林 欢,冯旰珠
南京医科大学第二附属医院呼吸与危重症医学科,江苏 南京 210011
2019年12月,中国湖北省武汉市出现了病因不明的肺炎暴发。一种新型冠状病毒被确认为病原体,该病毒可影响下呼吸道,并在人类中表现为肺炎,2020 年2 月世界卫生组织(World Health Organization,WHO)将该病命名为新型冠状病毒肺炎(coronavirus disease 19,COVID-19),同年3 月国际病毒分类委员会(International Committee on Taxonomy of Viruses,ICTV)冠状病毒研究小组正式将该病毒命名为“SARS-CoV-2”。尽管全球进行了严格的控制和隔离,该病仍在世界各地迅速蔓延。SARSCoV-2 隶属于冠状病毒种属,此病毒因在电子显微镜下呈现出包膜上有形状类似日冕的棘突而得名。目前,研究者发现病毒颗粒由4种蛋白组成,包括刺突蛋白(spike,S)和膜蛋白(membrane,M)两种主要的糖蛋白、非糖基化的包膜蛋白(envelope,E)及负责病毒RNA 复制的核衣壳蛋白(nucleocapsid,N)(图1[1])。S蛋白在SARS-CoV-2与宿主细胞血管紧张素转化酶2(angiotensin-convertingenzyme2,ACE2)受体结合、膜融合、病毒内化、组织嗜性及其致病性方面至关重要,因此成为疫苗研制及中和抗体开发抗体主要靶标。
图1 冠状病毒结构Figure 1 The coronavirus structure
2012 年ICTV 根据冠状病毒的基因组结构将其分成4个属:α属转录调控序列(transcription regulating sequences,TRS)均为CUAAAC,具有2个蛋白酶位点;β属A群TRS为CUAAAC,而其他群为ACGAAC和非结构蛋白3(non-structural protein 3,NSP3),但β属只有1个蛋白酶位点;γ属TRS为CUUAACAA,都缺少NSP7;δ属是已知最小基因组,其结构类似其他病毒。21 世纪以来,造成重症急性呼吸综合征(severe acute respiratory syndrome,SARS)的SARS-CoV、中东呼吸综合征(middle east respiratory syndrome,MERS)的MERS-CoV 及SARS-CoV-2 病毒均属于β属。研究发现,同属于冠状病毒的SARS-CoV-2 与SARS-CoV 具有很高的序列同源性(约79.5%)[2]。SARS-CoV-2 的基因组编码pp1ab(从ORF 1ab 进行翻译),4 个结构蛋白(S、E、M 和N)和6 个辅助蛋白(3a、6、7a、7b、8 和10),与SARS-CoV 和MERS-CoV相同,SARS-CoV-2也没有血凝素-酯酶(HE)基因[3]。
冠状病毒的S 蛋白是高度糖基化的糖蛋白,相对分子质量约2×105,由1 200~1 500 个氨基酸残基组成。尽管4个种类冠状病毒的S蛋白氨基酸序列不同,但在结构上却具有一些共同特征:皆由较长的膜外区、跨膜区和膜内区组成,属Ⅰ类病毒融合蛋白[4]。像其他Ⅰ类病毒融合蛋白一样,S蛋白在翻译后会折叠成亚稳态的预融合构象。运用冷电镜(Cryo-EM)对SARS-CoV-2的S蛋白研究后发现,S蛋白存在封闭和开放两种结构状态(图2A)[5]。S蛋白呈三聚体结构,在封闭状态时,具有3个受体结合域(receptor-binding domain,RBD),呈“向下”构象,而在开放状态时,则仅有1 个呈“向上”构象的RBD。最近在S蛋白三聚体的其他稳态结构中也能观察到这两种状态,且开放状态是SARS-CoV-2 与宿主细胞膜融合的前提[6]。S 蛋白在功能上分为S1、S2 两个亚基:S1 亚基参与受体识别,S2 亚基促进膜融合并将S蛋白锚定在宿主细胞膜上(图2B)。β冠状病毒S 蛋白的S1 亚基呈现多域结构,分布在A~D 4 个不同的结构域中,其中域A 和B 可充当受体结合域。域A的核心结构呈半乳糖凝集素样的β夹心折叠,域B 则呈反向平行的β折叠,域B 在病毒膜远端有1 个延伸环,该环在β冠状病毒属的不同种类间,其大小与结构存在很大不同,因此也称为高变区(hypervariable region,HVR)[7-8]。S1 的C-末端结构域C 和D 由初级蛋白序列的非连续部分构成,并直接与S2 亚基的茎核心相连形成β折叠结构,而整个S1 结构域则通过覆盖在S2 表面的环相互连接[9]。S1亚基在冠状病毒不同属间的序列长度差异很大,表明不同冠状病毒属S 蛋白结构不同,S2 亚基则高度保守,但它包含了促进病毒与宿主细胞融合的重要区域,包括融合肽(fusion peptide,FP)、2个七肽重复区(HR1 和HR2)以及跨膜结构域[10]。在预融合状态下,HR1 区形成4 个螺旋作为S2 主干的一部分,HR2区则无序,FP形成短螺旋和环,疏水性残基埋在FP内部。位于HR1下游的长为75 Å的中心螺旋沿着S2三聚体的三重轴延伸,HR1基序本身沿S2亚基折叠为4个单独的α螺旋,融合肽则形成1个短螺旋,其保守的疏水残基与S2亚基其他部分掩埋在1个边缘区域[11]。
图2 SARS-CoV-2S蛋白的结构分析Figure 2 Structural analysis of S protein of SARS-CoV-2
对冠状病毒S 蛋白的结构研究表明,其N 端结构域(N-terminal region,NTR)及S1的C端结构域(Cterminal region,CTR)可与宿主受体结合,发挥RBD作用[12]。SARS-CoV-2通过其S1亚基CTR结构域的RBD识别宿主细胞ACE2受体并与之结合[13]。ACE2可在人类肺、心、肾、睾丸等组织器官表达,以鼻前庭、鼻咽部鳞状上皮、口腔黏膜、肺泡上皮细胞及动静脉内皮细胞表达普遍,尤以肺泡Ⅱ型上皮细胞表达较强[14-15];而脾脏、骨髓、淋巴结以及Kupffer细胞、淋巴细胞和巨噬细胞皆不表达ACE2。尽管SARS-CoV-2与MERS-CoV RBD同源域的结构相似,但SARS-CoV-2 RBD 所诱导的抗体与MERS-CoV 没有交叉中和活性[16];在与受体结合的过程中,MERSCoV是通过RBD(CTR)区域识别受体的二肽基肽酶4(DPP4)并与之结合,而SARS-CoV-2 则是通过S1亚基CTR 结构域RBD 与ACE2 的受体结合。所以,尽管SARS-CoV-2 和MERS-CoV RBD 的同源域结构相似,但它们结合的受体结合基序(receptor binding motif,RBM)区域不同,这就解释了它们识别不同受体的原因[17]。
冠状病毒入侵宿主细胞的基本过程,包括S 蛋白与受体结合及其水解,最终形成病毒-细胞融合。它首先通过S 蛋白S1 亚基的NTR 或CTR(或两者)与宿主受体相互作用完成病毒体附着,继而通过网格蛋白或小窝蛋白依赖性途径经受体介导内吞后进入宿主细胞,而在内吞摄取前,S蛋白则被相应蛋白酶水解[18]。S 蛋白水解切割点有2 个,其一位于S1和S2亚基之间的边界(S1/S2切割位点),其二则位于第一融合肽的上游(S2′切割位点)[19]。尽管未得到实验证实,但多数研究者认为,所有冠状病毒-宿主细胞融合都依赖于S2′或接近S2′的蛋白水解切割来完成,且该过程实现主要取决于S 蛋白与受体结合后的构象变化[20]。冠状病毒S预融合构象分析表明,S1亚基重定位(或脱落)改变S2构象,S2′切割位点进入预融合S 结构上的α-螺旋内,在此基础上S2′位点的二级结构转化为可切割的柔性环。在S2′位点蛋白水解切割激活后,融合肽与相邻S2螺旋之间的疏水相互作用受到干扰,这使得4 个α-螺旋和HR1 区的连接区域重新折叠成1 个长三聚体螺旋,该三聚体螺旋作为中央螺旋的N 端延伸,将融合肽插入宿主细胞内吞区的膜中。接下来,由于S2 重排,2个HR区域相互作用,形成1个反向平行、能量稳定的六螺旋束,使病毒和宿主脂质双分子层完成融合[21]。
抗体介导的体液反应对于抗病毒感染至关重要。中和抗体(neutralizing antibody,NAB),通过与这些病毒颗粒的表面表位结合阻止病毒进入宿主细胞,降低病毒的传染性[22]。NAB 通过3 个主要途径发挥保护效应:首先,NAB 通过与病毒颗粒的结合阻止后者与靶细胞受体的结合;其次,通过抗体介导的调理作用或补体激活效应使病毒裂解;第三,NAB 还可对病毒感染提供特异性免疫防御[23]。近年来开发了多种抗病毒NAB,其中部分已用于临床,如单克隆抗体4C2、Mersmab1、LCA60 等[24-25]。冠状病毒S蛋白,尤其是S1亚基RBD是开发NAB最关注的靶点,NAB 可以通过与该靶点的结合阻断RBD与宿主细胞ACE2受体的相互作用[26]。研究显示,中和抗体80R、CR3014、CR3022、M396均可阻断S1 的RBD与ACE2结合,且80R和M396对冠状病毒的中和效应已在动物模型上得到证实(表1)[27-33]。日前,研究者从59 例COVID-19 康复期患者血浆中分离出中和抗体COVA1-18,以其干预SARS-CoV-2感染的hACE2 小鼠模型后发现,COVA1-18 能使模型鼠肺中的SARS-CoV-2 病毒载量显著减少,且这种干预效果在3种不同的临床前模型也得到验证,提示COVA1-18有望成为临床治疗的候选药物[34-35]。先前有关埃博拉病毒和SARS 抗体的研究表明,多种NAB 的混合治疗比单一表位抗体显示出更强的中和效果,即鸡尾酒抗体法对付SARS-CoV-2 是值得尝试的一种策略[36]。新近报道,由两种非竞争性人体中和抗体IgG1 组成的鸡尾酒NAB REGN-COV2能够靶向SARS-CoV-2 S蛋白的受体RBD,阻止病毒进入人体细胞,Ⅰ、Ⅱ期临床试验结果显示,REGNCOV2能显著增强机体对SARS-CoV-2的清除,尤其在内源性免疫应答尚未启动(即血清抗体阴性)以及高病毒载量的初期患者,且与之相关的过敏反应或严重不良事件发生率极低,表明其安全性令人满意[31-38]。因此,制备针对SARS-CoV-2的NAB 时,多种有效NAB的组合在降低病毒逃逸概率、提高对病毒的中和效果方面会更有前景[39]。
表1 抗SARS-CoV中和抗体Table 1 Neutralizing antibody of anti-SARS-CoV
尽管早先已开发出多种针对SARS-CoV 和MERS-CoV 的疫苗,但仅有少数几种在临床上得到测试(表2、3)[40-53],目前尚无批准用于人类的SARS、MERS 疫苗[48-54]。Sinovac 公司开发出的SARS-CoV-2灭活疫苗CoronaVac(前身为PiCoVacc),将病毒用丙醇酸丙酯灭活,并以明矾作佐剂增强,Ⅱ期临床试验(NCT04383574)包括600 例18~59 岁的健康志愿者,分别在第0、14天或第0、28天接受了2次3 μg、6 μg CoronaVac免疫或安慰剂注射。与第0、14天组相比,第28 天二次免疫后,志愿者NAB 滴度增加更显著,且滴度随年龄的增长逐渐下降,提示老年人群可能需要更高剂量或多次免疫才能得到更好的保护效果。该研究中,没有观察到3 级以上的不良事件,且疫苗组和安慰剂组之间不良事件发生率也没有显著差异,表明其可靠的安全性[55-56]。北京生物制品研究所与中国国药集团联合研制的丙醇酸丙酯灭活疫苗BBIBP-CorV(ChiCTR2000034780)也以明矾作为佐剂,Ⅰ~Ⅱ期试验(ChiCTR2000032459)报告,在所有接种BBIBP-CorV 的人群中,SARS-CoV-2的抗体滴度显著高于安慰剂组,最常见局部反应是注射部位疼痛(16%的疫苗接种者),全身不良反应则是短时间发热(2%的疫苗接种者),但均未报告严重不良事件,目前该疫苗已进入Ⅲ期临床试验阶段,试验设计为双盲、随机及安慰剂对照,拟纳入15 000 名健康志愿者[57,58]。此外,武汉生物制品研究所和国药控股联合开发的另一SARS-CoV-2灭活疫苗,其Ⅰ、Ⅱ期临床试验(ChiCTR2000031809)结果显示,初次与第2 次加强接种之间间隔时间较长者比较短者能诱导更高的抗体水平,亦无严重不良事件报道[59]。该疫苗的Ⅲ期临床试验已获批准,试验设计拟采用双盲、安慰剂及随机对照(ChiCTR2000034780),样本量将扩大到15 000 名18 岁以上的健康人群。
灭活和减毒活病毒的疫苗是开发疫苗最传统的方法,通常这类疫苗能诱导高效免疫反应与保护效应,但仍存在病毒不完全灭活或毒力恢复的可能,因此疫苗生产企业在此类安全隐患的消除上负有特别重大的责任[60];另外需要关注的是,这种传统疫苗可能会像SARS感染一样诱导抗体依赖性增强(antibody-dependent enhancement,ADE)效应,即非中和特异性抗体与病毒结合后,抗体的Fc段与表达Fc 受体的细胞结合从而介导了病毒进入这些宿主细胞,促进病毒感染[61]。
亚单位疫苗是基于合成肽或重组蛋白开发的疫苗,与灭活或减毒活病毒和病毒载体疫苗不同,这种疫苗类型主要包含特定的病毒抗原片段,但不包含传染性病毒的成分,从而消除了不完全灭活或毒力恢复的担忧,通常是安全的[62]。然而,研究也发现基于全长S蛋白的亚单位疫苗在诱导有效免疫反应与保护效应的同时,其诱导的一些抗体在体外介导了病毒感染的增强,即上述的ADE 现象。因此,有学者对基于SARS-CoV和MERS-CoV全长S蛋白的亚单位疫苗的安全性问题表示担忧[63]。而基于S蛋白RBD的亚单位疫苗,包含了主要的中和域,能诱导产生有效的中和抗体,对病毒感染显现较强的保护效应(表2、3)。因此,就安全性和有效性而言,RBD 或S 蛋白的S1/S2 亚基可以作为开发针对SARS-CoV、MERS-CoV、SARSr-CoV 和MERSr-CoV的亚单位疫苗的重点靶标[64]。Novavax 公司正在开发一种SARS-CoV-2 重组蛋白亚单位疫苗NVXCoV2373,该疫苗主要是基于SARS-CoV-1、MERSCoV的全长、重组、预融合稳定的S糖蛋白,辅以基质金属蛋白酶纳米颗粒。有关该疫苗的Ⅰ、Ⅱ期试验的报告已经发布,首次接种后,NAB的滴度加佐剂组显著高于未加佐剂组,而第2次接种后,佐剂组的NAB滴度比单剂无佐剂的NVX-CoV2373 高出100 倍[65-66]。有关该疫苗的Ⅲ期临床试验(NCT04583995)正在进行中,拟采用安慰剂对照、双盲的随机研究,以评估其在18~84 岁成年志愿者中的安全性和有效性,总样本量为15 000名受试者。
表2 基于S蛋白的抗MERS-CoV的疫苗Table 2 S protein-based vaccines against MERS-CoV
基于RNA 疫苗的技术相对较新。目前主要有两种RNA 疫苗:mRNA(mRNA)和自我扩增RNA(saRNA)。mRNA 疫苗的制造与细胞内产生mRNA转录产物的过程相似,这些转录产物从细胞核传递到细胞质进行翻译。然而,疫苗中的mRNA 经历了预先的纯化、修饰,以增加其稳定性和翻译效率,并提高疫苗的效果。疫苗的输送方式也会影响其寿命和吸收。一些疫苗已经进入临床试验,最常用的传递介质是脂基纳米颗粒(LNP),因为它们易于生产,为mRNA提供保护,并协助将mRNA传递到细胞中[67-68]。Moderna 公司与美国国家过敏和传染病研究所合作,基于SARS-CoV-2预融合稳定的S三聚体结构开发了mRNA-1273,这是一种经脂基纳米颗粒封装、核苷修饰的mRNA疫苗。前期用小鼠和恒河猴模型进行的研究显示,在mRNA-1273的初次、二次疫苗接种后,所有模型都出现了剂量依赖性抗S 蛋白抗体及以Th1 细胞为主的免疫诱导效应,Ⅰ期临床试验(NCT04283461)显示,100 μg mRNA-1273 比250 μg更安全、有效,且未观察到严重不良事件[69-70]。目前,BioNTech 与辉瑞和复星制药联合开发LNP BNT162b1 和BNT162b2 疫苗,其中BNT162b1 编码SARS-CoV-2T4 纤维蛋白三聚体化的RBD,BNT162b2编码全长SARS-CoV-2 S蛋白的预融合构象。其Ⅰ、Ⅱ期临床试验(NCT04368728)结果显示,志愿者的抗体滴度呈剂量依赖效应,且其血清对SARS-CoV-2 S数种变异株也具有显著的中和效应,且未见严重不良事件[39]。此外,腺病毒载体疫苗、纳米疫苗及贴片疫苗等也都处于开发研究中,如匹兹堡大学医学中心开发了一种针对SARS-CoV-2的微针皮肤贴片疫苗,可诱导小鼠产生中和抗体[71],但其安全性及有效性尚需检验。
表3 抗SARS-CoV亚单位疫苗Table 3 Subunit vaccines against SARS-CoV
冠状病毒S 蛋白是膜上基本结构蛋白之一,其主要功能是与靶细胞表面受体结合,引起自身构象变化,使疏水性的融合肽与细胞膜接近并融合介导病毒进入细胞内。所有冠状病毒的S蛋白都具有保守的功能区,分别位于S1和S2结构域,两者在受体结合和膜融合方面起重要作用。研究S蛋白的结构与功能,尤其是与受体的相互作用关系,有助于开发新的抗冠状病毒药物、单克隆抗体、疫苗等,预防和治疗相关疾病。
目前,对于SARS-CoV-2的临床治疗,主要是抑制病毒或降低病毒所引起的炎症风暴(如干扰素、糖皮质激素)[72]。与这些治疗策略相比,NAB 显然对病毒粒子更具特异性,开发针对SARS-CoV-2 的治疗性NAB在未来一个时期将成为热点,而深入了解NAB的作用机制无疑会对SARS-CoV-2抗体开发提供有价值的启示。
鉴于目前SARS-CoV-2 全球大流行的形势,开发安全有效的疫苗迫在眉睫。一种理想的SARSCoV-2疫苗应具备:既能诱导T淋巴细胞免疫,活化细胞毒性T 细胞及记忆性T 细胞,又能针对SARSCoV-2产生持久的中和抗体,且不良反应少或无、易保存,对SARS-CoV-2 具有高靶向性与高精确性。我们相信,经过全球科学研究者的共同努力,这样的SARS-CoV-2疫苗一定会出现。