miRNA在胰岛素信号传导通路中的作用研究

2021-12-24 13:20:53秦振英胡幼芳
关键词:信号转导高脂抵抗

陈 瑶,秦振英,胡幼芳

南京医科大学第一附属医院儿童保健科,江苏 南京 210036

近年来,2 型糖尿病(type 2 diabetes,T2DM)在各年龄段人群中发病率都显著增加,已成为世界范围内常见的代谢紊乱性疾病,影响全世界超过4 亿人口,目前我国成人T2DM 的患病率约为11%,是T2DM 患者最多的国家,给国民经济和人民生活带来严重负担[1-3]。虽然目前临床上有多种T2DM 的治疗药物,但尚无根治方法,因此,积极寻找新的研究方向尤为重要。T2DM起病隐匿,发病机制复杂,其中胰岛素抵抗是T2DM 的重要发病因素,且胰岛素抵抗与胰岛素信号传导通路密切相关。已有研究报道胰岛素信号传导途径中任何效应分子的变化均可引起胰岛素信号传导缺陷,参与T2DM 胰岛素抵抗进程[4-5]。随着生物信息技术的飞速发展,微小RNA(microRNA,miRNA)是近年来发现的一种小分子非编码RNA,参与调控生物的多种病理生理进程。多种miRNA 被证实可以调节胰岛素信号传导通路中关键蛋白的表达,影响胰岛素的敏感性,为探寻T2DM的治疗提供了新方向。本文综述了部分调控胰岛素信号传导通路关键蛋白表达的miRNA及对T2DM 胰岛素抵抗的作用机制,为T2DM 相关药物的研发提供新的研究思路。

1 T2DM胰岛素抵抗相关胰岛素信号传导通路

胰岛素抵抗是指给予定量的胰岛素不能增加相应的葡萄糖摄取和利用,机体需要额外分泌更多的胰岛素来维持血糖稳定,主要发生在胰岛素敏感的组织,如骨骼肌、肝脏和脂肪组织。胰岛素抵抗是T2DM 的重要发病机制之一,并伴随T2DM 发生、发展的整个过程[6-7]。生理状态下,胰岛素与胰岛素受体结合后,通过胰岛素信号传导通路产生级联反应,从而发挥作用。研究显示,T2DM胰岛素相关信号传导通路主要包括以下两种:①磷酸肌醇-3激酶/蛋白激酶B(phosphatidylinositol 3 kinase,PI3K/ protein kinase B,PKB,即PI3K/AKT)信号转导通路:PI3K/AKT 信号转导通路作为重要的的胰岛素信号传导通路,参与机体三大营养物质代谢。研究报道胰岛素受体底物(insulin receptor substrate,IRS)-1和IRS-2在肝脏中特异性消融,影响胰岛素-胰岛素受体信号传导通路从而抑制了肝脏由禁食状态向进食状态正常过度的基因表达,导致葡萄糖耐受不良和T2DM的发生[8]。Tremblay 等[9]研究发现,高脂喂养大鼠的骨骼肌,出现PI3K 活化受限,进而导致胰岛素刺激的葡萄糖转移蛋白4(glucose transporter 4,GLUT4)易位受损,从而影响葡萄糖的正常代谢,参与胰岛素抵抗的过程,加重T2DM。②丝裂原活化蛋白激酶(mitogen -activated protein kinases,MAPK)信号转导通路:MAPK 信号转导通路与机体细胞的增殖和分化密切相关[10]。其中,信号转导途径中任何效应分子(如MAPK14等)的变化或翻译后修饰蛋白的异常表达均可引起胰岛素信号传导缺陷[11],导致胰岛素抵抗的发生。以上胰岛素信号传导通路密切参与了T2DM胰岛素抵抗过程,通过调控胰岛素信号传导通路有望为防治T2DM提供新思路。

2 miRNA与T2DM

miRNA广泛存在于真核生物体内,是一种长度22~24 个核苷酸,进化上高度保守的非编码性小分子RNA,其通过与信使RNA(mRNA)的3′端非翻译区(3′-untranslated region,3′UTR)结合,在转录后水平抑制或者降解靶信使RNA,从而达到负性调节靶蛋白的作用。目前,人类基因中已鉴定出2 000 多个成熟的miRNA,miRNA可调控超过一半的蛋白质编码基因,在细胞的生长、增殖、分化、代谢等方面发挥重要调控作用[12];其对肿瘤的发展也起到重要的调节作用[13]。单个miRNA 可与百余个mRNA 靶向结合,多个miRNA 也可以协同作用同一mRNA,这也使miRNA 调控胰岛素抵抗的机制变得更加复杂。新近研究发现T2DM患者血清及糖尿病动物模型不同组织(如脂肪组织、骨骼肌和肝脏)中多种miRNA的表达发生改变,如miR-29a、miR-29c、miR-33、miR-143、miR-103/107 等表达均显著上调[14],miR-29b、miR-338-3p表达下调[15-16]。这提示了miRNA可能是调控T2DM发生发展的重要靶标。

3 miRNA 参与T2DM 胰岛素抵抗相关信号传导通路的关键过程

越来越多的研究表明miRNA参与T2DM胰岛素抵抗相关信号传导通路的关键过程,且调控miRNA可影响胰岛素信号传导通路,缓解胰岛素抵抗,发挥防治T2DM的潜能[11]。以下将重点综述近年来国内外研究的部分miRNA 在胰岛素信号传导通路中的调节作用,及其对T2DM胰岛素抵抗的影响。

3.1 miR-183家族

miR-183家族,包括miR-182、miR-96等,是1组定位于7号染色体上的微小RNA 的总称,在结构上高度保守。miR-183 家族在肝癌、乳腺癌等多种肿瘤相关疾病中研究较多,与胰岛素抵抗也有直接的关系[17-18]。Motin~o等[19]发现,高表达的miR-183可特异性结合3′UTR区域,抑制IRS-1的表达,通过阻断胰岛素-胰岛素受体结合,降低肝内胰岛素的敏感性,抑制细胞内糖酵解和胰岛素分泌,加重胰岛素抵抗。Yang 等[20]也证实了miR-96 对胰岛素敏感性的负性调控作用。通过高脂饮食喂养诱导建立胰岛素抵抗小鼠模型,经实时荧光定量PCR 检测发现,小鼠肝脏中miR-96 的表达量是对照组的4倍。进一步研究发现胰岛素受体和IRS-1均是miR-96 的直接靶标,过表达miR-96在肝细胞转录后水平抑制胰岛素受体和IRS-1的表达,降低了胰岛素受体表达水平及胰岛素刺激的胰岛素受体磷酸化,同时降低了下游信号分子IRS-1的磷酸化,从而诱导肝胰岛素抵抗的发生[20]。因此,干预miR-183家族有望通过影响胰岛素受体及受体底物的磷酸化,增加胰岛素敏感性,缓解T2DM胰岛素抵抗。

3.2 miR-29家族

miR-29 家族,包括miR-29a、miR-29b 和miR-29c,显著高表达于胰岛素敏感组织,参与调节原代骨骼肌细胞的脂质代谢、葡萄糖以及胰岛素信号传导通路。近期的一项研究结果显示,miR-29家族的所有成员在T2DM患者的骨骼肌组织中均呈上调趋势,同时,这些miRNA 的表达与人骨骼肌胰岛素敏感性密切相关[21]。Massart 等[22]首先发现了糖尿病患者和动物骨骼肌中miR-29a、miR-29c 的高表达,并进一步证实了miR-29 过表达降低了IRS-1 和PI3K 的表达,影响胰岛素-胰岛素受体通路和PI3K/AKT通路,促进胰岛素抵抗进程。Zhou等[23]研究表明,胰岛素抵抗模型小鼠骨骼肌及肝脏中miR-29a水平均明显高于正常组,且影响脂质代谢,导致葡萄糖摄取异常。另一项研究表明[24],PI3K的调节亚基p85是miR-29b的直接靶点,在肝细胞中受到miR-29b 的负调控,与体外研究结果一致的是,禁食小鼠肝脏中miR-29 的表达和p85 的蛋白表达水平呈负相关,通过过表达miR-29b 可降低胰岛素诱导的肝细胞AKT 磷酸化,提示miR-29 可以作为胰岛素PI3K/AKT信号传导通路的负调节因子。因此,miR-29 可能作为胰岛素信号传导通路的调节因子,为T2DM治疗提供潜在干预靶标。

3.3 miR-27a

已有研究表明,T2DM 患者和肥胖患者血清中miR-27a的表达与正常健康组相比显著增加[11],miR-27a与脂肪酸、胆固醇代谢和葡萄糖稳态密切相关,T2DM 大鼠模型L6 细胞中miR-27a 的表达显著升高[25]。实验通过敲除miR-27a 基因,提高了MAPK信号转导通路关键蛋白MAPK14 的表达,从而改善胰岛素诱导的胰岛素抵抗L6 骨骼肌细胞的胰岛素信号传导和葡萄糖摄取,证实了miR-27a 与胰岛素敏感性的密切关系[16]。Yao 等[26]进一步研究发现,高脂喂养肥胖相关胰岛素抵抗小鼠模型中,miR-27a通过抑制过氧化物酶体增殖剂激活受体调节巨噬细胞极化,阻断AKT/PI3K 信号传导通路中的AKT磷酸化,诱发胰岛素抵抗,敲除miR-27a则可以改善高脂喂养小鼠的胰岛素敏感性。而Chen 等[27]证实了过表达miR-27a 可通过靶向抑制PPARγ的表达,减弱AKT/PI3K信号通路,抑制了GLUT4的活性,降低胰岛素的敏感性。因此,miR-27a作为一种成脂性miRNA,与胰岛素的敏感性负相关,可能通过调控胰岛素信号传导通路成为T2DM防治的潜在靶点。

3.4 miR-143

氧化固醇结合蛋白相关蛋白8(oxysterol binding protein-related protein 8,ORP8),作为胰岛素信号系统的一种新型调节因子,可以促进AKT/PI3K信号转导通路的激活。Jordan等[28]通过双荧光素酶活性测试发现miR-143与ORP8信使RNA 3′UTR的相互作用,证实了miR-143 与ORP8 的直接靶向作用,miR-143 通过靶向抑制ORP8 的表达,从而抑制AKT/PI3K 信号通路,引起胰岛素抵抗。研究还发现,高脂喂养小鼠肝脏和脂肪组织中的miR-143 表达水平上调,可刺激MAPK 信号转导通路中MAPK的磷酸化,促使胰岛素抵抗的发生,而沉默高脂喂养小鼠肝脏中miR-143则可逆转因高脂饮食引起的胰岛素抵抗[29]。这提示了miR-143可能通过调控胰岛素信号传导通路发挥防治T2DM的作用。

3.5 miR-338-3p

在T2DM进展中,研究发现部分miRNA的下调诱导了葡萄糖耐量异常及胰岛素耐受性的损伤[15-16]。Dou 等[16]使用3 种胰岛素抵抗模型,发现db/db 小鼠、高脂喂养小鼠肝细胞及15 μg/mL TNF-α干预的C57BL/6J 小鼠肝脏中miR-338-3p 表达均显著下调。进一步研究显示,过表达miR-338-3p通过靶向调节蛋白磷酸酶4调节子亚基,影响AKT/PI3K信号通路,逆转了C57BL/6J小鼠胰岛素抵抗。提示miR-338-3p 参与了T2DM 胰岛素抵抗的发生发展,并可能通过影响胰岛素相关信号通路成为缓解T2DM的作用靶标之一。

4 总结和展望

综上所述,胰岛素信号传导通路与T2DM 胰岛素抵抗密切相关,而miRNA 作为近年来研究的热点,其通过调控胰岛素信号传导通路参与T2DM 胰岛素抵抗发生发展的机制逐渐被揭示。随着研究的不断深入,miRNA可能通过影响胰岛素信号传导通路,成为缓解T2DM胰岛素抵抗的重要靶标。而积极研究miRNA在胰岛素抵抗相关胰岛素信号传导通路中的作用也为研究T2DM的新型药物提供了一个重要方向。新型药物的研究从实验到临床应用是复杂及漫长的过程,因此,还需要更细致深入地探索研究。

猜你喜欢
信号转导高脂抵抗
锻炼肌肉或有助于抵抗慢性炎症
中老年保健(2021年5期)2021-08-24 07:06:20
Wnt/β-catenin信号转导通路在瘢痕疙瘩形成中的作用机制研究
云南医药(2021年3期)2021-07-21 05:40:20
做好防护 抵抗新冠病毒
高脂血标本对临床检验项目的干扰及消除对策
iNOS调节Rab8参与肥胖诱导的胰岛素抵抗
运动降低MG53表达及其在缓解高脂膳食大鼠IR中的作用
高脂饮食诱导大鼠生精功能障碍
HGF/c—Met信号转导通路在结直肠癌肝转移中的作用
味精与高脂日粮对生长猪胴体性状与组成的影响