果树分子育种研究进展

2021-08-03 09:23苑兆和陈立德张心慧赵玉洁
关键词:果树苹果基因

苑兆和,陈立德,张心慧,赵玉洁

(南京林业大学,南方现代林业协同创新中心,南京林业大学林学院,江苏 南京 210037)

近年来,随着农业产业结构调整,果树产业迅猛发展[1],我国已成为果树产业第一大国。在我国脱贫攻坚进程中,以水果、蔬菜、茶叶等园艺作物为主的种植业成为中西部地区扶贫的主要产业[2],是促进乡村振兴的重要支柱产业之一。果树是一种重要的经济作物,其根、茎、叶、花、果实、种子等,可为人类提供所需营养物质,一些果树还具有医药保健功能[3]。在我国现代果业的发展过程中,果树育种工作仍面临巨大挑战:果树品种单一,果品品质降低,砧木育种滞后,全球气候变化等对果树产量和品质造成严重影响。具体来看:其一,我国消费市场上水果种类较为丰富,但品种单一化严重,如我国苹果产业中70%是‘富士’品种[4];其二,在追求高产、耐贮藏等品质的过程中,部分牺牲了果实其他品质的质量,引起水果原有风味发生明显改变或丧失,如“桃没有桃味”“葡萄没葡萄味”[5];其三,与栽培品种选育工作相比,果树砧木育种评价难度大、周期长,目前缺乏广适性强、抗性突出、综合性状优良的砧木品种;其四,受全球气候变化的影响,果树病虫害危害加剧,柑橘黄龙病、香蕉枯萎病、猕猴桃溃疡病、梨枯梢病等严重危害果树产业持续健康发展[2]。因此,培育适应市场消费需求和全球气候变化的优良果树品种是目前果树产业持续发展的首要任务。

我国果树种质资源丰富,拥有大量优异基因资源。特别是苹果、桃、杏、梨、柑橘、猕猴桃、枇杷、杨梅等原产我国的果树树种[4, 6-9]遗传多样性十分丰富,是果树育种的重要材料。在不同生态地区栽培的地方品种,经过自然选择和人工选择,携带有较多与品质及抗性相关的优异基因[10-12]。随着现代分子生物学技术的发展,果树定向育种可行性增强,该方法能有效克服传统育种方法的缺点,具有周期短、效率高、定向育种精确度高等优势,还可以打破种间生殖隔离,实现优良基因高效重组[13]。近年来,转基因、基因编辑[14]和分子标记辅助育种[15]技术等分子生物学技术发展迅速,推动了果树育种的现代化发展。笔者从果树品质育种、抗性育种两个方向综述果树分子育种进展,并在分析现阶段不足的基础上,探讨未来果树育种的发展方向,以期为未来果树育种研究提供参考。

1 果实品质育种

果实品质是衡量水果商品性和食用价值的重要标准。果实品质主要包括外观品质和内在品质,外观品质包括果实颜色、果型和大小等,内在品质包括风味、质地、香味和功能物质等[16-17]。果实品质性状是复杂的数量性状,遗传机制复杂,受多基因及基因间相互作用的复杂网络调控[16]。

1.1 果实外观品质分子育种

1.1.1 果实色泽

果皮颜色是决定水果品质的关键因素。花青素是影响果实颜色最重要的色素,花青素种类和含量的不同使植物呈现红色、紫色和蓝色等外观[18-19]。花青素生物合成相关基因的表达受到R2R3-MYB与bHLH和WD40-repeat共同调控[19]。通过调控花青素合成途径中的转录因子,人们已初步了解了影响果皮和果实颜色的关键转录因子(表1)。近年来,在苹果中已分离并鉴定了MdMYB10、MdMYB1和MdMYBA等转录因子,其中MdMYB10是调控苹果红肉的关键基因,MdMYB1和MdMYBA是调控果皮变红的关键基因[20-22]。此外,研究表明,在VvMYBA1中插入反转录转座子是引起白葡萄品种色素丢失的原因[23]。研究发现,VvMYB5a主要在葡萄果皮、果肉和种子发育早期表达,VvMYB5a在烟草中过表达诱导了青酶苷和槲皮素等多种酚类化合物的大量积累,这些酚类化合物是花青素和黄酮醇类化合物合成的主要成分[24]。而VvMYB5b在烟草中过表达则会引起类黄酮途径酶基因上调,影响花青素和原花青素等衍生化合物的积累[25]。桃中MYB10.1和bHLH3双基因过表达(或MYB10.3和bHLH3双基因过表达)通过上调NtCHS、NtDFR和NtUFGT来激活花青素合成,使黄色果肉中出现红色斑块[26]。Yao等[27]通过QTL定位和物理图谱定位鉴定了与红皮梨花青素生物合成相关的关键转录因子PyMYB114,并在烟草和梨中进行了瞬时转化实验,结果表明,该转录因子能够促进花青素的生物合成。

表1 果实色泽改良分子育种方法

1.1.2 果型

桃、甜瓜等多数果实的形状受多基因控制。桃果型分为扁平型(S)和非扁平型(s)两大类,显性的扁平型被称为蟠桃。Dirlewanger等[32]检测到1个限制性片段长度标记(RFLP)PC2和1个扩增片段长度多态性(AFLP)标记与S基因共标记。桃第2代遗传图谱将S基因定位在第6个连锁群,与2个SSR标记MA040a和MA014a以及1个RFLP标记FG25共分离。Dirlewanger等[33]首次报道了1种新的孟德尔性状,表现为开花但果实败育,该性状由隐性等位基因Af控制,与控制果实扁平形状的显性等位基因有关。

1.1.3 果实大小

引起果实大小差异的原因有很多,包括遗传差异、内源激素的调控和环境因素等[34-35]。目前,与果实大小相关的遗传调控网络尚未有详细研究。细胞色素P450(CYP)家族是最大的植物蛋白家族之一,对果实大小具有一定的影响。在甜樱桃中,过表达PaCYP78A9通过影响中果皮细胞的增殖和扩张来增加果实大小[36]。NY 54×Emperor Francis和Regina×Lapins图谱共鉴定到4个控制樱桃果实大小的数量性状位点(LG1、LG2、LG3和LG6)[37],两个CNR基因(PavCNR12和PavCNR20)位于LG2和LG6区间内,它们的高表达抑制了果实发育早期的细胞分裂,特别是PavCNR12的低效率等位基因变异与果实大小的增加有关[38]。

1.2 果实内在品质分子育种

1.2.1 果实风味

果肉酸度是水果感官品质的重要组成部分。水果酸度是由于有机酸的存在,苹果酸和柠檬酸是大多数成熟水果的主要有机酸[39]。目前,研究者通过分析突变体,并借助转基因技术等方法已分离出一些影响有机酸含量的基因(表2)[40-47]。Li等[40]在转基因柑橘和拟南芥中通过顺时过表达方式发现CitERF13可正调节柠檬酸的积累。在苹果中,转录因子MdMYB73通过与MdALMT9、MdVHA-A和MdVHP1的启动子直接结合,激活它们的转录并增强表达活性,影响苹果酸积累及液泡pH;此外,苹果中,MdCIbHLH1能够与MdMYB73相互作用,增强其对下游靶基因的活性[41]。除了上述MYB、bHLH和ERF等转录因子,部分基因也可以通过相互作用影响有机酸的积累,如通过病毒载体遗传转化试验发现,在苹果中,MdSOS2L1可以与MdVHA-B1相互作用,磷酸化MdVHA-B1蛋白,进而调控苹果酸在苹果果实中的积累[42]。

表2 果实风味改良分子育种方法

糖是果实品质和风味物质形成的基础原料。可溶性糖主要包括蔗糖、果糖和葡萄糖,可为植物生长发育提供能量,也是重要的信号分子,在调节植物代谢过程和防御机制中起重要作用。果实糖代谢通常以蔗糖形式进入果实,随后,在一系列糖代谢酶的作用下转化为果糖和葡萄糖等。目前,研究者已通过分子生物学技术分离出一些影响果实糖含量的基因(表2),例如酸性转化酶基因(EjVIN)[43]。枇杷EjVIN过表达可同时减少果实己糖和蔗糖含量;此外,一些转录因子(如CgDREB)[44]的过表达或抑制,通过调控下游靶基因的表达也能影响果实糖含量的积累。

1.2.2 果实质地

果实质地是果实品质的重要组成部分。在桃中,1对等位基因控制着桃的溶质型(M)和不溶质型(NM)性状。Peace等[48]研究发现基因标记endoPG-4或endoPG-5均可在苗期用于区分离核溶质、黏核溶质和黏核不溶质3种类型桃。进一步研究发现,参与溶质/非溶质性状的标记(Ppa006839m)和参与黏核/离核性状的标记(Ppa006857m)始终是共分离的[49]。在苹果和梨基因组连锁群1上开发了一个与果实硬度有关的功能标记Md-Exp7SSR[50]。果实成熟时的软化与乙烯和生长素等的调控有关[51-52]。ZMdPG1是苹果果实软化开裂所必需的,研究发现1-MCP(1-甲基环丙烯,C4H6)可以阻断ZMdPG1的表达,说明ZMdPG1的表达受内源乙烯介导,拟南芥中过表达ZMdPG1可导致角果早期开裂[53]。此外,一种硬质性桃受隐性单基因控制,成熟期乙烯缺失可导致硬质型桃不能软化,进一步分析发现成熟时果实生长素含量降低,抑制了乙烯合成关键基因PpACS1的转录[54]。

1.2.3 果实香味

果香化合物主要由萜类、酯类、醇类、醛类以及部分含硫化合物组成[55]。葡萄中的萜类化合物在其游离状态下直接释放出香气,当光照强度增大时,VvPLiNer1表达上调,引起‘金香玉’葡萄中萜烯类化合物(里那醇)含量增加;而葡萄中VvGT14受光照强度负调控,该基因与香叶醇和橙花醇的积累有关[56]。Lücker等[57]将柠檬中3个单萜基因在烟草中共表达,转基因株系中释放出了柠檬烯、β-蒎烯和γ-萜品烯等芳香物质。在甜橙果实中,过表达CitAP2.10后,引起CsTPS1表达上调,能够促进朱栾倍半萜的合成[58]。LOX酶活性受到抑制时,会引起苹果中酯类物质合成底物缺乏,产生具有非正常气味的苹果果实[59]。基因PpFAD2过表达可显著增加转基因烟草中亚油酸含量,同时也显著改变了叶片组织己醛等香气物质的含量[60]。

1.2.4 果实功能物质

黄酮类化合物如黄酮、黄酮醇和花青素来源于植物苯丙氨酸代谢途径的几个分支,是许多植物重要的紫外线保护剂,同时也对人体健康具有重要作用[61-63]。Czemmel等[64]对葡萄R2R3-MYB型转录因子VvMYBF1进行分离鉴定,发现VvMYBF1是VvFLS1(黄酮醇合成酶)的特异性激活剂,拟南芥myb12突变体中VvMYBF1过表达可互补其黄酮醇缺乏表型。基因MdNAC9可通过激活MdFLS促进红肉苹果中黄酮醇的积累[65](表3)。

表3 果实功能物质分子育种方法

类胡萝卜素在高等植物中可以辅助进行光合作用,对人体有益,具有抑制、消除体内自由基和减缓衰老等功效[66]。基因CCD1抑制表达后,红肉脐橙转基因株系中紫黄质、9-顺式-紫黄质等类胡萝卜素含量均显著提高[67]。通过VIGS技术沉默枇杷果实PSY基因,发现总类胡萝卜素含量降低,表明PSY正调控枇杷果实中类胡萝卜含量[68](表3)。

2 果树抗性育种

果树在生长发育过程中往往会受到周围环境的不良影响,环境因素包括生物因素和非生物因素。果树抗性基因参与了多种生物与非生物胁迫调控,提高了果树在复杂环境中的适应能力[69-71]。利用分子育种等技术可培育抗逆果树,改善果树在逆境胁迫下的生长状况,稳定果树产量品质。相关研究已取得一定进展[72-113](表4)。

表4 部分果树抗性分子育种方法

2.1 分子育种在果树抗非生物胁迫中的应用

2.1.1 在果树抗干旱胁迫中的应用

不论是生长季或休眠期,干旱胁迫均会对果树生长发育起抑制作用,甚至导致果树冬春季抽条,生长季落果、落叶,死亡等现象[72]。MYB转录因子在干旱胁迫等非生物胁迫调控中具有重要作用[73],研究表明过表达MYB可显著提高转基因植株抗旱性[74-77]。杜梨PbrMYB2受干旱诱导表达,MYB沉默会引起杜梨株系的干旱敏感性增强、抗旱性降低[78]。苹果MdSIMYB1基因表达受干旱诱导,MdSIMYB1过表达烟草株系根系强壮,抗逆性增强[79]。在长期中度干旱胁迫下,MhYTP1过表达苹果株系显著提高了水分利用效率和生物积累量[80]。为了提高橄榄对逆境的承受能力,Rugini等[81]通过转化渗透压基因获得了抗旱性较强的转基因橄榄植株。

2.1.2 在果树抗低温胁迫中的应用

低温冷害会引起植物的光合作用、细胞膜流动性及基础代谢等降低,造成新梢、花芽及叶片的冻害损伤或死亡,严重影响果树的正常生长发育及产量[82]。目前,蓝莓抗寒性差与需冷量过高是其栽培推广的主要限制因素,刘肖[83]筛选出与抗寒性、需冷量性状相关的SNP标记,并进行杂交实生苗分子标记辅助育种,最终筛选出2个抗寒性突出的杂交优株和1个低需冷量的杂交优株,该策略显著提高了蓝莓优良品种选育效率。bHLH基因家族同样在植物耐寒性中发挥重要作用,过表达PtrbHLH可增强柠檬在寒冷或冰冻温度下的耐寒性,PtrbHLH基因的RNA沉默(RNAi)则会引起柠檬冷敏感性提高[84]。

2.1.3 在果树抗高盐胁迫中的应用

土壤盐渍化会引起土壤内渗透胁迫离子增加,使果树发生离子毒害、吸水困难、氧化胁迫等现象,进而影响果树生长和结果[85]。樊军锋等[86]利用mltD/gutD双价耐盐基因转化猕猴桃的研究发现,与对照株相比,转化株耐盐性得到显著提高。孙宁等[87]通过诱变育种获得苹果砧木耐盐变异系,并利用RAPD分子标记技术对耐盐突变体进行分析,从DNA水平上揭示突变体与原品种之间的差异。此外,利用RAPD或AFLP标记技术在柑橘[88]和柠檬[89]中检测到与抗高盐显著相关的QTLs。DREB转录因子蛋白通过调节一系列下游靶基因的表达以调控抗逆反应,对新疆野苹果DREB进行功能分析,发现MsDREBA5和StDREB2都能提高转基因拟南芥的抗高盐能力[90-91],因此DREB基因也可能是抗盐胁迫分子育种中重要的目标基因。Yaish等[92]发现椰枣品种‘Khalas’中一些miRNA在高盐胁迫下差异表达,并进一步分析确定了在高盐条件下具有关键作用的miRNA及其靶标基因。

2.2 分子育种在果树抗生物胁迫中的应用

2.2.1 在果树抗病中的应用

果树病害主要由细菌、真菌等病原微生物或者病毒引起,如由黑腐皮壳菌侵染引起的苹果腐烂病[93],由病毒侵染导致柑橘黄龙病和衰退病、葡萄的白粉病和霜霉病等,这些病害对果树生产影响极大[94]。美国研究者已分离出番木瓜环斑病病毒外壳蛋白基因(PVR),并于1992年培育出抗病的番木瓜品种[95],1997年获得美国国家环保局和国家食品与药品管理局登记,1998年在美国商业化应用[96]。随后番木瓜环斑病病毒外壳蛋白基因(PVR)被成功导入欧洲李中,并获得了抗病欧洲李[97]。李痘疫病毒外壳蛋白基因PPV-CP被成功克隆并构建双元载体,获得了杏转基因植株,可有效延缓转基因植株病毒病症状的出现[98]。MdUGT88F1过表达苹果植株中,根皮苷过量生长,促进了病原菌的生长,导致植株抗病能力减弱;而MdUGT88F1-RNAi苹果植株则表现为生长发育受抑制,抗病能力增强[99]。将欧洲葡萄VrERE基因导入到冬葡萄和沙地葡萄杂交后代的植株中,VrERE活性显著提高,而对照植株VrERE活性则被外源毒素抑制,表明VrERE基因转化能有效提高葡萄抗毒性[100]。中国野生葡萄STS基因转化到欧洲葡萄后,转基因植株中白藜芦醇含量与对照相比显著增加,进而提高了转基因植株的抗病性[101]。环形抗菌肽基因或单独线性抗菌肽基因转化到欧洲葡萄后,转基因植株对冠瘿病和白粉病抗性均有所提高[102-104]。

将RNA沉默(RNAi)载体(包含李属坏死环斑病毒的反向重复区域)转化到樱桃砧木中,可增强樱桃砧木对病毒的抗性[105]。将柑橘衰退病毒(CTV)的外壳蛋白基因导入到酸橙和墨西哥酸橙中,获得了第一批转基因植株。在甜橙品种菠萝中首次用成熟组织作为受体,获得了转化植株[106]。利用绿色荧光蛋白(GFP)作为报告基因和Xa21基因(从水稻中获得的Xanthomonas抗性基因)共转导来提高柑橘溃疡病抗性,得到了9个摩洛哥蜜橘(Citrassp.)转基因品系中,其中WM-8品系始终耐受溃疡病[107]。利用SNPs标记对欧洲和亚洲梨的种间后代进行基因分型并构建图谱,确定了7个QTLs与3种赤霉病病菌显著关联,这些位点可用于增强梨抗病性[108]。在梨品种‘Pass Crassane’中过表达AttacinE基因,获得了6种火疫病症状减轻的遗传转化品系[109]。

2.2.2 在果树抗虫害中的应用

虫害一直是制约农业持续、稳定和健康发展的主要因素,全世界每年因虫害造成的损失高达数千亿元,抗虫性已被列为全球作物基因工程的主要目标之一[110]。迄今为止,发现并应用于提高植物抗虫性的基因主要有两类:一类是从细菌中分离的抗虫基因,如苏云金杆菌毒蛋白基因(Bacillusthuringiensis,Bt)、异戊基转移酶基因(Isopentenyl transferase,IPT);另一类是从植物和动物中分离出来的抗虫基因,如外源凝集素基因(lectin)、蛋白酶抑制剂基因(Proteinasein hibitor,PI)、淀粉酶抑制剂基因(α-Amylase inhibitor,αAI)等。James等[111]将CrylA导入苹果品种绿袖‘Greensleeves’中,并得到转基因植株,这是首次将有用的外源目标基因导入果树中。在柑橘中,应用AFLP标记技术已鉴定了与线虫抗性显著关联的多个QTLs[112]。Yang等[113]成功地将GNA导入柑橘,此研究为柑橘等果树抗虫育种研究奠定了基础。

2.2.3 在应对全球气候变化中的应用

气候条件是决定果树生长发育的重要环境因子,随着全球气候变化的加剧,果树的物候期、需冷量、果实品质和产量等也相应地受到影响[114-116]。研究表明,气候变化直接影响植物物候[117-119],对果树而言,物候期变化不仅会改变果树的生长周期,同时还会改变果树在生长过程中对光、温、水资源及其他营养物质的吸收和利用,进而对果实产量和品质产生影响[120-122]。目前,国内外学者已开展大量关于气候变化对果树物候期影响的相关研究[123]。

我国北方地区大部分果树品种的低温需求量均较多,全球气候变暖导致需冷量不足,使得难以达到果树解除休眠所需的低温,严重影响北方果树的大面积发展[124-125]。此外,近几年随着保护地果树的不断发展,短低温品种的需求更加迫切[126]。研究还发现,开花植物通过调节花色以适应生存环境温度变化,这暗示全球气候变暖可能影响开花植物花色[127]。CO2是引起全球气候变暖的主要温室气体之一,生存环境中CO2浓度增加直接影响植物光合作用等生物过程,进而影响植物的生长发育。在较高的CO2浓度条件下,果树叶片光合适应性随着二磷酸核酮糖羧化酶蛋白浓度的下降而下调[128]。在提高CO2浓度条件下,新叶比老叶积累更多淀粉,表明新叶相对于老叶更能适应高浓度CO2环境[129]。适当提升CO2浓度可以提高桃产量、维生素C和可溶性糖含量[129]。

目前,有关气候变化与果树育种的研究,主要集中在气候变化对果树生产和品质的影响,以及现有果树品种对气候变化适应能力的比较分析,在苹果[130]、葡萄[131]、柑橘[132]、椰子[132]、李[133]、扁桃[133]等果树上已有研究报道,但利用分子育种技术来提高果树气候变化适应能力的研究还鲜见报道。

3 果树分子育种的展望

果树育种以实现果大丰产、高品质、结果能力强、贮运性能强、果实成熟期长、抗逆性强和适宜机械化采收等为目标[134]。目前,我国果树品种选育多采用传统育种方法,难以实现对目标性状快速高效的改良选育。分子育种技术可大幅缩短果树育种周期,实现性状的定向改良。但与水稻、玉米、棉花等大田作物相比,我国果树分子育种技术的研究和应用较为滞后,加强分子生物学技术在果树育种领域的研究应用将是未来果树育种的重要方向。此外,将分子育种技术与常规育种技术相结合,可提高育种全程筛选效率,有利于逐步建立经济、高效的果树育种体系,为提高果树育种效率提供技术支撑。

此外,随着全球气候变化的加剧,果树原有优良性状难以维持。利用分子育种技术,可提高果树品种对环境变化的适应能力,然而有关这方面的研究还鲜有报道。笔者建议,可将培育低温需求较小、生长适应范围更广的品种作为果树育种的一个明确目标。利用分子生物技术对果树品种进行定向遗传改良,这也是增强果树应对气候变化能力的有效策略之一[135]。

我国是果品生产和消费大国,市场潜力大,消费需求多样。未来果树育种研究和果树新品种开发应围绕需求展开,现提出以下4点建议:第一,满足不同人群和不同用途需求,培育多样化、个性化的品种;第二,优质绿色安全是未来农产品的发展方向,培育抗性好、适应轻简化、机械化栽培的品种将是未来果树育种的重要方向;第三,充分利用果树分子遗传信息,在基因组、转录组或系统水平上全面分析基因功能,以揭示果树生长发育调控网络、环境应答互作分子网络、代谢网络等分子机制,为果树定向育种提供理论指导;第四,结合现代生物学、农业物联网等各种技术,提高育种效率,缩短新品种培育周期[5,136-137]。

参考文献(reference):

[1]邓秀新,束怀瑞,郝玉金,等.果树学科百年发展回顾[J].农学学报,2018,8(1):24-34.DENG X X,SHU H R,HAO Y J,et al.Review on the centennial development of pomology in China[J].J Agric,2018,8(1):24-34.

[2]邓秀新.关于我国水果产业发展若干问题的思考[J].果树学报,2021,38(1):121-127.DENG X X.Thoughts on the development of China’s fruit industry[J].J Fruit Sci,2021,38(1):121-127.DOI:10.13925/j.cnki.gsxb.20200509.

[3]龙兴桂,冯殿齐,苑兆和.中国现代果树栽培[M].北京:中国农业出版社,2020.LONG X G,FENG D Q,YUAN Z H.Modern fruit tree cultivation in China[M].Beijing:Chinese Agriculture Press,2020.

[4]陈学森,李秀根,毛志泉,等.新种质创造支撑果品产业升级:红肉苹果和‘库尔勒香梨’种质资源利用以及‘红富士’芽变选种案例分析[J].果树学报,2021,38(1):128-141.CHEN X S,LI X G,MAO Z Q,et al.Fruit industry upgrading supported by new germplasm creation:case study on the utilization of germplasm resources of red-fleshed apple and ‘Kuerlexiangli’ pear and the sports selection of ‘Red Fuji’[J].J Fruit Sci,2021,38(1):128-141.DOI:10.13925/j.cnki.gsxb.20200300.

[5]邓秀新,王力荣,李绍华,等.果树育种40年回顾与展望[J].果树学报,2019,36(4):514-520.DENG X X,WANG L R,LI S H,et al.Retrospection and prospect of fruit breeding for last four de-cades in China[J].J Fruit Sci,2019,36(4):514-520.DOI:10.13925/j.cnki.gsxb.20190094.

[6]YUE J,LIU J,TANG W,et al.Kiwifruit genome database (KGD):a comprehensive resource for kiwifruit genomics[J].Hortic Res,2020,7:117.DOI:10.1038/s41438-020-0338-9.

[7]李桂芬,杨向晖,乔燕春,等.枇杷属植物种间及近缘属杂交亲和性研究[J].园艺学报,2016,43(6):1069-1078.LI G F,YANG X H,QIAO Y C,et al.Study on interspecific and intergeneric hybridization compatibility ofEriobotryaand related genera[J].Acta Hortic Sin,2016,43(6):1069-1078.DOI:10.16420/j.issn.0513-353x.2016-0215.

[8]赵丹,王飞,赵秀明,等.柿属部分品种杂交亲和性以及结实性的研究[J].园艺学报,2012,39(11):2229-2237.ZHAO D,WANG F,ZHAO X M,et al.Studies of cross compatibility and fecundity on part ofDiospyros[J].Acta Hortic Sin,2012,39(11):2229-2237.DOI:10.16420/j.issn.0513-353x.2012.11.017.

[9]JIA H M,JIA H J,CAI Q L,et al.The red bayberry genome and genetic basis of sex determination[J].Plant Biotechnol J,2019,17(2):397-409.DOI:10.1111/pbi.12985.

[10]高源,刘凤之,曹玉芬,等.苹果属种质资源亲缘关系的SSR分析[J].果树学报,2007,24(2):129-134.GAO Y,LIU F Z,CAO Y F,et al.Analysis of genetic relationship forMalusgermplasm resources by SSR markers[J].J Fruit Sci,2007,24(2):129-134.

[11]韩振诚,潘学军,安华明,等.贵州柿属植物种质资源遗传多样性的SRAP分析[J].果树学报,2015,32(5):751-762.HAN Z C,PAN X J,AN H M,et al.Genetic diversity ofDiospyrosLinn.in Guizhou based on SRAP[J].J Fruit Sci,2015,32(5):751-762.DOI:10.13925/j.cnki.gsxb.20150171.

[12]钟敏,廖光联,李章云,等.野生毛花猕猴桃雄花花器性状及SSR遗传多样性研究[J].果树学报,2018,35(6):658-667.ZHONG M,LIAO G L,LI Z Y,et al.Genetic diversity of wild male kiwifruit (ActinidiaerianthaBenth.) germplasms based on SSR and morphological markers[J].J Fruit Sci,2018,35(6):658-667.DOI:10.13925/j.cnki.gsxb.20170514.

[13]夏溪,奉树成,张春英.新型分子生物学技术在花卉定向育种中的应用进展[J].南京林业大学学报(自然科学版),2019,43(6):173-180.XIA X,FENG S C,ZHANG C Y.Advance in flower directive breeding using new molecular biology techniques[J].J Nanjing For Univ (Nat Sci Ed),2019,43(6):173-180.DOI:10.3969/j.issn.1000-2006.201902014.

[14]DING Y,LI H,CHEN L L,et al.Recent advances in genome editing using CRISPR/Cas9[J].Front Plant Sci,2016,7:703.DOI:10.3389/fpls.2016.00703.

[15]WEI Z Z,SUN Z Z,CUI B B,et al.Transcriptome analysis of coloredCallalily (ZantedeschiarehmanniiEngl.) by Illumina sequencing:de novo assembly,annotation and EST-SSR marker development[J].Peer J,2016,4:e2378.DOI:10.7717/peerj.2378.

[16]CHEN M X,SUN C,ZHANG K L,et al.SWATH-MS-facilitated proteomic profiling of fruit skin between Fuji apple and a red skin bud sport mutant[J].BMC Plant Biol,2019,19(1):445.DOI:10.1186/s12870-019-2018-1.

[17]ZHAO G,LIAN Q,ZHANG Z,et al.A comprehensive genome variation map of melon identifies multiple domestication events and loci influencing agronomic traits[J].Nat Genet,2019,51(11):1607-1615.DOI:10.1038/s41588-019-0522-8.

[18]DIXON R A,STEELE C L.Flavonoids and isoflavonoids:a gold mine for metabolic engineering[J].Trends Plant Sci,1999,4(10):394-400.DOI:10.1016/s1360-1385(99)01471-5.

[19]PETRONI K,TONELLI C.Recent advances on the regulation of anthocyanin synthesis in reproductive organs[J].Plant Sci,2011,181(3):219-229.DOI:10.1016/j.plantsci.2011.05.009.

[20]TAKOS A M,JAFFÉ F W,JACOB S R,et al.Light-induced expression of aMYBgene regulates anthocyanin biosynthesis in red apples[J].Plant Physiol,2006,142(3):1216-1232.DOI:10.1104/pp.106.088104.

[21]ESPLEY R V,HELLENS R P,PUTTERILL J,et al.Red colouration in apple fruit is due to the activity of the MYB transcription factor,MdMYB10[J].Plant J,2007,49(3):414-427.DOI:10.1111/j.1365-313x.2006.02964.x.

[22]BAN Y,HONDA C,HATSUYAMA Y,et al.Isolation and functional analysis of aMYBtranscription factor gene that is a key regulator for the development of red coloration in apple skin[J].Plant Cell Physiol,2007,48(7):958-970.DOI:10.1093/pcp/pcm066.

[23]KOBAYASHI S.Retrotransposon-induced mutations in grape skin color[J].Science,2004,304(5673):982.DOI:10.1126/science.1095011.

[24]DELUC L,BARRIEU F,MARCHIVE C,et al.Characterization of a grapevine R2R3-MYB transcription factor that regulates the phenylpropanoid pathway[J].Plant Physiol,2006,140(2):499-511.DOI:10.1104/pp.105.067231.

[25]DELUC L,BOGS J,WALKER A R,et al.The transcription factor VvMYB5b contributes to the regulation of anthocyanin and proanthocyanidin biosynthesis in developing grape berries[J].Plant Physiol,2008,147(4):2041-2053.DOI:10.1104/pp.108.118919.

[26]RAHIM M A,BUSATTO N,TRAINOTTI L.Regulation of anthocyanin biosynthesis in peach fruits[J].Planta,2014,240(5):913-929.DOI:10.1007/s00425-014-2078-2.

[27]YAO G,MING M,ALLAN A C,et al.Map-based cloning of the pear geneMYB114identifies an interaction with other transcription factors to coordinately regulate fruit anthocyanin biosynthesis[J].Plant J,2017,92(3):437-451.DOI:10.1111/tpj.13666.

[28]VIMOLMANGKANG S,HAN Y,WEI G,et al.An apple MYB transcription factor,MdMYB3,is involved in regulation of anthocyanin biosynthesis and flower development[J].BMC Plant Biol,2013,13:176.DOI:10.1186/1471-2229-13-176.

[29]CHAGNÉ D,KUI L W,ESPLEY R V,et al.An ancient duplication of apple MYB transcription factors is responsible for novel red fruit-flesh phenotypes[J].Plant Physiol,2013,161(1):225-239.DOI:10.1104/pp.112.206771.

[30]SHEN X,ZHAO K,LIU L,et al.A role for PacMYBA in ABA-regulated anthocyanin biosynthesis in red-colored sweet cherry cv.Hong Deng (PrunusaviumL.)[J].Plant Cell Physiol,2014,55(5):862-880.DOI:10.1093/pcp/pcu013.

[31]FENG S,WANG Y,YANG S,et al.Anthocyanin biosynthesis in pears is regulated by a R2R3-MYB transcription factor PyMYB10[J].Planta,2010,232(1):245-255.DOI:10.1007/s00425-010-1170-5.

[32]DIRLEWANGER E,PRONIER V,PARVERY C,et al.Genetic linkage map of peach [Prunuspersica(L.) Batsch]using morphological and molecular markers[J].Theor Appl Genet,1998,97(5/6):888-895.DOI:10.1007/s001220050969.

[33]DIRLEWANGER E,COSSON P,BOUDEHRI K,et al.Development of a second-generation genetic linkage map for peach[Prunuspersica(L.) Batsch]and characterization of morphological traits affecting flower and fruit[J].Tree Genet Genomes,2006,3(1):1-13.DOI:10.1007/s11295-006-0053-1.

[34]SU L,BASSA C,AUDRAN C,et al.The auxin Sl-IAA17 transcriptional repressor controls fruit size via the regulation of endoreduplication-related cell expansion[J].Plant Cell Physiol,2014,55(11):1969-1976.DOI:10.1093/pcp/pcu124.

[35]TELLO J,TORRES-PÉREZ R,GRIMPLET J,et al.Polymorphisms and minihaplotypes in theVvNAC26 gene associate with berry size variation in grapevine[J].BMC Plant Biol,2015,15:253.DOI:10.1186/s12870-015-0622-2.

[36]QI X L,LIU C L,SONG L L,et al.PaCYP78A9,a cytochrome P450,regulates fruit size in sweet cherry (PrunusaviumL.)[J].Front Plant Sci,2017,8:2076.DOI:10.3389/fpls.2017.02076.

[37]ROSYARA U R,BINK M C A M,WEG E,et al.Fruit size QTL identification and the prediction of parental QTL genotypes and breeding values in multiple pedigreed populations of sweet cherry[J].Mol Breed,2013,32(4):875-887.DOI:10.1007/s11032-013-9916-y.

[38]DE FRANCESCHI P,STEGMEIR T,CABRERA A,et al.Cell number regulator genes inPrunusprovide candidate genes for the control of fruit size in sweet and sour cherry[J].Mol Breed,2013,32:311-326.DOI:10.1007/s11032-013-9872-6.

[39]ETIENNE A,GÉNARD M,LOBIT P,et al.What controls fleshy fruit acidity?A review of malate and citrate accumulation in fruit cells[J].J Exp Bot,2013,64(6):1451-1469.DOI:10.1093/jxb/ert035.

[40]LI S J,YIN X R,XIE X L,et al.TheCitrustranscription factor,CitERF13,regulates citric acid accumulation via a protein-protein interaction with the vacuolar proton pump,CitVHA-c4[J].Sci Rep,2016,6:20151.DOI:10.1038/srep20151.

[41]HU D G,SUN C H,MA Q J,et al.MdMYB1regulates anthocyanin and malate accumulation by directly facilitating their transport into vacuoles in apples[J].Plant Physiol,2016,170(3):1315-1330.DOI:10.1104/pp.15.01333.

[42]HU D G,SUN C H,SUN M H,et al.MdSOS2L1 phosphorylates MdVHA-B1 to modulate malate accumulation in response to salinity in apple[J].Plant Cell Rep,2016,35(3):705-718.DOI:10.1007/s00299-015-1914-6.

[43]WANG Y P,CHEN J W,FENG J J,et al.Overexpression of a loquat (EriobotryajaponicaLindl.) vacuolar invertase affects sucrose levels and growth[J].Plant Cell Tissue Organ Cult (PCTOC),2015,123(1):99-108.DOI:10.1007/s11240-015-0817-0.

[44]NISHAWY E,SUN X H,EWAS M,et al.Overexpression ofCitrusgrandisDREB gene in tomato affects fruit size and accumulation of primary metabolites[J].Sci Hortic,2015,192:460-467.DOI:10.1016/j.scienta.2015.06.035.

[45]LI S J,YIN X R,WANG W L,et al.CitrusCitNAC62 cooperates with CitWRKY1to participate in citric acid degradation via up-regulation of CitAco3[J].J Exp Bot,2017,68(13):3419-3426.DOI:10.1093/jxb/erx187.

[46]HU D G,LI Y Y,ZHANG Q Y,et al.The R2R3-MYB transcription factor MdMYB73 is involved in malate accumulation and vacuolar acidification in apple[J].Plant J,2017,91(3):443-454.DOI:10.1111/tpj.13579.

[47]YAO Y X,LI M,ZHAI H,et al.Isolation and characterization of an apple cytosolic malate dehydrogenase gene reveal its function in malate synthesis[J].J Plant Physiol,2011,168(5):474-480.DOI:10.1016/j.jplph.2010.08.008.

[48]PEACE C P,CRISOSTO C H,GRADZIEL T M.Endopolygalacturonase:a candidate gene for freestone and melting fleshin peach[J].Mol Breed,2005,16(1):21-31.DOI:10.1007/s11032-005-0828-3.

[49]MORGUTTI S,NEGRINI N,GHIANI A,et al.Endopolygalacturonasegene polymorphisms:asset of the locus in different peach accessions[J].Am J Plant Sci,2017,8(4):941-957.DOI:10.4236/ajps.2017.84063.

[50]COSTA F,WEG W E,STELLA S,et al.Map position and functional allelic diversity of Md-Exp7,a new putative expansin gene associated with fruit softening in apple (Malus×domesticaBorkh.) and pear (Pyruscommunis)[J].Tree Genet Genomes,2008,4(3):575-586.DOI:10.1007/s11295-008-0133-5.

[51]TATSUKI M,NAKAJIMA N,FUJII H,et al.Increased levels of IAA are required for system 2 ethylene synthesis causing fruit softening in peach (PrunuspersicaL.Batsch)[J].J Exp Bot,2013,64(4):1049-1059.DOI:10.1093/jxb/ers381.

[52]张宗营.‘泰山早霞’苹果(MalusdomesticaBorkh.)果实成熟软化相关基因的分离与功能鉴定[D].泰安:山东农业大学,2016.ZHANG Z Y.Isolation and function characterization of genes associated with fruit ripening and softening in ‘Taishanzaoxia’ apple(MalusdomesticaBorkh.)[D].Taian:Shandong Agricultural University,2016.

[53]LI M,ZHANG Y,ZHANG Z,et al.Hypersensitive ethylene signaling and ZMdPG1 expression lead to fruit softening and dehiscence[J].PLoS One,2013,8(3):e58745.DOI:10.1371/journal.pone.0058745.

[54]HAYAMA H,TATSUKI M,ITO A,et al.Ethylene and fruit softe-ning in the stony hard mutation in peach[J].Postharvest Biol Technol,2006,41(1):16-21.DOI:10.1016/j.postharvbio.2006.03.006.

[56]ZHANG E P,CHAI F M,ZHANG H H,et al.Effects of sunlight exclusion on the profiles of monoterpene biosynthesis and accumulation in grape exocarp and mesocarp[J].Food Chem,2017,237:379-389.DOI:10.1016/j.foodchem.2017.05.127.

[57]LÜCKER J,SCHWAB W,VAN HAUTUM B,et al.Increased and altered fragrance of tobacco plants after metabolic engineering using three monoterpene synthases from lemon[J].Plant Physiol,2004,134(1):510-519.DOI:10.1104/pp.103.030189.

[58]SHEN S L,YIN X R,ZHANG B,et al.CitAP2.10 activation of the terpene synthase CsTPS1 is associated with the synthesis of (+)-valencene in ‘Newhall’ orange[J].J Exp Bot,2016,67(14):4105-4115.DOI:10.1093/jxb/erw189.

[60]王娇娇,黄玉吉,张波,等.桃果实PpFAD2基因的功能研究[C]//中国园艺学会.2015年学术年会论文集.厦门,2015:27.

[61]JAAKOLA L.New insights into the regulation of anthocyanin biosynthesis in fruits[J].Trends Plant Sci,2013,18(9):477-483.DOI:10.1016/j.tplants.2013.06.003.

[62]GAFRIKOVA M,GALOVA E,SEVCOVICOVA A,et al.Extract fromArmoraciarusticanaand its flavonoid components protect human lymphocytes against oxidative damage induced by hydrogen peroxide[J].Molecules,2014,19(3):3160-3172.DOI:10.3390/molecules19033160.

[63]BATRA P,SHARMA A K.Anti-cancer potential of flavonoids:recent trends and future perspectives[J].3 Biotech,2013,3(6):439-459.DOI:10.1007/s13205-013-0117-5.

[64]CZEMMEL S,STRACKE R,WEISSHAAR B,et al.The grapevine R2R3-MYB transcription factor VvMYBF1regulates flavonol synthesis in developing grape berries[J].Plant Physiol,2009,151(3):1513-1530.DOI:10.1104/pp.109.142059.

[65]孙庆国,姜生辉,房鸿成,等.苹果MdNAC9的克隆及其调控黄酮醇合成功能的鉴定[J].园艺学报,2019,46(11):2073-2081.SUN Q G,JIANG S H,FANG H C,et al.Cloning ofMdNAC9 and functional of its regulation on flavonol synthesis[J].Acta Hortic Sin,2019,46(11):2073-2081.DOI:10.16420/j.issn.0513-353x.2018-1070.

[66]ZAKAR T,LACZKO-DOBOS H,TOTH T N,et al.Carotenoids assist in cyanobacterial photosystem II assembly and function[J].Front Plant Sci,2016,7:295.DOI:10.3389/fpls.2016.00295.

[67]张印,万勇,张婷,等.柑橘愈伤组织RNAi沉默CCD1基因对其类胡萝卜素积累的影响[J].园艺学报,2020,47(10):1982-1990.ZHANG Y,WAN Y,ZHANG T,et al.RNAi-mediated suppression ofCCD1 gene impacts carotenoid accumulation in citrus calli[J].Acta Hortic Sin,2020,47(10):1982-1990.DOI:10.16420/j.issn.0513-353x.2019-1007.

[68]洪敏,石丝,何珊珊,等.VIGS诱导PSY基因沉默对枇杷果实类胡萝卜素积累的影响[J].分子植物育种,2018,16(6):1792-1797.HONG M,SHI S,HE S S,et al.Effects of VIGS inducedPSYgene silencing on carotenoid accumulation in fruit ofEriobotryajaponicaLindl[J].Mol Plant Breed,2018,16(6):1792-1797.DOI:10.13271/j.mpb.016.001792.

[69]WEI T,DENG K J,LIU D Q,et al.Ectopic expression of DREB transcription factor,AtDREB1A,confers tolerance to drought in transgenicSalviamiltiorrhiza[J].Plant Cell Physiol,2016,57(8):1593-1609.DOI:10.1093/pcp/pcw084.

[70]NISHAWY E,SUN X H,EWAS M,et al.Over expression ofCitrusgrandisDREB gene in tomato affects fruit size and accumulation of primary metabolites[J].Sci Hortic,2015,192:460-467.DOI:10.1016/j.scienta.2015.06.035.

[71]裴庆利,王春连,刘丕庆,等.分子标记辅助选择在水稻抗病虫基因聚合上的应用[J].中国水稻科学,2011(2):119-129.PEI Q L,WANG C L,LIU P Q,et al.Marker-assisted selection for pyramiding disease and insect resistance genes in rice[J].Chin J Rice Sci,2011,25(2):119-129.

[72]李君霞,代书桃,陈宇翔,等.MYB转录因子在植物抗旱基因工程中的应用进展[J].河南农业科学,2020,49(11):1-9.LI J X,DAI S T,CHEN Y X,et al.Progress on application of MYB transcription factor in plant drought tolerance genetic engineering[J].J Henan Agric Sci,2020,49(11):1-9.DOI:10.15933/j.cnki.1004-3268.2020.11.001.

[73]GUBLER F,KALLA R,ROBERTS J K,et al.Gibberellin-regulated expression of amybgene in barley aleurone cells:evidence for Myb transactivation of a high-pI alpha-amylase gene promoter[J].Plant Cell,1995,7(11):1879-1891.DOI:10.1105/tpc.7.11.1879.

[74]LI M J,QIAO Y,LI Y Q,et al.A R2R3-MYB transcription factor gene in common wheat (namely TaMYBsm1) involved in enhancement of drought tolerance in transgenicArabidopsis[J].J Plant Res,2016,129(6):1097-1107.DOI:10.1007/s10265-016-0857-5.

[75]QIN Y X,WANG M C,TIAN Y C,et al.Over-expression of TaMYB33 encoding a novel wheat MYB transcription factor increases salt and drought tolerance inArabidopsis[J].Mol Biol Rep,2012,39(6):7183-7192.DOI:10.1007/s11033-012-1550-y.

[76]ZHANG L,ZHAO G,XIA C,et al.A wheat R2R3-MYB gene,TaMYB30-B,improves drought stress tolerance in transgenicArabidopsis[J].J Exp Bot,2012,63(16):5873-5885.DOI:10.1093/jxb/ers237.

[77]YU Y T,WU Z,LU K,et al.Overexpression of the MYB37 transcription factor enhances abscisic acid sensitivity,and improves both drought tolerance and seed productivity inArabidopsisthaliana[J].Plant Mol Biol,2016,90(3):267-279.DOI:10.1007/s11103-015-0411-1.

[78]LI K,XING C,YAO Z,et al.PbrMYB21,a novel MYB protein ofPyrusbetulaefolia,functions in drought tolerance and modulates polyamine levels by regulating arginine decarboxylase gene[J].Plant Biotechnol J,2017,15(9):1186-1203.DOI:10.1111/pbi.12708.

[79]SHUKLA P S,GUPTA K,AGARWAL P,et al.Overexpression of a novel SbMYB15 fromSalicorniabrachiata confers salinity and dehydration tolerance by reduced oxidative damage and improved photosynthesis in transgenic tobacco[J].Planta,2015,242(6):1291-1308.DOI:10.1007/s00425-015-2366-5.

[80]GUO T L,WANG N,XUE Y C,et al.Overexpression of the RNA binding protein MhYTP1 in transgenic apple enhances drought tolerance and WUE by improving ABA level under drought condition[J].Plant Sci,2019,280:397-407.DOI:10.1016/j.plantsci.2018.11.018.

[81]RUGINI E,DE PACE C.Olive breeding with classical and modern approaches Olive Tree Genome,2016:163-193.DOI:10.1007/978-3-319-48887-5_10.

[82]乌凤章,王贺新,徐国辉,等.木本植物低温胁迫生理及分子机制研究进展[J].林业科学,2015,51(7):116-128.WU F Z,WANG H X,XU G H,et al.Research progress on the physiological and molecular mechanisms of woody plants under low temperature stress[J].Sci Silvae Sin,2015,51(7):116-128.

[83]刘肖.蓝莓抗寒性、需冷量SNP分析与分子辅助育种研究[D].北京:北京林业大学,2013.LIU X.Study on molecular marker-assisted breeding with single nucleotide polymorphisms linked to cold hardiness and chilling requirement in blueberry[D].Beijing:Beijing Forestry University,2013.

[84]HUANG X S,WANG W,ZHANG Q,et al.A basic helix-loop-helix transcription factor,PtrbHLH,ofPoncirustrifoliataconfers cold tolerance and modulates peroxidase-mediated scavenging of hydrogen peroxide[J].Plant Physiol,2013,162(2):1178-1194.DOI:10.1104/pp.112.210740.

[85]LIU C Y,YAN M,HUANG X B, et al.Effects of NaCl stress on growth and ion homeostasis in pomegranate tissues[J].Eur J Hortic Sci,2020,85(1):42-50.DOI:10.17660/ejhs.2020/85.1.5.

[86]樊军锋,李嘉瑞,韩一凡,等.mtlD/gutD双价耐盐基因转化秦美猕猴桃的研究[J].西北农林科技大学学报(自然科学版),2002,30(3):53-58.FAN J F,LI J R,HAN Y F,et al.Studies on transformation ofmtlD/gutDsalt-resistant gene to Kiwifruit(Qin-mei)[J].J Northwest Sci-Tech Univ Agric For,2002,30(3):53-58. DOI:10.13207/j.cnki.jnwafu.2002.03.014.

[87]孙宁,孙建设,李增裕.苹果砧木耐盐突变体的筛选鉴定及RAPD分析[J].河北农业大学学报,2004,27(5):37-40.SUN N,SUN J S,LI Z Y.Salt tolerant mutant screening and RAPD analysis studies on apple rootstock[J].J Agric Univ Hebei,2004,27(5):37-40.

[88]MOORE G A,GUY C L,TOZLU I,et al.Mapping quantitative trait loci for salt tolerance and cold tolerance inCitrusgrandis(L.) osb.×Poncirustrifoliata(L.) raf.hybrid populations[J].Acta Hortic,2000(535):37-46.DOI:10.17660/actahortic.2000.535.3.

[89]TOZLU I,GUY C L,MOORE G A.QTL analysis of Na+and Cl-accumulation related traits in an intergeneric BC1progeny ofCitrusandPoncirusunder saline and nonsaline environments[J].Genome,1999,42(4):692-705.DOI:10.1139/g99-003.

[90]ZHAO K,SHEN X,YUAN H,et al.Isolation and characterization of dehydration-responsive element-binding factor 2C (MsDREB2C) fromMalussieversiiRoem[J].Plant Cell Physiol,2013,54(9):1415-1430.DOI:10.1093/pcp/pct087.

[91]BOUAZIZ D,PIRRELLO J,BEN AMOR H,et al.Ectopic expression of dehydration responsive element binding proteins (StDREB2) confers higher tolerance to salt stress in potato[J].Plant Physiol Biochem,2012,60:98-108.DOI:10.1016/j.plaphy.2012.07.029.

[92]YAISH M W,SUNKAR R,ZHENG Y,et al.A genome-wide identification of the miRNAome in response to salinity stress in date palm (PhoenixdactyliferaL.)[J].Front Plant Sci,2015,6:946.DOI:10.3389/fpls.2015.00946.

[93]郭宝强.苹果树腐烂病防治技术要点[J].农业工程技术,2019,39(35):48.GUO B Q.Key points of controlling apple tree rot disease[J].Agric Eng Technol,2019,39(35):48.DOI:10.16815/j.cnki.11-5436/s.2019.35.036.

[94]蒋迪,徐昌杰,陈大明,等.柑橘转基因研究的现状及展望[J].果树学报,2002,19(1):48-52.JIANG D,XU C J,CHEN D M,et al.Status and prospect of research inCitrustransgene[J].J Fruit Sci,2002,19(1):48-52.DOI:10.13925/j.cnki.gsxb.2002.01.013.

[95]FITCH M M M,MANSHARDT R M,GONSALVES D,et al.Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus[J].Bio/Technology,1992,10(11):1466-1472.DOI:10.1038/nbt1192-1466.

[96]李亚新.首例商品化的转基因果树:番木瓜[J].园艺学报,2000,27(1):51.LI Y X.The first commercialized genetically modified fruit tree: papaya[J].Acta Hortic Sin,2000,27(1):51.

[97]SCORZA R,CORDTS J M,MANTE S,et al. Agrobacterium-media-ted transformation of plum (PrunusdomesticaL.) with the papaya ringspot virus coat protein gene[J]. HortScience, 1991,26(6): 786-786.

[99]ZHOU K,HU L,LI Y,et al.MdUGT88F1-mediated phloridzin biosynthesis regulates apple development andValsacanker resis-tance[J].Plant Physiol,2019,180(4):2290-2305.DOI:10.1104/pp.19.00494.

[100]LEGRAND V,DALMAYRAC S,LATCHÉ A,et al.Constitutive expression ofVr-EREgene in transformed grapevines confers enhanced resistance to eutypine,a toxin fromEutypalata[J].Plant Sci,2003,164(5):809-814.DOI:10.1016/S0168-9452(03)00069-4.

[101]FAN C H,PU N,WANG X P,et al.Agrobacterium-mediated genetic transformation of grapevine (VitisviniferaL.) with a novel stilbene synthase gene from Chinese wildVitispseudoreticulata[J].Plant Cell Tissue Organ Cult,2008,92(2):197-206.DOI:10.1007/s11240-007-9324-2.

[102]VIDAL J R,KIKKERT J R,DONZELLI B D,et al.Biolistic transformation of grapevine using minimal gene cassette technology[J].Plant Cell Rep,2006,25(8):807-814.DOI:10.1007/s00299-006-0132-7.

[103]VIDAL J R,KIKKERT J R,MALNOY M A,et al.Evaluation of transgenic ‘Chardonnay’ (Vitisvinifera) containing Magainin genes for resistance to crown gall and powdery mildew[J].Transgenic Res,2006,15(1):69-82.DOI:10.1007/s11248-005-4423-5.

[104]VIDAL J R,KIKKERT J R,WALLACE P G,et al.High-efficiency biolistic co-transformation and regeneration of ‘Chardonnay’ (VitisviniferaL.) containing npt-II and antimicrobial peptide genes[J].Plant Cell Rep,2003,22(4):252-260.DOI:10.1007/s00299-003-0682-x.

[105]SONG G Q,SINK K C,WALWORTH A E,et al.Engineering cherry rootstocks with resistance toPrunusnecrotic ring spot virus through RNAi-mediated silencing[J].Plant Biotechnol J,2013,11(6):702-708.DOI:10.1111/pbi.12060.

[106]MACHADO M A,CRISTOFANI-YALY M,BASTIANEL M.Breeding,genetic and genomic ofCitrusfor disease resistance[J].Rev Bras Frutic,2011,33(spe1):158-172.DOI:10.1590/s0100-29452011000500019.

[107]OMAR A A,MURATA M M,EL-SHAMY H A,et al.Enhanced resistance to citrus canker in transgenic mandarin expressing Xa21 from rice[J].Transgenic Res,2018,27(2):179-191.DOI:10.1007/s11248-018-0065-2.

[108]WON K,BASTIAANSE H,KIM Y K,et al.Genetic mapping of polygenic scab (Venturiapirina) resistance in an interspecific pear family[J].Mol Breed,2014,34(4):2179-2189.DOI:10.1007/s11032-014-0172-6.

[109]REYNOIRD J P,MOURGUES F,NORELLI J,et al.First evidence for improved resistance to fire blight in transgenic pear expressing the attacin E gene fromHyalophoracecropia[J].Plant Sci,1999,149(1):23-31.DOI:10.1016/S0168-9452(99)00139-9.

[110]李梦桃,李圣彦,汪海,等.转cry2Ah-vp基因玉米的抗虫性鉴定[J].植物保护学报,2020,47(1):74-83.LI M T,LI S Y,WANG H,et al.Identification of insect resistance in the transgenic maize harboringcry2Ah-vpgene[J].J Plant Prot,2020,47(1):74-83.DOI:10.13802/j.cnki.zwbhxb.2020.2019043.

[111]JAMES D J,PASSEY A J,WEBSTER A D,et al. Transgenic apples and strawberries: advances in transformation,introduction of genes for insect resistance and field studies of tissue cultured plants[J]. Acta Hortic, 1993,336: 179-184. DOI: 10.17660/ActaHortic.1993.336.22.

[112]LING P,DUNCAN L W,DENG Z,et al.Inheritance ofCitrusnematode resistance and its linkage with molecular markers[J].Theor Appl Genet,2000,100(7):1010-1017.DOI:10.1007/s001220051382.

[113]YANG Z N,INGELBRECHT I L,LOUZADA E,et al.Agrobacterium-mediated transformation of the commercially important grapefruit cultivar Rio Red (CitrusparadisiMacf.)[J].Plant Cell Rep,2000,19(12):1203-1211.DOI:10.1007/s002990000257.

[115]CECCARELLI S,GRANDO S,MAATOUGUI M,et al.Plant breeding and climate changes[J].J Agric Sci,2010,148(6):627-637.DOI:10.1017/s0021859610000651.

[116]OLESEN J E,BØRGESEN C D,ELSGAARD L,et al.Changes in time of sowing,flowering and maturity of cereals in Europe under climate change[J].Food Addit Contam:Part A,2012,29(10):1527-1542.DOI:10.1080/19440049.2012.712060.

[117]CAMPOY J A,RUIZ D,EGEA J.Dormancy in temperate fruit trees in a global warming context:a review[J].Sci Hortic,2011,130(2):357-372.DOI:10.1016/j.scienta.2011.07.011.

[118]蔡榕硕,付迪.全球变暖背景下中国东部气候变迁及其对物候的影响[J].大气科学,2018,42(4):729-740.CAI R S,FU D.The pace of climate change and its impacts on phenology in eastern China[J].Chin J Atmos Sci,2018,42(4):729-740.

[119]郑景云,葛全胜,郝志新,等.过去150年长三角地区的春季物候变化[J].地理学报,2012,67(1):45-52.ZHENG J Y,GE Q S,HAO Z X,et al.Changes of spring phenodate in Yangtze River Delta region in the past 150 years[J].Acta Geogr Sin,2012,67(1):45-52.

[120]TAO F L,YOKOZAWA M,XU Y L,et al.Climate changes and trends in phenology and yields of field crops in China,1981-2000[J].Agric For Meteorol,2006,138(1/2/3/4):82-92.DOI:10.1016/j.agrformet.2006.03.014.

[121]郭建平.气候变化对中国农业生产的影响研究进展[J].应用气象学报,2015,26(1):1-11.GUO J P.Advances in impacts of climate change on agricultural production in China[J].J Appl Meteorol Sci,2015,26(1):1-11.

[122]刘玉洁,陈巧敏,葛全胜,等.气候变化背景下1981—2010中国小麦物候变化时空分异[J].中国科学:地球科学,2018,48(7):888-898.LIU Y J,CHEN Q M,GE Q S,et al.Spatiotemporal differentiation of changes in wheat phenology in China under climate change from 1981 to 2010[J].Sci Sin (Terrae),2018,48(7):888-898.

[123]LEGAVE J M,BLANKE M,CHRISTEN D,et al.A comprehensive overview of the spatial and temporal variability of apple bud dormancy release and blooming phenology in western Europe[J].Int J Biometeorol,2013,57(2):317-331.DOI:10.1007/s00484-012-0551-9.

[124]王力荣,朱更瑞,左覃元,等.短低温桃和油桃育种进展[J].果树科学,2000,17(1):57-62.WANG L R,ZHU G R,ZUO Q Y,et al.Reviews of low chilling peach and nectarine breeding[J].J Fruit Sci,2000,17(1):57-62. DOI:10.13925/j.cnki.gsxb.2000.01.014.

[125]赵锋,刘威生,刘宁,等.我国杏种质资源及遗传育种研究新进展[J].果树学报,2005,22(6):687-690. ZHAO F,LIU W S,LIU N,et al.Reviews of the apricot germplasm resources and genetic breeding in China[J].J Fruit Sci,2005,22(6):687-690.

[126]郁香荷,刘威生,刘宁,等.杏温室栽培品种选择及配套技术研究[J].果树学报,2004,21(1):76-78.YU X H,LIU W S,LIU N,et al.Varieties and techniques of cultivation of apricot in greenhouse[J].J Fruit Sci,2004,21(1):76-78.

[127]KOSKI M H,MACQUEEN D,ASHMAN T L.Floral pigmentation has responded rapidly to global change in ozone and temperature[J].Curr Biol,2020,30(22):4425-4431.DOI:10.1016/j.cub.2020.08.077.

[128]VU J C V,NEWMAN Y C,ALLEN L H Jr,et al.Photosynthetic acclimation of young sweet orange trees to elevated growth CO2and temperature[J].J Plant Physiol,2002,159(2):147-157.DOI:10.1078/0176-1617-00689.

[129]侯新村,李宪利,高东升,等.CO2施肥对桃树暗呼吸和光呼吸的影响[J].果树学报,2005,22(5):466-469.HOU X C,LI X L,GAO D S,et al.Effect of CO2enrichment on respiration and photorespiration of peach trees[J].J Fruit Sci,2005,22(5):466-469.

[130]EL YAACOUBI A,EL JAOUHARI N,BOURIOUG M,et al.Potential vulnerability of moroccan apple orchard to climate change-induced phenological perturbations:effects on yields and fruit quality[J].Int J Biometeorol,2020,64(3):377-387.DOI:10.1007/s00484-019-01821-y.

[131]BIGARD A,BERHE D T,MAODDI E,et al.VitisviniferaL.fruit diversity to breed varieties anticipating climate changes[J].Front Plant Sci,2018,9:455.DOI:10.3389/fpls.2018.00455.

[132]Al-KHAYRI J M,JAIN S M,JOHNSON D V. Advances in plant breeding strategies: fruits[M]. Spr Int Publing AG, 2018.

[133]GITEA M A,GITEA D,TIT D M,et al. Orchard management under the effects of climate change: implications for apple,plum,and almond growing[J]. Environ Sci Pollut Res, 2019,26: 9908-9915. DOI: 10.1007/s11356-019-04214-1.

[134]李明,刘聪利,齐希梁,等.中国甜樱桃产业的品种现状、需求特点与未来育种目标[J].落叶果树,2019,51(3):5-7.LI M,LIU C L,QI X L,et al.Current situation,demand characteristics and future breeding objectives of sweet cherry industry in China[J].Deciduous Fruits,2019,51(3):5-7.DOI:10.13855/j.cnki.lygs.2019.03.002.

[135]彭颖姝,高捍东,苑兆和.全球气候变化对温带果树的影响[J].中国农业科技导报,2018,20(7):1-10.PENG Y S,GAO H D,YUAN Z H.Impact of global climate change on temperate fruit tree[J].J Agric Sci Technol,2018,20(7):1-10.DOI:10.13304/j.nykjdb.2017.0463.

[136]束怀瑞.关于苹果产业新动能的几点思考[J].落叶果树,2018,50(2):1-2.SHU H R.Some thoughts on the new momentum of the apple industry[J].Deciduous Fruits,2018,50(2):1-2.DOI:10.13855/j.cnki.lygs.2018.02.001.

[137]冯轶,许雪峰,张新忠,等.苹果矮化砧木致矮机理的研究进展[J].园艺学报,2018,45(9):1633-1641.FENG Y,XU X F,ZHANG X Z,et al.Progress of dwarfing mechanism of apple rootstock[J].Acta Hortic Sin,2018,45(9):1633-1641.DOI:10.16420/j.issn.0513-353x.2018-0384.

猜你喜欢
果树苹果基因
果树冬季要休眠 易受冻害要注意
Frog whisperer
天渐冷果树防冻要抓紧
修改基因吉凶未卜
创新基因让招行赢在未来
收获苹果
基因
怎么解决施肥引起的果树烂根
会说话的苹果