曾健
(中国水利水电第七工程局成都水电建设工程有限公司,成都611130)
随着水利水电工程数量的增加,其面临的施工环境也日趋复杂,人们对隧洞钻孔爆破技术的要求也在不断提升。在实际工程中,应结合工程的实际情况,提升这一技术应用方案设计的合理性,强化其应用过程的规范性,在达到预期效果的基础之上,保证各施工安全[1]。因此,应加强研究,提升钻孔爆破技术应用能力,为水利水电工程施工提供强大的技术保障。
水利水电工程施工中隧洞钻孔爆破技术根据“孔”的差异而体现一定的差异,具体包括辅助孔爆破技术、掏槽孔爆破技术、周边孔爆破技术[2]。每个爆破孔作用各有不同,绘制不同炮孔作用效应组合图,如图1所示。在采取钻爆方法挖掘隧洞钻面时,施工人员必须严格按照相关的图纸、数据、标准等规范化操作,保证爆破孔布局科学、数量合理、便于实施,与此同时,还要做好相关方面的安全保护工作和应急处理措施。总体而言,在有关方面工作开展时,应加强技术设计与应用管理等方面的投入。
图1 水利水电工程施工中爆破孔效应图
在实践过程中,对于水利水电工程施工中隧洞钻孔爆破技术的应用管理工作,应做到与时俱进,实现管理的系统化,从而强化相关技术的应用效果,积累经验[3]。具体操作时,可以设置“事前—事中—事后”的技术应用管理路径。“事前”是对工程具体情况详细了解,针对性选择技术,并制订相应的方案,在这一环节,应考虑安全、质量、可行性、成本投入等情况,并做好准备工作,包括相应的材料、设备、人员、防护措施等。“事中”则是严格按照相关要求进行操作,实施爆破,在这一环节必须加强监督,保证流程、操作等合规,并及时处理一些突发情况。“事后”是对爆破效果进行检查,分析其是否达标,总结经验和不足。
在水利水电工程施工中,隧洞钻孔爆破技术实践应注重孔位布置、测量与用药、事故预防及处理措施。其详细情况如下。
炮孔布置主要包括区域确定和布孔2方面工作。在具体布置过程中,需要考虑对后期施工的影响,尽量减少炮孔移动次数和频率。与此同时,炮孔放线和岩层的层里应相互垂直,保证布置方式与轮廓图一致。其中,掏槽孔最后布设,应合理控制其深度,具体应大于崩落孔深度的15%左右。在开展钻爆工作时,施工人员应详细了解超前钻探情况、围岩完整程度、软硬度等相关内容,从而合理选择开挖模式,保证爆破具有可行性和针对性,高效利用炮孔[4]。对于断面开挖方法选择时,应准确确定隧洞出口位置的围岩级别,同时对掏槽眼、辅助眼、周边眼、底板眼等的数量、位置、深度等应加强管控,并合理进行爆破器材选择,按照要求准确填装药量,保证装药结构、起爆的方法和顺序合理。例如,Ⅲ级围岩在全断面开挖炮孔设计时,周边孔间距可以设置为40.0 cm,外插脚为2°~3°,辅助孔间距最大不超过120.0 cm,最小不小于80.0 cm,并布置多排楔形掏槽。
用药量设计是隧洞钻孔爆破技术实践开展中的重要部分,应在达到相关要求的前提下,尽量节约用药成本,增加安全性。通常情况下,一些普通隧洞在使用钻孔爆破技术时,采用类比分析和经验公式方法进行炮孔数量和间距计算,并基于此准确界定药量和开挖深度。与此同时,还需要结合施工现场实际情况进行适当调整理论计算结果,增强其合理性。常用的用药量计算公式如式(1)所示:
式中,Q为施工过程中隧洞钻孔爆破不同排的炮尺装药量;q为施工时使用的药量;V为岩石爆破时的进尺体积;L为钻孔深度;S为工程施工断面开挖总面积;n为炮孔有效使用率。
根据式(1)可以计量施工时每排炮进尺装药总量,基于此准备炸药药量。除此以外,爆破过程中将会产生较大的振动力,改变隧洞岩体结构,使之发生松动的问题。因此,相关人员应计算松动圈半径,将其作为最小抵抗线,并合理控制药量和炮孔间距的关系。有关松动圈半径计算公式如式(2)所示:
式中,R为松动圈半径;P为应力波初始径向应力;a为应力波衰减的数值;ρ为炸药密度;st为岩体的抗拉强度;γb为炮孔的半径大小;ν为泊松比。
根据式(2)的可以计算得出炮孔间距。但是,对于炮孔方向应与最小抵抗线相分离,不可位于同一方向,具体操作时,可以使炮孔倾斜,与最小抵抗线之间形成45°~75°的夹角。除此以外,为了保证工程隧洞钻爆时岩体破裂发育较好,尽量减少岩石破碎和抛掷问题,必须合理计算炮孔内部炸药量,具体公式如式(3)所示:
式中,D为施工时炮孔实际使用炸药的数量;e为换算系数;t为炮孔装填系数;g为炮孔被堵塞的系数;l为炮孔深度;w为最小抵抗线;nc为炮孔深度对炸药装填量影响系数。
根据式(3)可以计算每个炮孔实际使用炸药的数量。
水利水电工程隧洞钻爆过程中,因钻爆引发的塌方事故较为常见,应对其加强预防和处理。详细措施如下:(1)在施工之前,对于钻爆可能出现的塌方概率、部位、程度等进行分析和预测,作为预防措施和应急措施制定的依据。具体操作时,可以使用Revit软件、Project软件,按照工程的实际情况输入参数,形成3D模型,模拟分析塌方问题。(2)在施工过程中,施工人员应对炮孔布置时的钻杆垂度详细了解,保证钻头在孔内升降速度合理,规避因钻浆冲刷孔壁或者负压导致的孔壁塌方问题。除此以外,在钻进成孔作业时,应对地层、孔深的变化情况详细掌控,及时进行钻进参数调整,并及时清除杂物、钻渣。(3)组建事故应急处理小组,能够及时对突发事故进行处理,避免事态扩大化。事故应急处理小组应包括抢险救灾小组、技术专家组、物资供应小组、医疗救护小组、后勤保障组等,做到各司其职,协同开展相关工作。
水利水电工程施工中隧洞钻孔爆破技术应用过程中,为了保证相关技术应用做到优质高效,并减小问题发生率,应设置相应的保障措施。
在钻孔爆破技术应用之前,应加强勘查投入,为技术方案制订与实施提供依据,从而尽量减少外界环境对技术应用的影响。具体操作时,应对整个工程项目所在的施工环境进行勘查,包括地质结构、岩层结构、地下水情况、岩层稳定性、抗震能力、组成元素、周围环境等,获取相关方案制订的材料和数据,尤其是孔的位置及附近的勘查工作,必须做到细化,为孔的计算、炸药充填等工作开展提供支持,将理论与实践结合在一起,提升其合理性。例如,工程周围存在其他建筑,且岩体结构稳定性较差,为了防止爆破实施后,导致岩石滑落,而损害周围建筑,应设置相应的防护网、防护栏。
钻孔爆破技术应用时,相关人员的专业水平和责任意识对整个工作的质量和安全影响较大,应提升施工人员的专业水平和责任感。为了实现这一目标,要选择有工作经验的人员,负责针对性的工作。与此同时,还要加强就注意事项、关键技术、图纸讲解等专业知识的培训工作,使每一个工作人员皆能详细了解工程要求,提升操作能力。此外,还要增强每个工作人员的责任意识,建立针对性的责任管理机制,减小问题发生率。例如,在安全管理方面的责任机制,应加强对施工人员安全自救方面的培训,使其掌握相关事故发生之后如何逃生,并有效使用相应的安全设备和设施,严格按照要求穿戴安全帽、防护衣等。作为施工管理单位,可以有效利用相应的视频监控技术、自动报警装置、自动检测系统等,实时了解隧洞现状,做到及时发现问题,及时解决问题,避免问题扩大化。
为了保证钻孔爆破技术应用质量,减小问题发生率,在相关工作开展之前,应对相关材料、设备的质量严格管控,做好检查工作,保证其性能良好符合相关施工要求。例如,在施工之前,对所使用的炸药进行质量检测,保证其与设计相符,对于钻孔使用的设备进行性能测试,保证其状态良好。除此以外,对于一些安全防护设备和设施,应急设备和设施,皆要进行检查,保证其能够有效投入使用。
本文认为,在水利水电工程施工隧洞钻孔爆破技术应用过程中,应加强新技术的使用,强化方案设计合理性。如BIM技术的应用,通过BIM技术对整个工程进行建模,然后,通过模型分析其在爆破方面的需求,在模型上布置相应的孔位、深度、间距等。与此同时,还可以借助模型对事故影响进行分析,包括影响范围、影响程度等,从而为相关措施的制定提供依据。在工程实践中,还要加强新技术的创新研究,建立针对性的应用模型,设计智能化的服务系统,强化应用效果。
综上所述,水利水电工程施工中隧洞钻孔爆破技术应用工作开展时,必须加强对技术方案设计与实施管理,强化技术应用质量和效果,降低施工成本,保证施工安全,减小问题发生率。此外,还要提高施工人员的专业素质和责任意识、保证相关材料和设备的质量合规、使用新技术强化设计效果,保证爆破技术应用优质、安全、可靠。