比为100%、曝气停曝比为1:1(曝气30min,停曝30min)、HRT为6h、气水比为6:1、整个反应器温度控制为(22±2)℃、采用的反冲洗流程为:气洗2~5min、气水混合洗4~6min、水洗8~10min,冲洗强度均为8~16L/(m3·s),反冲洗周期为4d.此外,在填料层高为10, 50, 130cm处设置沿程取样点(A1、A2和A3).
1.3.1 常规指标检测方法 水质参数如COD、NH4+-N、NO3--N、TN等常规指标均采用《水和废水监测分析方法》(第四版)方法测定[16],DO测定选用便携式溶解氧仪.
1.3.2 三维荧光光谱分析 待测水样取自原水、填料层高为50cm取样口和出水,测定前用0.45μm滤膜进行过滤.仪器参数设置:激发波长为200~450nm,发射波长为250~550nm,步长2nm,狭缝宽度为1.11mm,对应荧光谱分辨率为2nm.
1.3.3 生物量和活性测定 系统沿程滤料生物量采用MLVSS法测定[17];生物活性分别以OUR[18]和TTC-脱氢酶活性测定[19].
1.3.4 硝化速率和反硝化速率测定 硝化速率测定需调节曝气量以维持溶解氧浓度在2mg/L以上,反硝化速率测定需充入N2创造缺氧环境.分别在30, 60, 90, 120min取样,混合液经0.45μm滤膜过滤后测其NO3--N和NO2--N浓度,并计算单位重量填料的硝化和反硝化速率[20].
采用16S rRNA高通量测序技术研究BAF系统沿程微生物多样性和群落结构.样品取自在间歇曝气耦合内循环生物滤池系统稳定条件下的生物填料,依据沿程DO和水质变化情况选取填料层高为10, 50和130cm为微生物采样口,测试时分别将其编号为A1、A2、A3.DNA提取采用试剂盒(E.Z.N.ATM Mag-Bind Soil DNA Kit),利用1%琼脂糖凝胶电泳检测抽提样品总的DNA.选择341(CCTACGGG- NGGCWGCAG)和805R(GACTACHVGGGTATCT- AATCC)作为引物,对V3-V4高变区域16S rRNA序列进行扩增[21].在上海生工生物工程股份公司的Illumina MiSeq测序平台进行高通量测序.
如图2a所示,在间歇曝气耦合内循环生物滤池系统稳定条件下,根据COD降解速率的不同,反应器沿程水质变化情况大致分为a(0~50cm)、b(50~ 110cm)、c(110~150cm)3段,各段填料层生物对COD的去除率分别为46.98%、27.75%、12.79%,逐渐降低.该现象主要是由于进水端有机物充沛,加之氧气供给有利于微生物的生长繁殖,因此在a段有机物降解消耗的速率最快;这与之前李燕飞等[22]的研究结论相似.沿程至110cm处,COD已降低至36.39mg/L,此时有机物相对匮乏,已然成为限制异养菌增殖的主要原因,导致COD的去除速率降至最低.
如图2b所示,生活污水中的TN浓度主体是NH4+-N,因此两者的沿程浓度呈现出一致的变化规律.就硝化速率而言,在填料层高为70cm处可分为前后2段;在前段NH4+-N平均去除率为79.64%,远高于后段13.75%的平均去除率.可见,在前段基本可完成NH4+-N转化,说明此区域硝化细菌代谢能力强.进水NO3--N浓度几乎为0,随着水流的上升,沿程NO3--N含量逐步富集,直至出水浓度的10.61L/(m3·s);在10~50cm区域,NH4+-N大幅降低并没有导致NO3--N过快增长,并且在50cm处NO3--N含量有所下降,推测10~50cm区域存在较强的反硝化作用.
从图3a可以看出,原水的三维荧光光谱图中有2个比较明显的特征荧光峰,其中峰A中心位置为x/m=280nm/340nm,属于高激发波长色氨酸荧光峰,主要是蛋白质的荧光贡献;峰B中心位置为x/m=225nm/340nm,属于低激发波长色氨酸荧光峰; 填料层高为50cm的出水三维荧光光谱图(图3b)在x/m=320nm/410nm处还存在1个较弱的峰C,其与可见区的类腐殖酸有关.系统出水的三维荧光光谱图(图3c)基本已检测不到峰A.峰C强度变化不大,这与其代表较难被微生物降解的类腐殖质有关.峰A和峰B则有一定程度的削弱,峰A的消减强度最大,这是因为该峰常被认为是污水中易被生物降解组分[23].
a为原水;b为填料层高为50cm的出水;c为系统出水
进水中三维荧光光谱可观察到强烈的类蛋白峰,而类蛋白与COD具有较好的正相关,表明进水富含有机碳源与营养物质.沿程出水过程中类蛋白荧光强度逐渐减弱,最终并未检测到类蛋白峰,这也佐证了该系统对COD的处理效果好,碳源匮乏也是限制反硝化脱氮的主要因素[24].
如图4所示,对曝气30min和停曝气30min后的沿程DO浓度进行测定,2种不同曝气条件下BAF填料层沿程DO均呈山谷型分布.在填料层高为10cm处DO较高(DO>2mg/L),这是由于回流的硝化液DO>4mg/L,与进水混合后仍保持较高的DO.在30~70cm区段,不同曝气阶段DO都显著下降,出现了低谷,最低DO<0.5mg/L;分析认为底部有机物充沛,加之系统内部富集了大量活跃状态的好氧菌,可迅速实现对DO的消耗.之后在90~150cm区段内DO持续升高并至3mg/L之上;这是由于系统推流式的特性和高溶解氧的内部回流所致.由曝气与停曝气阶段的沿程DO比对可知,在30~70cm区段拥有较高NO3--N浓度和有机物,这些都是强化反硝化过程的基础;加之停曝气阶段形成的缺氧环境为生物脱氮提供了有利条件,提高了该区域的反硝化效率.
如图4b所示,进水端填料区和出水端填料区可MLVSS平均含量分别为9.19, 2.59mg/g,进水端的生物量是出水端的3倍.这是由于底部的填料能够截留大量的悬浮物,有机物浓度高,可供异养菌生长繁殖所需,使得该区域可富集更多的生物量[17].出水端生物量低的主要原因是水体中易被生物降解的有机物质在底部区域被消耗殆尽所致.MLVSS在沿程高度为50cm处有小幅升高,这与刘俊峰等[25]研究的沿程生物量与有机物浓度呈正相关,沿水流方向均是下降态势的结果有所差异性.分析原因,一方面是此处水力剪切较为适当,既能吹脱老化的生物膜,促进微生物的生长富集,又不会破坏原本的生物膜导致生物大量流失.另一方面,底部相对充足的有机物与交替的好氧/缺氧环境,有利于刺激大量活性生物代谢繁殖.
如图5a所示,填料层高在a区段(10~50cm)OUR值分别为6.64,4.75, 3.25mg/(g·h),降幅较大;结合该区域生物量的监测结果推测,滤料上附载微生物以兼性硝化菌以及反硝化菌为主,在饱和的溶解氧模拟水中检测的OUR值呈下降态势[26].滤料深度在b区段 (70~90cm)OUR值依次为3.51, 4.23mg/(g·h),又表现出小幅上升趋势;在滤层末端c区段(110~ 150cm) OUR逐步降低,监测结果为3.55, 3.26, 2.64mg/(g·h);由于出水端微生物较少,且可利用的有机物质被消耗殆尽,进而影响了生化反应速率,好氧速率值降为最低[27].
TF为等位的TTC-脱氢酶活性与MLVSS比值
a为OUR;b为TF
由图5b可知,底部填料区的脱氢酶活性最高,顶端附近生物活性较低,与OUR的监测结果保持一致.值得注意的是,滤料深度在50cm处微生物好氧速率较低,但该段TTC-脱氢酶活性有所上升;这也可以推测出该段富集有兼氧/厌氧细菌,可进行反硝化作用.此外,在近出水端130cm处, 活性有小幅上升,该结果与王曦曦等[28]的研究结果一致,即认为是生物膜相对较薄,导致生物活性升高.
如图6所示,就硝化速率而言,随着填料层厚度的增加硝化速率逐步降低.沿程的硝化速率可大致分为a(10~70cm)和b(70~150cm)2个区段;在a阶段,硝化速率均值为28.87mg/(kg·h),表明该段具有良好的硝化性能,是由于此处高氨氮浓度,富含溶解氧,使得生物膜中的硝化细菌得以稳步增长,进而硝化速率高.b段硝化速率相对于a段有较大幅度下降,均值仅为3.86mg/(kg·h),表明此段的硝化反应不明显,原因在于该段氨氮浓度较低,硝化细菌生长缺乏基质,致使硝化速率减小.该现象也与沿程氨氮浓度的变化特征相符.
图6 沿程硝化和反硝化速率分析
反应器内沿程反硝化速率与消化速率的变化情况不同,呈现出先升高再减小的过程,并在50cm处达到约31mg/(kg·h)的最高值.在滤层高度10~ 50cm处(c阶段)反硝化速率均值为21.56mg/(kg·h);表明间歇曝气耦合内循环的操作条件在该区域为脱氮微生物提供了良好的基质条件,使反硝化作用得以充分发挥.在70~140cm处(d阶段)反硝化速率递减直至最低0.13mg/(kg·h),基本丧失了反硝化作用.一方面是由于沿水流方向易于被生物利用的有机物逐渐被消耗,导致各生物滤池沿程反硝化速率逐渐下降,甚至在滤池末尾段速率基本趋于0;另一方面,出水端完全呈现好氧的环境,反硝化细菌难以富集,限制了反硝化的进行.
除滤层高度50cm外,同位置的硝化速率始终优于反硝化速率,说明系统内部硝化反应始终占优势,这也是系统最终脱氮效果良好效果的主要原因.结合图4,系统内部仅在沿程30~50cm的停曝气阶段存在一定的缺氧环境;加之氧的传递在生物膜内形成溶解氧梯度,填料内层因而存在微观的缺氧环境,为反硝化菌富集提供了优势条件[28].
图7a表明,系统各样本菌群数量均大于1.00%的优势菌群主要有Proteobacteria (变形菌门: 37.74%)、Bacteroidetes (拟杆菌门:22.29%)、Firmicutes (厚壁菌门:10.64%)、Planctomycetes (浮霉菌门:9.08%)、Acidobacteria (酸杆菌门:2.84%)等5种.
从脱氮细菌来看,Proteobacteria被认为是BAF反应器中的优势门,这一门广泛分布于土壤、废水和污泥中[29-30].该细菌在沿程A1~A3方向所占比例分别为47.56%、22.87%和42.87%,同样保持着较高丰度.Nitrospirae是硝化作用的主要实践者,Nitrospirae的存在说明了亚硝酸盐氧化细菌的存在[31];沿程各取样点的Nitrospirae占总细菌比例低,为0.32%~ 3.02%,仅在填料层的末端A3处有较高水平,分析原因可能是此段的DO较高,为其富集提供了有利条件.这与Ma等[32]研究结论类似,其认为曝气条件下,Nitrospirae是占优势的系统发育群.拟杆菌门和厚壁菌门是参与反硝化脱氮过程的主要菌种,二者常见于实际污水厂和模拟实验研究的反应器中[33-34].在本系统中厚壁菌门沿程丰度依次为7.91%、14.43%和9.57%,在填料层中部出现了峰值,这种变化趋势与之前的研究类似[35],分析原因是中后层条件稳定,氧气和水力剪切扰动较小,为其富集创造了便利条件.系统的拟杆菌门沿程丰度依次为11.91%、32.05%和22.93%,变化情况与DO负相关,在A2区域的溶解氧环境和相对充足的底物为其富集提供了有利环境,进而该取样点出现了峰值.间歇曝气耦合内循环的工况优化会显著改变生物膜中微生物的种群结构,尤其是在滤层50cm处有效提高厚壁菌门和拟杆菌门等反硝化菌的丰度.
图7 沿程微生物群落分析
a门水平;b属水平
由图7b可知,在属水平上,沿程相对丰度均值大于2.00%的优势菌群主要有(弓形杆菌属:3.53%)、(丛毛单胞菌属:3.11%)、(紫单细胞菌属:4.78%)、(3.41%)、(2.43%)等5种.此外,同样发现了能够进行缺氧代谢的细菌,如、和表明即使在反应器的曝气区也存在着缺氧的环境.已有研究证明,和细菌属在缺氧条件下可进行反硝化[37].而传统的BAF受限于内部环境条件,难以富集缺氧代谢和反硝化功能细菌,王琳等[28]的研究指出Biostyr系统菌群并未检测出能够反硝化的优势细菌,该结果也可佐证上述结论.
综上,间歇曝气耦合内循环滤池内具有丰富的微生物群落,且硝化和反硝化等功能性种群丰度赋存较为明显,结合出水回流、间歇曝气的运行方式,为反硝化细菌的代谢提供良好的基质条件,强化了系统的反硝化脱氮效率,实现了单级BAF反应器对总氮的高效去除.
3.1 系统沿填料层高度方向水中NH4+-N、TN递减,而NO3--N逐渐积累,但 50cm处NO3--N浓度有小幅度的小降,表明此处的反硝化过程占优.进水在沿程出水过程中类蛋白荧光强度逐渐减弱,最终出水并未检测到类蛋白峰.
3.2 在沿程30~70cm区段具有强化反硝化作用的优势溶解氧环境和充沛的有机物;此外,该段的生物数量也明显优于其它区域.生物膜沿程的OUR和TTC-脱氢酶活性沿水流方向逐渐降低,在滤池深度50cm附近出现了峰谷.该段的OUR速率低但脱氢酶活性高,表明低DO区主要进行反硝化脱氮.反硝化速率在滤料底部区域较高.
3.3 16S rRNA高通量测序分析显示:系统在门水平上涉及反硝化功能的微生物有较高的丰度,主要有Firmicutes (10.64%)和Bacteroidetes (22.29%);在属水平上也明显存在反硝化功能的(3.11%)和(2.43%).
[1] Dong J X, Wang Y H, Wang L J, et al. The performance of porous ceramsites in a biological aerated filter for organic wastewater treatment and simulation analysis [J]. Journal of Water Process Engineering, 2020,34:101134.
[2] Zhang L L, Yue Q Y, Yang K L, et al. Enhanced phosphorus and ciprofloxacin removal in a modified BAF system by configuring Fe-C micro electrolysis: Investigation on pollutants removal and degradation mechanisms [J]. Journal of Hazardous Materials, 2018, 342(15):705-714.
[3] 杨永愿,汪晓军,赵 爽,等.沸石曝气生物滤池短程硝化特性及其机制[J]. 中国环境科学, 2017,37(12):4518-4525.
Yang Y Y, Wang X J, Zhao S, et al. Partial nitrification performance and mechanism of zeolite biological aerated filter for ammonium wastewater treatment [J]. China Environmental Science, 2017,37(12): 4518-4525.
[4] Feng Y, Li X, Song T, et al. Stimulation effect of electric current density (ECD) on microbial community of a three dimensional particle electrode coupled with biological aerated filter reactor (TDE-BAF) [J]. Bioresource Technology, 2017,243:667-675.
[5] Wang H J, Dong W Y, Li T, et al. A modified BAF system configuring synergistic denitrification and chemical phosphorus precipitation: Examination on pollutants removal and clogging development [J]. Bioresource Technology, 2015,189:44-52.
[6] 江肖良,李 孟,张少辉,等.4种不同工况生物滤池净化效能与微生物特性分析[J]. 环境科学, 2018,39(12):5503-5513.
Jiang X L, Li M, Zhang S H, et al. Purification efficiency and microbial characteristics of four biofilters operated under different conditions [J]. Environmental Science, 2018,39(12):5503-5513.
[7] Wang X J, Han J J, Chen Z W,et al. Combined processes of two-stage Fenton-biological anaerobic filter-biological aerated filter for advanced treatment of landfill leachate [J]. Waste Management, 2012,32(12):2401-2405.
[8] Zhang Q, Wang C R, Jiang L X, et al. Impact of dissolved oxygen on the microbial community structure of an intermittent biological aerated filter (IBAF) and the removal efficiency of gasification wastewater [J]. Bioresource Technology, 2018,255:198-204.
[9] 田兆龙,汪晓军,黄志聪.间歇式曝气生物滤池对焚烧垃圾渗滤液深度脱氮的研究[J]. 环境科学学报, 2013,33(5):1244-1248.
Tian Z L, Wang X J, Huang Z C. Nitrogen removal for waste incineration leachate by intermittent aerated biological filter [J]. Acta Scientiae Circumstantiae, 2020,33(5):1244-1248.
[10] 柴蓓蓓,曹锋锋,任武昂.间歇曝气耦合内循环曝气生物滤池脱氮除磷性能研究[J].环境污染与防治, 2020,42(12):1443-1448.
Chai B B, Cao F F, Ren W A. Research on nitrogen and phosphorus removal performance of intermittent aeration coupled with internal circulation biological aerated filter [J]. Environmental Pollution & Control, 2020,42(12):1443-1448.
[11] 靖青秀,游 威,黄晓东,等.钴渣基陶粒脱除曝气生物滤池废水中氮磷研究[J]. 水处理技术, 2020,46(10):28-32.
Jing Q X, You W, Huang X D, et al. Study on removal of nitrogen and phosphorus in wastewater by a BAF with cobalt slag based ceramsite [J]. Technology of Water Treatment, 2020,46(10):28-32.
[12] Bao T, Chen T H, Ezzatahmadi N, et al. A performance evaluation of a new iron oxide-based porous ceramsite (IPC) in biological aerated filters [J]. Environmental Technology, 2017,38(7):827-834.
[13] Zhou H, Xu G. Biofilm characteristics, microbial community structure and function of an up-flow anaerobic filter-biological aerated filter (UAF-BAF) driven by COD/N ratio [J]. The Science of the Total Environment, 2020,708(15):1-10.
[14] 叶 星,马凯迪,黄俊生,等.反硝化生物滤池中生物膜量与脱氮效果和脱氢酶活性的关系[J]. 环境工程学报, 2020,14(5):1210-1215.
Ye X, Ma K D, Huang J S, et al. Relationship between biofilm mass and nitrogen removal efficiency dehydrogenase activity in the denitrification biological filter [J]. Chinese Journal of Environmental Engineering, 2020,14(5):1210-1215.
[15] 向 红,刘武平,李 璇,等.生物滤池中生物量与生物活性分析及其净水效果[J]. 中国给水排水, 2011,27(3):48-51.
Xiang H, Liu W P, Li X, et al. Analysis of biological filter biomass and biological activity and its purification effect [J]. China Water & Wastewater, 2011,27(3):48-51.
[16] 国家环境保护总局.水和废水监测分析方法[M]. 北京:中国环境科学出版社, 2004.
State Environmental Protection Administration. Water and wastewater monitoring and analysis methods [M]. Beijing: China Environmental Science Press, 2004.
[17] 王 悦,王 海,石烁辉,等.反硝化滤池反冲洗效能综合影响因素及微生物种群[J]. 中国给水排水, 2021,37(1):76-80.
Wang R, Wang H, Shi S H, et al. Comprehensive influencing factors of backwashing efficiency of denitrifying biofilter and its microbial community [J]. China Water & Wastewater, 2011,37(1):76-80.
[18] 李 川,郭 鸣,王 让,等.改性生物砂滤池对污染物的去除效果及微生物特性[J]. 中国给水排水, 2019,35(5):94-98.
Li C, Guo M, Wang R, et al. Analysis of pollutants removal and microbial characteristics of modified biological sand filter [J]. China Water & Wastewater, 2019,35(5):94-98.
[19] 金幼平,杨雪英,陈 罡,等.活性污泥INT-脱氢酶活性检测方法的改进[J]. 中国给水排水, 2016,32(22):153-156.
Jin Y P, Yang X Y, Chen G, et al. Improvement of INT- dehydrogenase activity detection method of activated sludge [J]. China Water & Wastewater, 2016,32(22):153-156.
[20] 周 圆,支丽玲,郑凯凯,等.城镇污水处理厂活性污泥反硝化速率的影响因素及优化运行研究[J]. 环境工程, 2020,38(7):100-108.
Zhou Y, Zhi L L, Zheng K K, et al. Influencing factors and optimization analysis of denitrification rate in urban wastewater treatment plants [J]. Environmental Engineering, 2020,38(7):100-108.
[21] Zhang X J, Zhou Y, Yu B Y, et al. Effect of copper oxide nanoparticles on the ammonia removal and microbial community of partial nitrification process [J]. Chemical Engineering Journal, 2017,328(15): 152-158.
[22] 李燕飞,孙迎雪,田 媛,等.曝气生物滤池处理生活污水研究[J]. 环境工程学报, 2011,5(3):575-578.
Li Y F, Sun Y X, Tian Y, et al. Study on domestic wastewater treatment with biological aerated filter [J]. Chinese Journal of Environmental Engineering, 2011,5(3):575-578.
[23] 安 莹,李云辉,李 震,等.改良型AO法组合工艺中有机物的三维荧光分析[J]. 环境工程学报, 2013,7(1):159-163.
An Y, Li Y H, Li Z, et al. Analysis of EEM fluorescence spectra of dissolved organic matter in improved AO combined process [J]. Chinese Journal of Environmental Engineering, 2013,7(1):159-163.
[24] 张 华,全桂军,黄 健,等.废水DOM荧光强度与COD总氮的相关分析[J]. 环境科学与技术, 2017,40(10):157-162.
Zhang H, Quan G J, Huang J, et al. Analysis of the correlation between the fluorescence intensity of the dissolved organic matter and COD and total nitrogen in wastewater [J]. Environmental Science & Technology, 2017,40(10):157-162.
[25] 刘俊峰,范举红,刘 锐,等.2种填料BAF深度处理印染废水沿程污染物变化规律研究[J]. 环境科学, 2014,35(12):4596-4601.
Liu J F, Fan J H, Liu R, et al. Variation of pollutants along the height of two media BAF during advanced treatment of dyeing wastewater [J]. Environmental Science, 2014,35(12):4596-4601.
[26] 王曦曦,伦 琳,张继彪,等.改进型曝气生物滤池的生物量和生物活性[J]. 环境工程学报, 2012,6(6):1829-1833.
Wang X X, Lun L, Zhang J B, et al. Biomass and microbial activity in modified biological aerated filter [J]. Chinese Journal of Environmental Engineering, 2012,6(6):1829-1833.
[27] Urfer D, Huck P M. Measurement of biomass activity in drinking water biofilters using a respirometric method [J]. Water Research, 2001,35(6):1469-1477.
[28] 王 琳,肖娇玲,窦娜莎.Biostyr曝气生物滤池的沿程微生物多样性[J]. 环境工程学报, 2016,10(11):6283-6289.
Wang L, Xiao J L, Dou N S. Microorganism characteristics along Biostyr biological aerated filter [J]. Chinese Journal of Environmental Engineering, 2016,10(11):6283-6289.
[29] Gao P, Xu W, Sontag P, et al. Correlating microbial community compositions with environmental factors in activated sludge from four full-scale municipal wastewater treatment plants in Shanghai, China [J]. Applied Microbiology & Biotechnology, 2016,100(10):4663- 4673.
[30] Wang J F, Song X S, Wang Y H, et al. Nitrate removal and bioenergy production in constructed wetland coupled with microbial fuel cell: Establishment of electrochemically active bacteria community on anode–ScienceDirect [J]. Bioresource Technology, 2016,221:358-365.
[31] Pereira A D, Leal C D, Dias M F, et al. Effect of phenol on the nitrogen removal performance and microbial community structure and composition of an anammox reactor [J]. Bioresource Technology, 2014,166:103-111.
[32] Ma J, Wang Z, Yang Y, et al. Correlating microbial community structure and composition with aeration intensity in submerged membrane bioreactors by 454high-throughput pyrosequencing [J]. Water Research, 2013,47(2):859-869.
[33] Rodriguez-Sanchez A, Margareto A, Robledo-Mahon T, et al. Performance and bacterial community structure of a granular autotrophic nitrogen removal bioreactor amended with high antibiotic concentrations [J]. The Chemical Engineering Journal, 2017,325:257- 269.
[34] 刘亚妮,朱宏伟,黄荣新,等.曝气生态滤池中微生物群落组成及物种多样性[J]. 中国环境科学, 2020,40(3):1075-1080.
Liu Y N, Zhu H W, Huang R X, et al. Microbial community composition and species diversity in ecological aerated filter [J]. China Environmental Science, 2020,40(3):1075-1080.
[35] Na S, Ge C, Ahmad H A, et al. Realization of microbial community stratification for single-stage nitrogen removal in a sequencing batch biofilter granular reactor [J]. Bioresource Technology, 2017,241:681- 691.
[36] Chakravarthy S S, Pande S, Kapoor A, et al. Comparison of denitrification betweensp. andsp [J]. Applied Biochemistry & Biotechnology, 2011,165(1):260-269.
Intermittent aeration-internal circulation biological filter performance and biofilm characteristics.
REN Wu-ang1, CAO Feng-feng1, JU Kai1, JIN Peng-kang2, LI Si-min3, CHAI Bei-bei4,5*, LEI Xiao-hui5
(1.School of Architecture and Civil Engineering, Xi’an University of Science and Technology, Xi’an 710054,China;2.School of Human Settlement Environment and Civil Engineering, Xi’an Jiaotong University, Xi’an 710049,China;3.Hebei Water Pollution Control and Ecological Restoration Technology Innovation Center, Handan 056038, China;4.School of Water Conservancy and Hydroelectric Power, Hebei University of Engineering, Handan 056038, China;5.Hebei Key Laboratory of Intelligent Water Conservancy, Handan 056038, China)., 2022,42(2):629~636
The mechanism of enhanced denitrification by intermittent aeration-coupled internal circulation biofiltration is still not clear. We therefore investigated the pollutant removal in a biofiltration reactor. Several methods were used to analyze the biomass, biological activity, and nitrification and denitrification rates of the system, and the microbial population in the reactor was analyzed. The intensity of protein-like fluorescence gradually decreased throughout the system, and no protein-like peak was detected in the effluent. The decrease of NH4+-N along the 10-50cm section of the reactor did not cause a significant increase in NO3--N, and the NO3--N content decreased at 50cm. This section showed obvious denitrification. The dissolved oxygen and biomass levels throughout the system indicated an anoxic/anaerobic environment and significant denitrification. In addition, the low oxygen uptake rate (OUR) but high TTC-dehydrogenase activity at 50cm and the significantly higher denitrification rate compared to the nitrification rate indicated enhanced denitrification in this region. Based on 16S rRNA high-throughput sequencing analysis, the system had a higher abundance of microorganisms involved in denitrification at the phylum level, mainly Firmicutes (10.64%) and Bacteroidetes (22.29%). Denitrification was also evident at the genus level in(3.11%) and(2.43%). Our results suggest that the BAF system with intermittent aeration coupled with internal circulation enhanced denitrification in the bottom zone and thus improved the denitrification efficiency.
biofilter;intermittent aeration;internal circulation;pollutants;microbial response
X703.5
A
1000-6923(2022)02-0629-08
任武昂(1986-),男,陕西西安人,讲师,博士,主要从事污水处理与资源化研究.发表论文10余篇.
2021-06-03
陕西省重点研发计划(2019ZDLNY01-08);陕西省重点研发计划(2020ZDLNY06-07);国家自然科学基金资助项目(NSFC 52070065);河北省自然科学基金创新研究群体(Grant No.E2020402074)
* 责任作者, 副教授, cbb21@163.com