谢元惠 单伟 于学峰 迟乃杰 汪方跃 李大鹏 张岩 李小伟
1.地质过程与矿产资源国家重点实验室, 中国地质大学地球科学与资源学院, 北京 100083 2.自然资源部金矿成矿过程与资源利用重点实验室, 山东省金属矿产成矿地质过程与资源利用重点实验室, 山东省地质科学研究院, 济南 250013 3.合肥工业大学资源与环境工程学院,矿床成因与勘查技术研究中心, 合肥 230009
近年来,岩石学家和地球物理学家根据诸多证据逐渐认识到,穿地壳岩浆系统包含了上地幔和地壳不同层次的多个岩浆储库,这些不同层次的岩浆储库主要通过岩墙形式彼此连通,在构造活动的影响下,发生物质和能量的运移(Cashmanetal.,2017;Mageeetal.,2018;Sparksetal.,2019)。对于穿地壳岩浆系统内的某一个岩浆储库而言,它们大部分时间处于冷储存状态(熔体/晶体比值低,即晶体在整个岩浆系统内占据较高比例;马昌前等,2020)。在强烈构造活动并伴随下覆基性岩浆再补给的条件下,新岩浆或流体注入可以有效地降低岩浆系统的晶体占比,并短暂地转入高熔体/晶体比的岩浆系统状态,而火山系统的喷发恰恰是在这种条件下发生的(Cooper and Kent,2014)。
穿地壳岩浆系统内不同层次的岩浆储库可在熔体成分、流体组分、晶体/熔体比例,以及流变学等性质方面存在差异。同时,在单个岩浆储库内可以发生一定程度的分离结晶或堆晶作用,包括流体对晶体的改造或交代作用(Edmondsetal.,2019;Sparksetal.,2019)。考虑到岩浆的密度,挥发分含量,围岩性质,以及岩浆储库的层次,一般而言,下地壳层次多出现偏基性的岩浆储库(Cashmanetal.,2017);在上地壳的浅部岩浆储库,同时受到熔体密度和挥发分含量的影响,可以同时存在偏酸性或偏基性的岩浆储库(Lietal.,2016;Cashmanetal.,2017;Jacksonetal.,2018;Gaoetal.,2020;Mangleretal., 2020)。在构造活动的影响下,不同批次的深层次岩浆可以迁移至浅部岩浆储库,并发生“岩浆混合”,这个过程可能反复多次发生。
同一穿地壳岩浆系统内的某种矿物,在不同层级岩浆储库内发生熔蚀、交代或再生长,进入最浅层次的岩浆储库,最后发生固结成岩,这种类型的晶体被称之为“再循环晶”(Jerram and Martin,2008;罗照华等,2013;马昌前等,2020)。岩浆岩作为岩浆作用的综合产物,它的晶体群组成可能受到整个穿地壳岩浆系统的影响。因此,再循环晶的出现也可以视为一种广义上的岩浆混合,晶体与晶体之间的接触关系,可以是一种共结关系,也可以是一种“反应关系”(Ubideetal.,2014b)或“组合拼贴关系”(例如花岗质侵入岩中钾长石巨晶与周围矿物之间的关系;Yinetal.,2021)。因此,开展岩浆通道系统的综合研究,有助于阐明岩浆形成和演化的真实过程(马昌前等, 2020)。
上述认识对“斑状结构岩浆岩”的成因解释提出了挑战:传统意义上的“斑晶(phenocryst)”可能不是在封闭的单一岩浆储库内形成的,而是来自开放系统内不同层次的岩浆储库,即过去认为的“斑晶”实际上并不是从全岩成分代表的岩浆中结晶出来的,而是来自穿地壳岩浆系统内不同深度层次的再循环晶。大多数情况下,这些再循环晶和周围的基质更可能是一种不平衡关系。同时,这些再循环晶相互接触,或者再循环晶与自生晶(autocryst,即以全岩成分为代表的岩浆内结晶的晶体,Milleretal.,2007)相互接触,很容易触发稳定同位素的非平衡分馏,引发一系列地球化学问题的再思考(Baietal.,2021;Dengetal.,2021)。
煌斑岩作为浅成相或半深成相富挥发分的一大类岩石,常呈斑状结构,它们的“粗晶(macrocryst,Clementetal.,1984)”与基质常处于不平衡状态(Ubideetal., 2014b;Weietal., 2015)。基于穿地壳岩浆系统的概念,这些“粗晶”在大多数情况下不能称之为斑晶,而更可能是再循环晶。
本文选择胶东早白垩世钙碱性煌斑岩及其中的单斜辉石“粗晶”作为主要研究对象,通过详细的岩相学与矿物学成分分析,综合全岩地球化学数据,划分煌斑岩中单斜辉石晶体的类型,厘定它们的结构和成分变化特征,阐明不同类型单斜辉石“粗晶”的形成过程,最后利用穿地壳岩浆系统的理念,重新认识再循环晶对煌斑岩全岩成分的改造与影响,刻画穿地壳岩浆系统内不同层级岩浆储库之间的联系。
华北克拉通北邻中亚造山带,东接苏鲁超高压变质带,南邻秦岭大别造山带(图1a),是世界上最古老的太古宙克拉通之一,并保存有大于3.8Ga 的陆壳记录(Liuetal.,1992)。胶北地体位于华北克拉通东南缘(图1a);其西侧为鲁西地块,以郯庐断裂为界;东南侧为苏鲁超高压变质带,以五莲-烟台断裂为界(图1b;Tangetal.,2007,2008;Dengetal.,2015, 2017)。本文研究区位于胶北地体内,该地体前寒武纪基底主要由新太古代胶东群火成片麻岩组成,包括英云闪长岩-奥长花岗岩-花岗闪长岩系列(TTG)片麻岩(~2.9Ga 至~2.7Ga)、角闪岩(~2.5Ga)和基性麻粒岩(~2.4Ga),并在~1.85Ga发生区域变质作用(Tangetal.,2007;Wangetal.,2010, 2015;Liangetal.,2018)。
图1 中国东部和华北克拉通主要构造单元地质简图(a,据Zeng et al.,2011修改)、胶东半岛地质简图(b,据Tang et al.,2006修改)和丛家岩体及煌斑岩分布概况图(c)
三叠纪早期,扬子板块与华北克拉通发生碰撞,形成苏鲁超高压变质带(Cong,1996;Zhengetal.,2003;Zheng,2008),并伴有区域岩浆活动,时空上逐渐延伸至胶北地体。大量的年代学研究表明,中生代时期胶北地体主要发生了3期大规模岩浆活动:晚侏罗世160~141Ma(Zhangetal.,2010;Maetal.,2013)、早白垩世早期132~123Ma(Yangetal.,2012)和早白垩世晚期118~111Ma(Zhangetal.,2010;张岳桥等,2007)。上述多期次岩浆活动导致大量岩浆岩侵入到前寒武纪基底中,典型代表为玲珑花岗岩体(160~147Ma)和郭家岭花岗闪长岩体(133~111Ma)(徐金方,1991;Wangetal.,1998;Zhangetal.,2003, 2010;Yangetal.,2012,2018;Maetal.,2013)。在这些中生代花岗岩中产出多种类型的白垩纪中基性岩脉,包括煌斑岩、辉绿岩和闪长岩等,这些脉岩的同位素年龄范围为132~113Ma,峰值为125±5Ma(Meng,2003;Guoetal.,2004;Liuetal.,2008, 2009;Maetal.,2014a,2016;Dengetal.,2017)。丛家岩体位于招远市宋家镇以北(图1b),是郭家岭序列花岗岩的重要组成部分,主体岩性为似斑状花岗闪长岩(图2a)。岩石中“粗晶”主要为钾长石,粒径可达1~5cm,含量约10%~15%;基质矿物的粒径范围为1~5mm,呈中细粒,主要由石英(20%~25%)、斜长石(40%~45%)、钾长石(约10%)、角闪石(5%~15%)和黑云母(约占5%)组成,副矿物主要为榍石、锆石、磷灰石和不透明矿物等。石英呈他形粒状,充填在其他矿物间隙中;钾长石“粗晶”多为自形短柱状或厚板状,基质多呈半自形板状,部分晶体可见卡式双晶发育;斜长石呈自形至半自形板状或板条状,角闪石多呈柱状、粒状,黑云母呈片状产出。
图2 丛家岩体中煌斑岩野外地质照片及镜下照片
丛家岩体内产出了大量煌斑岩脉(图1c),这些煌斑岩脉沿北西走向密集展布,侵位于丛家似斑状花岗闪长岩中(图2a),脉体中可见大量似斑状花岗闪长岩捕虏体(图2b)。上述岩脉宽度一般在20~90cm之间。丛家煌斑岩岩性主要为闪斜-拉辉煌斑岩类(图2c-g),它们的新鲜面主要呈深灰色,具“斑状”结构和块状构造。岩石中的“粗晶”以单斜辉石(10%~20%)、角闪石(约2%)和斜长石(5%)为主,偶见少量绿帘石“粗晶”(约2%)。基质主要有角闪石(35%~40%)、斜长石(35%~40%)、方解石(2%~5%)和绿帘石(2%~5%)。煌斑岩基质中的副矿物有磁铁矿、锆石和磷灰石等。此外,个别煌斑岩中包含少量不混溶“珠滴”,类似于“杏仁体”(约2%),主要成分为方解石(图2c)。
煌斑岩中单斜辉石“粗晶”粒径在0.2~2mm之间,偶见单斜辉石聚晶(图2d-g)。单斜辉石“粗晶”自形程度较高,常表现复杂的环带结构。根据单斜辉石结构特征的不同,本文将丛家煌斑岩中的单斜辉石“粗晶”分为两种类型,即正环带辉石和振荡环带辉石。正环带辉石少见,具有典型的核-边结构(图2d, e)。在背散射图(BSE)中,它们显示核部较暗而边部较亮的特征。部分正环带辉石核部发育典型的筛状结构,筛孔中主要包含一些斜长石、磁铁矿和大量流体包裹体。边部具振荡环带特征,总体反映出晶体生长过程中环境的变化。相比之下,具有振荡环带的“单斜辉石粗晶”(图2f, g)较为发育,它们显示干净的振荡环带特征,核-边结构不发育。斜长石“粗晶”粒径在0.2~1mm之间,多为半自形晶,部分颗粒蚀变为钠黝帘石(图2h)。煌斑岩中无论是“微斑晶”亦或是基质中的角闪石,多为长柱状,偶有粒状角闪石发育(2i, j),多色性明显,角闪石“微斑晶”大小为0.2~0.5mm。
为确定研究区煌斑岩脉的全岩元素地球化学组成,本研究选取6件未遭受明显蚀变的样品,并无污染粉碎至200目。全岩主量及微量元素分析均在武汉上谱分析科技有限责任公司完成。全岩主量元素分析方法为波长色散X射线荧光光谱法,测试仪器为波长色散X射线荧光光谱仪(ZSXPrimusⅡ),分析遵循中国国家标准(GB/T 14506.28—2010),采用中国国家岩石标准(GBW07103、GBW07105、GBW07111)对测量样品的元素浓度进行校准,最终的分析精度优于±5%。全岩微量元素含量测定利用Agilent 7700e ICP-MS仪器完成,具体的分析流程与刘颖等(1996)的描述一致,本次用于校准测量样品元素浓度的岩石标准样品为AGV-2,BHVO-2和BCR-2,微量元素含量的分析精度优于±5%。
矿物电子探针分析在山东省地质科学院山东省金属矿产成矿地质过程与资源利用重点实验室完成,分析所用仪器型号为JEOL JXA-8230。工作电压设置为15kV,发射电流为20nA,分析长石类矿物时的束斑直径为5~10μm,其他矿物所用束斑直径为1~5μm,分析精度优于±2%。具体的分析步骤可参考Xingetal.(2020)及Huetal.(2019)的详细描述。
矿物原位微量元素测定及元素扫面在合肥工业大学资源与环境工程学院矿床与勘查中心(ODEC)利用LA-ICP-MS完成。分析仪器配备了激光烧蚀系统(PhotonMachines Analyte HE with 193 nm ArF Excimer),ICP-MS型号为Agilent 7900。激光剥蚀过程中,氦气和氩气分别作为载气和补充气体,在进入ICP前通过T型接头与载气混合。微量元素分析采用的激光频率为8Hz,能量为2J/cm2,激光束斑大小为10~30μm。在每次激光开始剥蚀矿物之前,监测20s的空白气体信号。对硅酸盐矿物的微量元素组成采用多外标无内标法进行校正。用于数据校准的外部标准样品为GSE-1G、BCR-2G、NIST 610和NIST 612。在每10个未知点分析后对标准样品BCR-2G、NIST 610和NIST 612各进行一次分析,GSE-1g则在每次矿物面扫的开始和结束时进行一次分析。数据处理使用ICPMSDataCal软件Liuetal.(2008)。大部分元素的不确定度优于±10%。
本次研究对丛家煌斑岩样品中的主要造岩矿物(单斜辉石、角闪石及斜长石)进行了电子探针分析,并对部分样品中的单斜辉石进行了原位微量元素分析。单斜辉石和斜长石的矿物化学式通过Geokit软件(路远发,2005)获得,角闪石矿物的化学式则利用Lietal.(2020)提出的方法进行处理。为了直观地反映元素在单斜辉石中的分布,本次研究选择了一颗具筛状结构的单斜辉石颗粒进行了LA-ICP-MS元素面扫描,共分析51种元素,并给出了重要元素(Al、Sr、Y、∑REE、Cr和Ni等)和相关参数(Mg#值)的分布情况。
3.1.1 单斜辉石
根据分析样品中单斜辉石的(环带)结构特征(如图2所示)及元素含量变化特征(见表1、表2),本研究将这些单斜辉石分为主要的两类,即正环带辉石和振荡环带辉石。在Wo-En-Fs图解中(图3a),大部分单斜辉石数据点落入透辉石区域,少数几个数据点落入普通辉石区域。
图3 丛家岩体中煌斑岩的矿物分类图解
表1 丛家煌斑岩中单斜辉石主量元素数据(wt%)
表2 丛家煌斑岩中单斜辉石微量元素组成(×10-6)
正环带辉石的核部及边部的化学成分存在一定差异。正环带辉石核部的SiO2含量变化较大为49.4%~54.2%,MgO含量在14.4%~16.8%之间变化,FeOT含量范围为1.59%~6.51%,CaO含量为22.2%~23.2%,Mg#值变化范围为86.0~94.9。此外,对于无筛状结构核部,它们的Cr含量为39.6×10-6~45.8×10-6,Ni含量范围为2.16×10-6~3.24×10-6,具较低的稀土元素总含量(∑REE:4.29×10-6~4.43×10-6)及Nb/Ta值(3.55~4.31)。在球粒陨石标准化稀土元素配分模式图中(图4a),无筛状结构正环带辉石核部未表现出明显的Eu负异常(Eu/Eu*=0.85~1.04),轻重稀土存在一定分异,(La/Yb)N值范围为6.43~7.25。在原始地幔标准化微量元素蜘蛛图中(图4b),无筛状结构正环带辉石核部表现出Th、U、Pb、Zr和Hf等元素富集,而Nb、K、P等元素亏损的特征。
正环带辉石边部具有较为稳定的SiO2含量,为50.2%~52.6%;Al2O3含量为2.44%~5.36%,CaO含量范围20.6%~23.4%,FeOT含量在4.72%~8.01%之间,MgO含量为14.0%~16.3%。此外,边部的Mg#值较核部偏低,为78.9~89.1;Cr和Ni含量较核部更高,分别为2458×10-6~6177×10-6和85.8×10-6~158×10-6;Nb/Ta值及∑REE均较之核部更高,分别为5.94~15.1和49.2×10-6~1055×10-6。在球粒陨石标准化稀土元素配分模式图中(图4a),正环带辉石边部的配分曲线具有与核部相似的趋势,Eu/Eu*为0.90~1.03,(La/Yb)N值为5.57~6.21。在原始地幔标准化微量元素蜘蛛图中(图4b),正环带辉石边部具富集Th、LREE(轻稀土元素)等元素,亏损Nb、Pb、P等元素的特征。
图4 单斜辉石球粒陨石标准化稀土元素配分图(a、c)和原始地幔标准化微量元素蜘蛛图(b、d)(标准化值据Sun and McDonough, 1989)
本文选择具有筛状结构核部的正环带辉石,进行LA-ICP-MS元素面扫描分析。如图5所示,尽管辉石核部的筛孔中包裹体会造成异常值的存在,导致辉石核部本身的信息有所掩盖,但仍然不难看出,辉石的Ca、K、Cr、Ba、Rb、Sr/Y等均表现出了显著的核-边结构,其中Ca、Cr、Y等元素显示出核部低而边部含量高的特征,K、Rb、Ba等元素含量及Sr/Y比则显示出核部高而边部低的特征。此外,在这些高分辨率元素分布图中,部分显示出明显的扇形分带,这在BSE图像及正交偏光镜下照片中均得到反映(图2d-e)。正环带辉石沙漏状扇形区域,Mg#值明显偏高;而棱柱状的扇形区域中强烈富集Al、Cr及∑REE等(图5)。
为了进一步排除筛孔中基质成分的影响并更直观地反映筛状结构辉石核部及幔部元素含量差异,从该晶体的元素面扫结果中截取了一条排除筛孔信息的横向剖面(A-B,图5所示),数据列于表3中,几种元素分布剖面图展示于图6。从剖面数据看,正环带辉石的筛状核部具有较高的K含量(2719×10-6~13518×10-6),Ni含量(103×10-6~208×10-6),Sr含量(202×10-6~577×10-6),Rb含量(13.8×10-6~55.4×10-6)和Ba含量(71.8×10-6~2340×10-6)等;较低含量的Y(8.70×10-6~17.9×10-6)和Cr(517×10-6~810×10-6);此外,核部表现出较高的Sr/Y比(18.7~49.3)。正环带辉石的振荡边部具有比筛状核更低含量的K(24.2×10-6~1426×10-6)、Ni(95.0×10-6~133×10-6)、Sr(132×10-6~181×10-6)、Rb(0~5.90×10-6)、Ba(1.10×10-6~81.8×10-6)及更低的Sr/Y比(5.78~11.7),但具有比筛状结构单斜辉石核部更高的Y含量(15.5×10-6~26.8×10-6)和Cr含量(1381×10-6~2473×10-6)。总体而言,剖面的数据结果与元素面扫分布规律相吻合。
表3 筛状结构正环带单斜辉石LA-ICP-MS面扫剖面数据(×10-6)
图6 筛状结构正环带单斜辉石A-B截面(如图5所示位置)元素变化幅度图
振荡环带辉石的SiO2含量范围为48.0%~52.2%,Al2O3含量为2.88%~6.88%,CaO含量较为均一为22.3%~23.3%,FeOT含量范围为4.62%~7.25%,MgO含量为13.0%~15.9%,Mg#值范围为82.3~89.4。此外,振荡环带辉石Cr含量为554×10-6~2868×10-6,Ni含量为88.4×10-6~139×10-6,Nb/Ta值变化范围较大,为2.37~14.3,稀土元素总量为60.7×10-6~149×10-6。在球粒陨石标准化稀土元素配分模式图中(图4c),所有振荡环带辉石样品表现出与正环带辉石边部相似的配分模式,无明显Eu负异常(Eu/Eu*=0.87~1.05),轻重稀土分异明显((La/Yb)N=4.42~7.15)。在原始地幔标准化微量元素蜘蛛图中(图4d),振荡环带辉石与正环带辉石边部具有相似的微量元素特征,表现为亏损K、Pb和P,富集Th、Ta及LREE等元素的特征。
3.1.2 角闪石
丛家岩体煌斑岩中的角闪石均属于钙质角闪石类,主要为韭闪石和镁绿钙闪石(图3b)。根据其化学成分特征也可分为两类,即具高SiO2含量的角闪石(简称为高硅角闪石)和具更低SiO2的角闪石(简称为低硅角闪石),具体的角闪石主量元素含量见表4。高硅角闪石具有偏高的SiO2含量(40.3%~44.3%);TiO2含量范围为1.06%~3.01%,平均2.27%;Al2O3范围为11.3%~12.8%;FeOT含量为10.0%~14.5%;MgO范围为12.4%~15.2%,Mg#值为70.9~83.0;CaO含量为11.1%~11.7%;K2O含量在0.61%~0.88%之间。低硅角闪石SiO2含量偏低(38.4%~40.1%);TiO2含量较高硅角闪石偏高,为3.13%~3.89%(平均3.51%);Al2O3及K2O含量较高硅角闪石更高,分别为13.9%~15.4%和1.18%~1.44%;CaO含量为11.5%~12.3%;FeOT含量为9.86%~12.3%;MgO含量范围为12.9%~14.6%,Mg#值变化范围较大,为75.5~82.4。
3.1.3 斜长石
本次研究的斜长石样品具有变化较大的主量元素含量(表5),如SiO2含量(50.9%~56.7%),Al2O3含量集中在26.8%~31.0%之间,CaO含量为8.42%~13.4%,Na2O含量范围为3.77%~6.30%,An值为40~65。在An-Ab-Or图解(图3c)中,斜长石样品主要落入拉长石-中长石区域内。
表5 丛家煌斑岩斜长石探针数据(wt%)
丛家煌斑岩的主量元素及微量元素分析结果列于表6。本研究中的样品烧失量(LOI= 1.32%~7.50%)较高且变化较大,这可能与岩石中发育碳酸岩类、帘石类矿物及蚀变矿物有关。高LOI值可能会影响对流体活动性元素含量的估计,如CaO和LILEs(Songetal., 2008;McCoy-Westetal.,2010)。然而,本次采集的样品中LOI与CaO及K、Na、Rb、Sr和Ba等流体活动性元素之间不存在系统相关性,这意味着蚀变的影响有限(Wangetal., 2006)。此外,煌斑岩样品中钍(Th)和铀(U)元素之间存在良好的线性相关性,这也表明岩石未经历显著的后期热液蚀变作用(Schäreretal., 1986)。
表6 丛家煌斑岩主量元素(wt%)及微量元素(×10-6)数据
本文绘制的全岩主量元素相关图解中(图7a, b),均进行了去除烧失量(LOI)后的归一化计算。在TAS图解(图7a)中大部分样品落在钙碱性区域内,属于辉长岩-辉长闪长岩-闪长岩系列岩石。从SiO2-K2O岩石系列划分图(图7b)上看,大部分样品落入高钾钙碱性系列中。丛家煌斑岩的里特曼指数(σ)为1.87~4.17,表现为钙碱性至弱碱性。丛家煌斑岩的TiO2含量为0.69%~1.04%,属于低钛煌斑岩,Al2O3含量及FeOT含量分为11.9%~15.2%、5.03%~8.27%。此外,丛家煌斑岩具较高的CaO含量(5.17%~10.7%)、MgO含量(5.61%~12.5%)和Mg#值(65.9~73.7),样品去烧失后的全碱(Na2O+K2O)含量为3.67%~6.50%。
图7 丛家岩体中煌斑岩脉样品TAS图解(a,据Middlemost,1994)和K2O-SiO2图解(b,据Peccerillo and Taylor,1976)
丛家煌斑岩稀土元素总含量(∑REE)介于137×10-6~283×10-6之间,平均191×10-6。轻稀土与重稀土元素分异明显,整体呈现为轻稀土元素富集,重稀土元素亏损,(La/Yb)N为14.2~28.1。在球粒陨石标准化稀土元素配分图(图8a)中,煌斑岩样品稀土元素配分曲线整体形态基本一致,均为右倾平滑曲线,未显示明显Eu负异常,Eu/Eu*为0.87~1.16。表明岩浆演化过程中斜长石可能未发生明显的分离结晶或源区残留。在原始地幔标准化微量元素蜘蛛图(图8b)中,所有煌斑岩样品均表现出亏损Nb、Ta、P和Ti等元素,而富集Ba、Pb、Sr和Nd等元素的特征。从图8中可以看出,丛家岩体中的煌斑岩与胶北地体中相邻区域出露的煌斑岩具有相似的微量元素特征,同时与胶东半岛其他地区的早白垩世(130~110Ma)钙碱性基性岩脉的REE配分模式相似(Maetal.,2014b),但比阿留申弧玄武岩的轻稀土含量更高(Kelemenetal.,2003)。
图8 丛家岩体中煌斑岩样品球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蜘蛛图(b)(标准化值据Sun and McDonough,1989)
通过单斜辉石与熔体的Fe-Mg交换系数(KD(Fe-Mg)单斜辉石-熔体=0.28±0.08;Pichavant and Macdonald,2007;Putirka,2008)计算可知(图9a),丛家煌斑岩中正环带辉石核部的少量数据点落入平衡曲线上部或者落在平衡曲线上,大部分核部数据点落在平衡曲线之下。鉴于它们出现在“粗晶”核部,同时具有较高的Mg#值,它们更可能结晶自偏基性熔体中。全部正环带辉石边部数据则落入平衡曲线下部,表明全岩组分与这些正环带辉石不平衡,同时暗示了岩浆体系中可能存在外来的富镁组分混入,导致了岩浆体系更加富镁。
图9 丛家岩体中煌斑岩的矿物与寄主岩平衡图解
所有分析的振荡环带辉石数据点与正环带辉石边部数据点具有相似的Mg#值,且在图9a中,仅有少部分样品落入平衡曲线内而大部分样品落入平衡曲线下部,这似乎也佐证了振荡环带辉石与全岩组分之间的不平衡。因此,本文推测这些正环带及振荡环带辉石晶体不属于“斑晶”(Larreaetal.,2013)。
岩相学观察事实显示,尽管一些正环带辉石核部存在筛状结构,且化学成分上与边部存在显著差异(如核部Mg#值相对较高),但这些核部与边部之间并没有发育明显的熔蚀界面,且核部还保留有完整的晶型,边部的振荡环带始终与核部保持着一致的结晶形态。在稀土元素配分模式图中(图4a),尽管二者的稀土元素总量存在显著差异,却表现出近平行的配分模式曲线,这表明核部与边部之间可能具有成因联系。综合上述特征,本文认为正环带辉石核部并非为残余的“捕掳晶”,而是与边部形成于同一穿地壳岩浆系统内,二者生长时所处的岩浆系统在温度、压力或者组分条件上发生了一定的改变。同时,振荡环带辉石及正环带辉石的振荡边中也未观察到与寄主熔体反应留下的熔蚀边,且二者均保留有较为完整的晶型,且自形程度较好。这些特征也否定了它们是“捕掳晶”的可能性。振荡环带与全岩组分Mg#值的不平衡,很可能是由于岩浆在上升过程中的体系流体压力振荡变化导致的(Larreaetal.,2013;Ubideetal.,2014b)。总之,丛家煌斑岩中的单斜辉石解释为“再循环晶”最为合理。根据这些单斜辉石再循环晶的化学成分,不同类型的再循环晶记录了不同结晶历史,但处在同一个穿地壳岩浆系统内,不同的成分特征表明其可能结晶于同一岩浆储库内的不同位置或来自不同的岩浆储库,并经历不同的岩浆补给事件,但显著的结构差异似乎表明再循环晶来自不同岩浆储库这一假设更为合理(Charlieretal.,2005;Reaganetal.,2006;Davidsonetal.,2007;Jerram and Martin,2008;Larreaetal.,2013)。
丛家煌斑岩中的角闪石主要以基质形式产出,仅少数呈“微斑晶”,这些“微斑晶”在化学成分上与角闪石基质没有明显差异。通过角闪石与熔体的Fe-Mg交换系数(KD(Fe-Mg)角闪石-熔体=0.28±0.11;Putirka,2016)计算了平衡曲线,并绘制了角闪石与寄主岩平衡图解(图9b),所有角闪石样品均落入平衡曲线之下。造成这种现象的原因可能有两种,一种是这些角闪石与寄主岩浆是平衡的,它们属于自生晶(autocryst),但岩浆补给过程中带入了大量不平衡的镁铁质组分(如单斜辉石再循环晶),从而升高了全岩组分的Mg#值(Ubideetal.,2014b),进而导致角闪石组分与全岩成分的“不平衡”。另一种可能性就是这些角闪石也属于再循环晶,特别是低硅角闪石。因此,在讨论矿物Fe-Mg系数与全岩Mg#之间的平衡关系时,必须格外小心,因为外来镁铁质组分的引入可能会导致全岩成分出现较大的偏差。
4.2.1 振荡环带成因
前文提及,丛家煌斑岩中的单斜辉石再循环晶具有明显的振荡环带、筛状结构(图2d, e、图5)和扇形分区(图5),表明它们可能经历了复杂的生长、熔蚀或交代过程。前人的实验研究表明,单斜辉石的结构和地球化学成分不仅受到热力学条件的影响,而且也会受到晶体生长过程中动力学效应的制约,如高过冷度或快速减压(Lofgrenetal.,2006;Neaveetal.,2019;Masottaetal.,2020;Xing and Wang,2020)。因此,丛家岩体煌斑岩中单斜辉石再循环晶复杂的环带结构和差异的化学成分,可以记录其结晶时所处岩浆储库的热力学条件和动力学效应。
振荡环带结构常常发育在斜长石和单斜辉石中,且已有大量文献证明了这种结构具有记录晶体生长过程中的结晶动力学,岩浆补给事件和岩浆对流过程的作用(Downes,1974;Eriksson,1985;Ginibreetal.,2002;Streck,2008;Elardo and Shearer,2014;Xing and Wang,2020)。本次研究的辉石,它们的振荡环带由频繁的、明暗交替的、宽度不等的生长层组成,且宽度较粗的生长层通常都表现出再吸收现象,这些再吸收界面可以横切几个生长层,也可只横切一个生长层。以样品JD1909中的振荡环带单斜辉石为例,辉石中的部分再生长界面在晶角(crystal corners)处表现为弧形边缘(图10),部分沿长晶面发育的再生长界面呈指形或锯齿状(图10)。通常认为,带有明显再吸收界面的单层过度生长,往往指示晶体结晶过程中熔体成分发生了变化(Ginibreetal.,2002)。根据辉石环带的明暗分布,其对应的主、微量元素含量也反映出显著的振荡特征(图10),即暗色环带中Mg#值,Cr含量和Ni含量较高,稀土元素总含量较低,而亮色环带则与之相反。这表明在晶体生长过程中可能发生了偏基性或偏酸性岩浆的多次补给事件,也可能由岩浆去气作用导致(例如,Eriksson,1985;Giacomonietal.,2014, 2016)。这一观点也得到了正环带辉石边部的Mg#值及Cr元素含量分布特征的支持(图5)。从图中可以看出,正环带辉石的无筛状结构振荡边,由多层Mg#值及Cr含量呈高低变化的环带构成,这与振荡环带辉石相一致。
图10 丛家岩体煌斑岩中振荡环带单斜辉石重要元素组分剖面图
4.2.2 正环带辉石的筛状结构成因
前人讨论并总结了形成单斜辉石筛状结构的可能成因机制(Humphreysetal.,2006;Panetal.,2018;苏昕瑶和厉子龙,2019;Xing and Wang,2020)包括:(1)辉石捕虏晶与寄主岩浆在上升过程中发生反应(Shawetal.,2006;Suetal.,2011);(2)高过冷度(Masottaetal.,2020);(3)流体参与的不一致熔融(王永锋和章军锋,2013);(4)减压熔融(Suetal.,2011);(5)交代作用,表现为矿物-熔体/流体相互作用(Liuetal.,2012;Luetal.,2015)。为判别丛家煌斑岩中正环带辉石核部出现筛状结构的原因,本文将在之后的讨论中对上述成因逐一进行分析:
(1)前文的讨论已经认识到这些筛状结构辉石并非为捕掳晶,因此第一种可能性可被排除。
(2)高过冷度可以导致单斜辉石骨架快速生长,导致晶体留下清晰的骨架和枝杈状结构,并伴随发育规律的细生长层;同时,筛孔中会充填入大量基质成分(Masottaetal.,2020)。尽管本文在筛状结构辉石的筛孔中观察到较高含量的基质成分,但是并未发现有明显的骨架/枝杈结构,同时细的生长层也不发育,表明筛状结构的形成与高过冷度无关。
(3)Hibbard and Sjoberg(1994)指出,不一致部分熔融形成的筛状结构单斜辉石,一般具有低Na、高Ca的特征;Guzmicsetal.(2008)亦提出,这类辉石较之无筛状结构的完整辉石可能会显著亏损Na2O、Al2O3及FeO。事实上,振荡环带辉石与正环带辉石边部均表现为无筛状结构,且二者在化学成分上十分接近(表1)。故面扫结果(图5)可用于直观反映筛状结构辉石与完整辉石的差异。如图5所示,筛状核部具有比边部更高含量的Na和Fe,而更低含量的Ca,这显然与不一致熔融形成的筛状结构辉石不同。
(4)Panetal.(2018)指出,岩浆快速上升过程中的快速减压可能导致单斜辉石具粗尺度的筛状结构,并具有比地幔捕虏体中的原生单斜辉石更高的Mg#值和更低的Al2O3。此外,Neave and Maclennan(2020)也指出,火山岩中单斜辉石的减压溶解和再沉淀会降低其边部的Al2O3。然而,在这项研究中,单斜辉石再循环晶的筛状核并不发育粗尺度的筛孔,且其中心区域和边缘位置具有相似的Al含量,而中心区域的Mg#甚至低于边缘(图5),因此这种筛状结构不太可能由于快速减压而形成。
(5)排除上述几种可能性,本文将煌斑岩中辉石的筛状结构解释为晶体与熔体/流体的相互作用似乎最为合理。首先,图5所示的LA-ICP-MS元素面扫结果显示,筛状结构辉石的筛孔显著富集大离子亲石元素(LILE),如K、Ba、Sr等,表明这些正环带辉石的筛状核与流体/富流体的硅酸盐熔体发生了反应(Zhengetal.,2001;Suetal.,2011)。此外,正环带辉石的筛状核具有比振荡边明显偏低的Cr含量,但却显示出稍高的Ni元素含量,筛状核部中这种Cr与Ni元素的解耦(图6)也是对流体参与反应这一推测的有利证明。一般来说,Cr和Ni元素在岩浆系统中的化学行为是相同的,因为它们在硅酸盐熔体分馏过程中保有相容性,但由于流体的加入,二者在溶解度/流动性上表现出了明显的差异,最终使得两种元素发生解耦(Dareetal.,2014,2015)。
4.3.1 矿物平衡温度与压力估算
大量实验岩石学研究结果表明,单斜辉石成分对结晶时的温压环境较为敏感,因而可以较好的限定其形成时寄主岩浆的温压条件(Putirka,2008;Neave and Putirka,2017;Neaveetal.,2019)。选择恰当的单斜辉石温压计同样至关重要,前面笔者已经讨论过,本次研究的单斜辉石均为再循环晶,与寄主岩组分并不平衡,故本研究认为基于单斜辉石成分的温压计较为合适。本文选择Putirka(2008)提出的方法对单斜辉石结晶条件进行估算,值得注意的是,受筛状结构影响的正环带单斜辉石核部的数据并未参与此次计算,因为这些筛状结构辉石与流体发生了相互作用(详细讨论见章节4.2.2),而这将会对辉石成分造成影响,从而导致计算出的温压结果存在较大偏差。排除这些无效数据,得到的计算结果显示(表1),正环带单斜辉石核部的结晶温度为1184±58℃~1210±58℃,平均为1193℃,压力为5.97±3.1kbar~10.2±3.1kbar(计算深度为22.6~38.6km),平均为8.93kbar;正环带单斜辉石边部的结晶温度为1164±58℃~1192±58℃,平均为1181℃,结晶压力为3.74±3.1kbar~7.73±3.1kbar(计算深度为14.1~29.2km),平均为5.70kbar,可以看出正环带辉石边部的结晶温度和结晶压力略低于核部。此外,振荡环带辉石的结晶温度计算结果为1153±58℃~1195±58℃,平均1172℃,压力为4.33±3.1kbar~8.44±3.1kbar(计算深度为16.4~32.7km),平均6.47kbar,计算出的温度及压力结果跨度较大,表明其在不同地壳层次均发生结晶,不同结构特征的单斜辉石可能形成于不同的岩浆储库。值得注意的是,根据Putirka(2008)提出的基于单斜辉石成分的温压计计算出的单斜辉石结晶温度,即正环带辉石核部、边部及振荡环带辉石结晶温度,在误差范围内表现出变化极小的计算值,这可能是由于该计算方法误差范围较大导致的,故无法基于温度差异对单斜辉石的结晶环境进行区别。然而,由于估算出的结晶压力仍然存在较大的差异性,本文谨基于压力条件推测无筛状结构正环带单斜辉石核部形成于更深层次的岩浆储库,正环带单斜辉石边部及振荡环带辉石可能于更浅层次的岩浆储库内结晶。
实验表明,角闪石的成分也可以有效地用于估算其在钙碱性岩浆中结晶时的温压条件(Putirka,2016;Ridolfi,2021)。前文已述,本次研究的角闪石与全岩成分似乎并不平衡(详见章节4.1),故本文选择Ridolfietal.(2021)提出的仅基于角闪石成分温压计进行相关计算。该方法可以在766~1064℃、73~1000MPa、3.4%
4.3.2 矿物平衡熔体性质
基于主要矿物成分预测熔体组分对于还原岩浆过程具有重要意义(Müntener and UImer, 2018),本文尝试对丛家煌斑岩中单斜辉石的平衡熔体化学成分进行定量评估。根据单斜辉石的成分,本文大致估算了与其平衡的熔体Mg#值。计算使用的单斜辉石与熔体的Fe-Mg交换系数为0.28±0.08(Pichavant and Macdonald,2007;Putirka,2008),结果显示,正环带辉石核部对应的平衡熔体Mg#值较高,为62.3~83.4(平均69.9),接近地幔橄榄岩部分熔融形成的原生熔体(68~75,Freyetal.,1978);正环带辉石边部对应的平衡熔体Mg#值为50.2~68.9,较核部偏低;振荡环带辉石对应平衡熔体的Mg#值与正环带辉石边部相近,为55.6~69.5,反映了补给岩浆性质存在差异。参照Ubideetal.(2014a)给出的单斜辉石与钙碱性煌斑岩的微量元素分配系数,进行了部分微量元素的计算,计算结果见表7,绘制的平衡熔体球粒陨石标准化稀土元素配分模式图见图11。结果显示,正环带单斜辉石核部的平衡熔体具有偏低的总稀土元素含量(∑REE=11.4×10-6~11.6×10-6),无明显Eu负异常(Eu/Eu*=0.77~0.95),具高的Sr/Y比(217~287)和Zr/Hf比(66.3~69.3);正环带单斜辉石边部对应的平衡熔体总稀土元素含量更高(∑REE=123×10-6~262×10-6),配分模式总体与核部的平衡熔体相近,Eu负异常(Eu/Eu*=0.82~0.94)不明显,Sr/Y和Zr/Hf比较核部平衡熔体偏低,分别为48.5~89.2和47.2~57.2。振荡环带辉石对应的平衡熔体微量元素特征与正环带辉石边部对应熔体相似,总稀土元素含量为147×10-6~375×10-6,Eu/Eu*范围为0.79~0.95,Sr/Y和Zr/Hf比分别为41.6~88.8和44.1~55.4。总体看来,正环带单斜辉石边部及振荡环带辉石的平衡熔体与丛家煌斑岩具有十分相近的稀土元素含量及配分模式,这似乎表明这些再循环晶单斜辉石边部/振荡环带辉石生长的岩浆储库与最终的岩浆储库在成分特征上高度相似。然而,考虑到正环带单斜辉石边部/振荡环带辉石形成压力与高硅角闪石的结晶压力显著不同,本文推测可能还存在一个比正环带辉石边部/振荡环带辉石、高硅角闪石形成深度更浅的岩浆房,这个更浅的岩浆房结晶了细粒的角闪石或其他矿物,大的循环晶(例如单斜辉石粗晶或角闪石粗晶)并没有足够的时间(高的过冷度)在这个浅部岩浆房中生长。
表7 单斜辉石平衡熔体重要微量元素数据(×10-6)
图11 不含筛状结构正环带(a)及振荡环带(b)单斜辉石平衡熔体球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough,1989)
4.3.3 多层级穿地壳岩浆系统及深部岩浆过程
基于矿物组分信息,结晶时的温压条件及平衡熔体性质,本研究认为,不同深度且相互连通的岩浆储库在经历了多批次岩浆输运和多次“补给”组装后,这些晶体和熔体的“混合物”在最浅层次的岩浆储库内汇聚,最终沿着构造裂隙进入上地壳浅部层次,固结形成了丛家煌斑岩。上述过程可通过多层级穿地壳岩浆系统的模型进行合理解释(图12):(1)地幔橄榄岩部分熔融形成的镁铁质岩浆(Mg#=62.3~83.4)在下地壳或Moho面附近发生底侵作用,之后它停滞在下地壳岩浆储库中(压力=5.97~10.2kbar,深度=22.6~38.6km),其中高镁单斜辉石(正环带单斜辉石核部,Mg#=86.0~94.9,温度=1184~1210℃)发生结晶分异。(2)与此同时,一部分镁铁质岩浆注入一个富流体的岩浆储库内,进入该岩浆储库内的高镁单斜辉石发生流体相关的交代作用(富集大离子亲石元素),形成筛状结构。(3)还有一部分镁铁质岩浆上升进入中下地壳中形成新的岩浆储库(深度=14.1~34.4km),在岩浆运移及分异的过程中更低Mg#值的单斜辉石开始结晶,且由于持续的,具不同演化程度的“岩浆补给”,最终形成了具振荡环带的辉石(Mg#=82.3~89.4,温度=1153~1195℃,压力=4.33~8.44kbar);而早先结晶的高镁单斜辉石则生长出振荡环带边缘(Mg#=78.9~89.1,温度=1164~1192℃,压力=3.74~7.73kbar)。随着单斜辉石发生进一步分离结晶,拉长石及低硅角闪石开始结晶(Mg#=75.5~82.4,温度=976~1021℃,压力=5.72~8.94kbar)。(5)一些演化程度更高的岩浆(872~947℃)上升到地壳中上部(压力=3.06~4.43kbar,深度=11.5~16.7km),形成岩浆储库,高硅角闪石及中长石在该岩浆储库中生长。(6)深层次岩浆储库中的岩浆沿着岩浆管道系统向最上层(最浅部)岩浆储库中汇聚,伴随着断裂的影响,岩浆储库发生释压,岩浆快速上涌,最终侵位结晶。
图12 丛家煌斑岩成因模式简图
包括煌斑岩在内的基性火成岩,因为具有较高含量的MgO和相容元素,常常被认为是接近源区性质的母岩浆代表,是了解上地幔和基性岩浆过程的窗口(Ubideetal.,2014b)。然而,最近的研究强调,对这类具显著斑状结构的岩石作出这样的假设时应格外谨慎,因为它们的“母岩浆”在最终成岩之前可能经历了复杂的岩浆过程,比如不同批次的同源岩浆的重复混合(Heiken and Eichelberger,1980;Kentetal.,2010;Laurentetal.,2017),再循环晶进入晚期的岩浆批次(Cooper and Reid,2003;Davidsonetal.,2005;Reubi and Blundy,2009; 本研究重点),对流搅拌(convective stirring)诱发的岩浆自混合(self-mixing)(Couchetal.,2001),及岩浆去气导致的晶体快速生长(Blundy and Cashman,2001)。上述岩浆过程最终获得的岩石组分代表了从多批次原生熔体生成、演化、再到不同层次岩浆房就位混合的“综合”产物,这些岩石组分仅记录着岩浆过程最终演化的“混合”信息(Reubi and Blundy,2008)。因此,这些岩石组分不一定可以代表母质熔体(López-Moroetal.,2007;Sakyietal.,2012;Larreaetal.,2013;Ubideetal.,2014a,b)
前文提出的丛家煌斑岩穿地壳岩浆系统由垂向的管道结构组成,地幔来源的岩浆通过复杂的结晶路径向较浅层岩浆储层上升(图12)。正如本文在这项工作中所证明的那样,以单斜辉石为主的再循环晶在岩浆储库的演化中起了至关重要的作用。如多批次注入的熔体与单斜辉石再循环晶反应,使得单斜辉石发育振荡环带生长边,同时这些成分环带也记录了不同阶段和不同属性的平衡熔体。这个过程与Jacksonetal.(2018)年提出的活动性熔(流)体注入长期存在的晶粥储库模型相吻合。综合以上认识,可知再循环晶的加入对幔源岩浆的某些地球化学特征有显著的影响(如图11)。因此,具显著“斑状”结构的基性岩石的相关全岩地球化学指数应谨慎使用,对这类岩石形成过程的解释需要同时考虑全岩及其中晶体的信息,尤其需要注意识别岩石中各类“再循环晶”的属性。
丛家煌斑岩中出现了振荡环带单斜辉石和正环带单斜辉石两种再循环晶类型,它们在不同层次岩浆储库内发生熔蚀、流体交代或再生长。具有振荡环带特征的单斜辉石再循环晶,它的成分特征反映了结晶过程中存在多次岩浆补给事件,其中一次基性岩浆注入形成了高Cr和Ni、Mg#的环带。正环带辉石核部Mg#值较高,表明它们形成于更偏基性的熔体中;部分正环带辉石核具筛状结构,指示它们可能遭遇了有流体参与的交代作用;正环带辉石边部与振荡环带辉石具有相似的特征,反映出它们共同经历了多期岩浆补给事件或体系流体压力振荡(岩浆去气)变化。煌斑岩中不同类型的单斜辉石再循环晶的出现指示了深部穿地壳岩浆系统是由多级岩浆储库构成的。上述单斜辉石再循环晶与周围的基质处于不平衡状态,它们的混入导致了全岩成分更加富镁。
致谢研究工作得到中国地质大学(北京)罗照华教授的指导;野外和测试工作得到了山东地质科学研究院熊玉新研究员、舒磊高级工程师、李增胜工程师和孙雨沁工程师的指导;两位匿名审稿人提出了建设性的修改意见;在此一并致谢。