带电粒子在复合场中的运动研究

2021-10-25 01:15初同喜
高考·上 2021年9期
关键词:带电粒子教育信息化高中物理

摘 要:带电粒子在复合场中的运动是高中物理的重要知识,解决这类问题需要综合运用力学和电磁学方面的知识,同时还需要用到一些数学知识。本文将从理论和计算机仿真模拟两方面研究带电粒子在复合场中的运动规律。

关键词:高中物理;复合场;带电粒子;数字教学资源;教育信息化

复合场是指重力场、电场、磁场中的两者或三者同时存在于同一个空间。带电粒子经过复合场时会同时受到多个力的作用,其中重力和电场力具有相似的性质,常常可以将重力和电场力等效为一个力。接下来我们将研究带电粒子在图1所示的复合场中的运动规律。设带电粒子带正电,电荷量为q,质量為m,重力不计。匀强电场的场强大小为E,方向竖直向下,匀强磁场的磁感应强度大小为B,方向垂直纸面向里。

一、初速度方向水平向右

当洛伦兹力与电场力平衡时,即,带电粒子将以速度水平向右匀速直线通过复合场。若带电粒子射入复合场时的速度v大于v0,其所受的洛伦兹力大于电场力,这时问题就会变得很复杂。我们可以将物体所受的洛伦兹力进行拆分(如图2),一部分用于和电场力平衡,另一部分用于提供带电粒子做匀速圆周运动的向心力。那么带电粒子复杂的曲线运动就可看作是沿水平向右的匀速直线运动和沿逆时针方向的匀速圆周运动的合成,从而使问题得以解决。为此我们对带电粒子的初速度v进行拆分(如图3)。

将v分解为v0和v相,v相=v-v0,其中v0对应的洛伦兹力qv0B用于和电场力平衡,v相对应的洛伦兹力qv相B使粒子做匀速圆周运动。这样带电粒子一方面相对于复合场以速度v0向右做匀速直线运动,另一方面相对于圆心以速度v相为线速度做匀速圆周运动(如图4)。粒子做匀速圆周运动的周期,相应的角速度,匀速圆周运动的半径。设粒子在t=0时位于坐标原点O,t时刻圆心走过的位移为v0t,粒子绕圆心转过的角度。

t时刻带电粒子的横、纵坐标分别为

整理以上各式,可得:

同理可以分析出,若带电粒子射入复合场时的速度v小于时,带电粒子受到的洛伦兹力小于电场力。将v分解为v0和v相,其中v0仍等于,方向水平向右,v相仍等于v-,但此时v相为负值,方向向左,圆周位于x轴下方。

通过上述分析,我们就能够知道粒子的运动规律,对于某一时刻粒子的位置就可以确定下来。但是物体的运动轨迹如何?当速度变化时对粒子的运动会产生怎样的影响?学生很难有直观的感受。我们可以将上述理论分析过程借助数字教学资源,利用计算机进行仿真模拟。图5展示了当带电粒子以不同的速度射入复合场时的运动轨迹。(图5中的数据已略去了单位,且,下文中的其他图像也是如此)

若改变带电粒子的电荷量或质量,通过数字教学资源进行观察,上述图像形状不变,只是图像进行缩放。

若大量粒子以不同的速度同时射入复合场中,利用数字教学资源进行观察可得到如图6所示的运动轨迹。

带电粒子从O点出发后,经过一段时间后会汇聚到同一点(如图6中的A、B、C、D点),这提示我们速度选择器的尺寸应避开这样的点,不然无论何种速度的带电粒子可能都会射出速度选择器,达不到筛选粒子速度的目的。

当带电粒子的入射速度等于3时粒子恰好做匀速直线运动。当粒子的速度大于3时,v相为正值,圆周位于x轴上方,粒子在x轴上方运动。当粒子的速度小于3时,v相为负值,圆周位于x轴下方,粒子在x轴下方运动。

t时刻粒子的速度v(t)等于v0与v相的合成。由图4可知:

vx(t)=v0+v相cos(ωt) vy(t)=v相sin(ωt)

即:③

上述推导过程也可以通过分别对方程①和②进行求导得出。利用数字教学资源即可实时观察带电粒子的速度随时间的变化情况。

t时刻粒子的加速度a(t)可以看做圆心的加速度与匀速圆周运动的加速度的合成。但圆心做匀速直线运动,圆心的加速度为零,所以粒子的加速度就等于匀速圆周运动的加速度。

即:⑤

上述推导过程也可以通过分别对方程③和④进行求导得出。

二、初速度方向倾斜向上

当粒子的入射方向与x轴正方向夹角为θ斜向上方时(如图7),我们可以将速度v分解为vx和vy。其中vx=vcosθ,vy=vsinθ,再将vx分解为v0和vx-v0,将vx-v0与vy合成为v相,其大小为v相=,方向与x轴正方向夹角为φ,,。v0为圆周做匀速直线运动的速度,v相为粒子绕圆心做匀速圆周运动的速度(如图8),圆周运动的半径为。设t=0时粒子位于坐标原点O。

t时刻,粒子的横、纵坐标分别为:

以上各式联立,可得:

借助高中物理数字教学资源进行仿真分析,当粒子的速度方向斜向右上与x轴正方向夹角为30°时的运动轨迹如图9所示。

t时刻粒子的速度v(t)等于v0与v相的合成。由图8可知:

vx(t)=v0+v相cos(φ+ωt) vy(t)=v相sin(φ+ωt)

即:⑨

上述推导过程也可以分别对方程⑦和⑧进行求导得出。利用数字教学资源即可实时观察带电粒子的速度随时间的变化情况。

t时刻粒子的加速度a(t)可以看做圆心的加速度与匀速圆周运动的加速度的合成。但圆心做匀速直线运动,圆心的加速度为零,所以粒子的加速度就等于匀速圆周运动的加速度。

即:

上述推导过程也可以通过分别对方程⑨和⑩进行求导得出。

三、初速度方向为其他情况

(一)当带电粒子的初速度方向竖直向上时的运动轨迹如图10所示。

(二)当带电粒子的初速度方向水平向左时的运动轨迹如图11所示。

(三)当带电粒子的初速度方向竖直向下时的运动轨迹如图12所示。

(四)当带电粒子的初速度方向不在xoy平面时,可将v分解为vx、vy和vz。其中Z轴垂直纸面向外。vx和vy的处理方法与前文一致,在Z轴方向上粒子不受力,粒子沿Z轴方向做匀速直线运动。通过高中物理数字教学资源进行观察可直观看到粒子运动的轨迹在三维空间的分布情况。

参考文献

[1]王金聚.配速法巧解带电粒子在复合场中的运动问题[J].中学物理教学参考,2018,47(13):45-47.

[2]程稼夫,中学奥林匹克竞赛物理讲座[M].合肥:中国科学技术大学出版社,2000.

作者简介:初同喜(1983-),男,黑龙江齐齐哈尔人,本科,中学一级教师,研究方向:高中物理教学方法。

基金项目:黑龙江省教育科学规划2020年度教研专项课题“高中物理数字教学资源开发与应用研究”(课题批准号:JYB1320116)研究成果。

猜你喜欢
带电粒子教育信息化高中物理
“初高中物理衔接知识”融入中考试题的评析与启示
高中物理传送带模型简析
高中物理实验
带电粒子在磁场中的运动检测题
带电粒子的奇幻之旅
基于虚拟仿真技术的地方高校实验教学探讨
高职学院信息化建设中面临的问题和思考
创新信息技术支撑教学变革
带电粒子的秘密花园(续)
例谈量纲分析法在高中物理教学中的应用お