刘铮,欧阳鑫南,刘少勇,陈永安
(1.中能建地热有限公司,北京100020;2.中国能源建设集团有限公司工程研究院,北京100020)
能源是人类生存和文明发展的重要物质基础,随着社会科学技术的发展,我国能源供应能力显著增强,技术装备水平明显提高。然而,传统能源的短缺以及温室效应、雾霾等环境问题也相继出现。因此可再生能源的开发利用是我国调整能源结构、实现节能减排、合理控制能源消费总量的迫切需要,是完成非化石能源利用目标、建设清洁低碳社会、实现能源可持续发展的必然选择[1]。习近平总书记在2021年的中央财经委员会第九次会议上发表重要讲话并且强调:实现碳达峰、碳中和是一场广泛而深刻的经济社会系统性变革,要把碳达峰、碳中和纳入生态文明建设整体布局,拿出抓铁有痕的劲头,如期实现2030年前碳达峰、2060年前碳中和的目标[2]。在国内外大趋势下,发现可再生无污染的新能源以及发展相关技术就显得尤为重要,而地热能就是发展可再生能源以及清洁能源过程中非常重要的一环,地热能因其储量大、分布广、清洁环保、稳定可靠等优点,越来越受到工程人员和学者等社会各界的广泛关注,是一种现实可行且具有竞争力的清洁能源。
当前,浅层地热能供暖(制冷)技术主要应用于土壤源热泵系统中,其中地埋管作为整个系统的核心部件,对于换热效果有着举足轻重的影响[3]。地源热泵系统利用埋管换热器与周围土壤进行换热,夏季向地面释放热量并吸收冷量;冬季向地面释放冷量并吸收热量。但是,通过不断扩大地源热泵的使用范围和增加管道布置密度,土壤温度不平衡现象逐渐出现[4]。土壤的热失衡会使系统长期运行后部分区域土壤出现“冷、热堆积”现象,它会使土壤的温度逐年降低或者逐年升高,也就是说,这将导致土壤温度会越来越偏离其作为理想冷、热源时的初始温度,从而造成换热效果越来越差,系统的效率不断降低,使土壤源热泵的节能性大打折扣[5]。
热失衡问题影响了土壤源热泵系统的长期高效使用,因此国内外众多学者对热失衡及缓解热失衡的技术进行了研究,Zanchini为了分析热失衡的换热特征,使用模拟软件仿真模拟了土壤源热泵系统在冬、夏季冷热负荷不平衡时的工况[6];权犇等提出了在冬夏季初期只运行中心区域的分区运行方法,并通过模拟发现,分区运行对缓解地下热量累积十分有效[7];於仲义等通过对土壤源热泵地埋管实际运行测试显示,间歇运行能够最大程度地利用土壤的蓄热特性,相比连续运行,间歇运行的地埋管换热能力提高33.9%[8];马玖辰等利用砂箱实验系统研究了地下渗流对地埋管换热以及热失衡现象的影响[9]。综上可知,大多数国内外学者都是在研究如何尽量减小热失衡对换热效果的不利影响,本文则模仿含水层储能温度分区,提出了岩土储能分区,力图探索一种利用土壤主动冷热堆积现象来增强换热效果的方法。
在这种背景下,岩土储能技术应运而生。国际能源组织蓄能节能委会执委会将其定义为岩土储能(BTES:Borehole Thermal Energy Storage),岩土储能(BTES)系统是一种供热和制冷功能兼具的高效节能空调系统。在冬季,岩土储能热泵系统利用从岩土中提取热量,作为热泵的热源,给建筑提供供暖,而被取热的低温循环液(水)返回地下,将冷能储存在岩土储能孔周围的岩土中,使得区域内岩土体的温度低于周边自然温度,逐步形成“冷区”。而在夏天,通过切换管路循环方向,控制循环液(水)反向流经岩土储能孔,储存在岩土中的冷能被抽出并为建筑物提供制冷,而被排热的高温循环液(水)返回岩土储能孔,将热能储存在岩土储能孔周围的岩土中,使得区域内岩土体的温度高于周边自然温度,逐步形成“热区”,供下一个冬季供热使用。如图1系统原理图所示:
图1 岩土储能系统原理图Fig.1 Schematic diagram of BTES
这样冬夏交替、循环往复,形成了地温场的冷热分区。夏季用冷区储热区,冬季用热区储冷区。这样既增加了冷热系统的持续性和稳定性,又通过逆流交叉换热增加了传热效率。作为一种经济而有效的地下储能技术,可以减少建筑物的主要能源消耗和相应的二氧化碳,二氧化硫、氮氧化物等污染物的排放。
为准确方便的建立数学模型,将岩土储能地埋管换热器传热过程分为井孔内部和井孔外部两部分[10]。井孔内部传热包括岩土储能地埋管内循环流体传热、地埋管管壁和回填材料之间的导热;而岩土储能井孔外部的传热主要是岩土体的导热。
岩土储能井孔内部由地埋管和回填材料组成,一般采用单U型地埋管交换器,其是由一个圆柱形内部管形成的U型管道,其管壁外部至井孔壁之间填充有回填材料,如图2所示。
为便于分析以及保证分析的准确性,考虑了本岩土储能单U型地埋管换热器的四个部位:一个进口管(用i1来表示);一个出口管(用o1来表示);两处回填材料区域(用g1、g2来表示)。
通过分析和简化岩土储能井孔内部传热机理与热阻分布模式,分别建立进(出)水管内循环水对流换热与管壁导热过程的非稳态控制方程、井孔内各区域回填材料之间以及与井孔壁的非稳态传热控制方程[11]。当岩土储能换热器中的换热介质以给定速度循环流动时,单U型换热器井孔内部的传热控制方程如公式(1)~(4):
图2 井孔内部结构及热阻关系图Fig.2 Diagram of borehole internal structure and thermal resistance
式中:
ρr,ρg——管内循环水和回填材料的密度(kg·m-3);
cr,cg——管内循环水和回填材料的定压比热容(kJ·kg-1·K-1);
Λr——管内流体导热系数张量(W·m-1·K-1);
Ti(o)1——进(出)口循环水温度(K);
Ts——岩土体的温度(K);
Tgn——不同区域回填材料温度(K),n=1,2;
u——地埋管内循环水的流动速度(m·s-1);
εg——回填材料的孔隙度;
λg——回填材料的导热率;
Φfi(o)g——流体分别与上升管壁和下降管壁的传热系数(W·m-2·K-1);
Φgg——两个回填材料区域之间的传热系数(W·m-2·K-1);
Φgs——回填材料与岩土体的传热系数(W·m-2·K-1);
qnTgn——回填材料的法向热流量通量(W·m-2);
qnTi(o)1——进(出)口地埋管的法向热流量通量(W·m-2);
Hi(o)1——进(出)口地埋管热源(汇)项(kJ·m-3·s-1);
Hgn——回填材料热源(汇)项(kJ·m-3·s-1),n=1,2。
在实际工程中,土壤以及其和土壤源热泵系统的热量交换过程是非常繁杂的,因此为了方便建立模型,做出以下假设[12]:
1)岩土体认为是均匀的、各向同性的介质且不随土壤温度的变化而变化。
2)认为井深范围内土壤初始温度均匀一致(百米左右浅层地温也基本趋于一致)。
3)忽略地埋管与回填材料之间以及地埋管和周围土壤之间的接触热阻。
4)忽略地下含水层对于换热的影响,忽略地下渗流。
地埋管壁外土壤的传热模型为三维非稳态传热模型,在直角坐标中,可以用以下方程表示:
式中:
ρs——岩土体的密度(kg/m3);
λg——岩土体的导热率;
cs——岩土体的定压比热容(kJ·kg-·1K-1)。
在本文中所构建的物理模型与实际单U型岩土储能换热器相同,在此基础上利用有限元软件Feflow7.1(MZ—29830)分别对所建立的井内、外传热模型进行耦合求解,从而对不同的运行工况进行了数值模拟。
此次模拟设置了两个区域,每个区域设定为距离40×30 m2的矩形区域,竖直方向埋深为150 m厚的岩土体。在每个区域中心布置5×8孔的顺排式井群,井群布置如图3所示。井孔间距设置为4 m,井孔内部设120 m深的单U型HDPE垂直地埋管换热器,地埋管换热器以及回填材料参数列于表1。此次模拟是为了探究岩土储能利用冷热分区或冬夏季分区使用来提高换热效果的可行性。
图3 井群分布图Fig.3 Well cluster distribution map
表1 单U型埋管换热器设计参数Tab.1 Design parameters of single U-Type BHE
本次模拟时长为三年,每年按照365 d来计算,即制冷期120 d,间歇期60 d,供暖期120 d,间歇期65 d。其中系统运行期及制冷(供暖)期阶段地埋管换热器连续24 h运行,间歇期系统停止运行。
在夏季,以恒定进水温度30℃通向左侧热堆积的“热区”,而后以左侧“热区”的出水温度作为右侧冷堆积的“冷区”的进水温度,如此运行完成夏季岩土储能换热管与土壤的换热;而在冬季,系统反向运行,即以恒定7℃的进水温度先通向右侧冷堆积的“冷区”,然后再通入左侧热堆积的“热区”,这便完成冬季地埋管与土壤的换热。这样既增加了冷热系统的持续性和稳定性,又通过逆流交叉换热增加了传热效率。
如图3所示,两个区域在井群内外分别设置了7个观测点,左侧热堆积区域对应的是1~7号观测点,右侧冷堆积区域对应的是8~14号观测点。通过具有区域代表性的观测点的温度变化来反映整个区域的温度场的变化。
井外土壤参数参考典型岩土层物性参数,0~100 m为黏土层,100~150 m为砂土层,参数见表2。
表2 典型岩土层物性参数Tab.2 The physical parameters of the underground rock-soil layers
将整个物理模型按照竖直方向平均分为2层,每层土壤热物性均匀一致且不随时间改变。每层水平断面采用三角形不等距划分网格,竖直方向上则采用矩形网格划分,从而形成棱柱单元体。物理模型中每层有5 000个网格,模型整体的网格总数为15 000个,3D网格划分图见图4。经过网格独立性检验,采用该网格划分方法可以确保准确描述温度场的演化过程,同时有效避免了网格数目过大对模型计算速度的影响。
图4 研究区域3D网格剖分图Fig.4 The 3D meshing diagram of the research region
模拟计算总时间设为3年,采用定时间步长,每个时间步长为0.1 d,每个时间步长的最大迭代次数为3 500次,误差容限值设定为7×10-3。采用Eskilson&Claesson[16]计算方法来进行模拟计算。
根据对称性和对观测点温度变化趋势的观察,选取其中三个典型的观测点来反映整个区域土壤温度场的情况,观测点1、3分别位于井群外左侧和上侧,观测点4则位于井群内部的中心位置,见图3。
通过数值模拟得出两个区域内三个观测点的温度变化曲线图5和图6,由图5可以观察到,“热区”三个观测点温度均呈现逐年上升的趋势,夏季同期最高温度上升1.5℃,就每年的夏季间歇期来说,第二年比第一年土壤温度提高了约0.8℃,第三年比第二年土壤温度提高了约0.5℃。由此可知,热区土壤产生了储热效果,强化了后期用于冬季供热的换热效果。图6中表示出的“冷区”温度变化趋势则相反,三个观测点温度呈逐年下降的趋势,冬季同期最低温度下降0.7℃,就每年的冬季间歇期来说,第二年比第一年土壤温度降低了约0.3℃,第三年比第二年降低了约0.2℃。同理,区域内土壤产生了储冷效果,强化了后期用于夏季制冷的换热效果。
图5 “热区”土壤温度变化图Fig.5 Map of soil temperature change in thermal accumulation area
通过对岩土储能单U型地埋管进出口温度变化趋势的分析和对数据的处理,得出两个区域的温差和换热量变化曲线图7和图8。
图6 “冷区”土壤温度变化图Fig.6 Map of soil temperature change in cold accumulation area
图7 “热区”地埋管进出口温差和换热量变化图Fig.7 Variation diagram of temperature difference and heat transfer between the inlet and outlet of buried pipes in the thermal accumulation area
图8“冷区”地埋管进出口温差和换热量变化图Fig.8 Variation diagram of temperature difference and heat transfer between the inlet and outlet of buried pipes in the cold stacking area
图7 表示“热区”在夏季进口水温恒定30℃储热,冬季进口水温为“冷区”出口温度的工况下,“热区”中某一地埋管换热器进出口水温温差和换热量随时间的变化趋势。可见“热区”的进出口温差在冬季供暖期逐年上升,取热量逐年增大,其温差在第一年冬季供暖期最大为2.72℃,第二年上升到3.01℃,第三年则为3.29℃,而最高换热量也由第一年的2.992 kW提高到第二年3.311 kW,第三年则提高到3.619 kW,比第一年增加了约20.96%,说明其取热效果在冬季供暖期逐年增强。
图8则表示“冷区”在冬季进口水温恒定7℃储冷、夏季进口水温为“热区”出口温度的工况下,“冷区”中某一地埋管换热器进出口水温温差和换热量随时间的变化趋势。可见“冷区”的进出口温差在夏季制冷期逐年上升,排热量逐年增大,其温差在第一年夏季制冷期最大为3.76℃,第二年上升到3.95℃,第三年则为4.13℃,而最高排热量也由第一年的4.136 kW提高到第二年4.345 kW,第三年则提高到4.543 kW,比第一年增加了约9.84%,说明其排热效果在夏季制冷期逐年增强。
1)本文基于岩土储能原理和土壤冷热堆积现象,运用模拟软件进行了数值模拟,通过改变供暖期和制冷期单U型地埋管内流体循环方向,使冷热两个区域的制冷期和供暖期的换热效果有所增强,说明了利用分区主动控制土壤冷热堆积来实现岩土储能的可行性。
2)由以上分析可知,“热区”在夏季间歇期,第二年比第一年土壤温度提高了约0.8℃,第三年比第二年土壤温度提高了约0.5℃;“冷区”在冬季间歇期,第二年比第一年土壤温度降低了约0.3℃,第三年比第二年降低了约0.2℃。因此,通过供暖期和制冷期单U型地埋管内流体循环方向的改变,从而使两个区域取热量和释热量不相等,这就使设置的两个区域分别出现了冷区储冷和热区储热的情况。
3)研究结果表明,在由于冷热分区使冬季的供暖期和夏季的制冷期的换热效果逐年增强。在冬季供暖期“热区”取热量就最高换热量来说,第二年比第一年提高319 W,第三年比第二年提高308 W;在夏季制冷期“冷区”排热量就最高换热量来说,第二年比第一年提高209 W,第三年比第二年提高198 W。
4)按照此类方法,将垂直换热埋管按照但类似的单元模块分区,比如两组(或多组)同样垂直换热埋管数量和水平管连接类型的矩形分区列阵,就规律有序的形成了一个组地下“储能热库+储能冷库”。冬季低温循环液(水)先经过“冷区”再经过“热区”,两级阶梯吸热,提高换热温差,增加换热效果;夏季高温循环液(水)先经过“热区”再经过“冷区”,两级阶梯放热,提高换热温差,增加换热效果。所以岩土储能技术通过有效的分区设计,让冷区堆积冷,热区堆积热,分别确保供暖制冷的热源、冷源充足,不仅解决了大规模地埋管系统冷热堆积不可控和热平衡不易控的通病,而且还可以提高热泵系统的能效。
5)本文的模拟工况建立在忽略地下渗流和含水层的地质条件上,对于存在地下渗流和地下含水层的地质条件还需进一步研究。