李治华 李碧乐** 王斌 陈苏龙 李鹏 廖宇斌 于润涛
1. 吉林大学地球科学学院,长春 130061 2. 自然资源部东北亚矿产资源评价重点实验室,长春 1300613. 青海省第一地质勘查院,海东 8106994. 青海省柴达木周缘大型超大型金矿深部探测技术创新工程技术中心,海东 810699
造山型金矿至少为世界提供了30%的金储量(Weatherley and Henley, 2013),Grovesetal.(1998)建议将与造山作用存在密切的时空联系,主要受构造控制的金矿命名为“造山型金矿”。自造山型金矿的概念引入中国后,许多学者对我国的造山型金矿进行了研究(张德全等, 2001, 2005; 毛景文等, 2002; 陈衍景, 2006; 蒋少涌等, 2009),我国的造山型金矿主要分布在华北克拉通北缘及东南缘、江南造山带、华南板块、青藏高原及周缘、天山-阿尔泰地区(王庆飞等, 2019)。
柴达木盆地北缘(柴北缘)构造带位于青藏高原东北部(图1a),在早古生代经历了超高压变质作用,主要由榴辉岩、石榴橄榄岩和围岩片麻岩组成的碰撞造山带;超高压变质岩石自东向西依次出露在都兰、锡铁山、绿梁山和鱼卡等地,记录了从新元古代到古生代的洋壳俯冲、大陆俯冲/碰撞和板片折返以及造山带垮塌的完整的演化史(Yangetal., 1998, 2006; Songetal., 2003, 2004, 2005, 2007, 2010, 2014b; Zhangetal., 2005, 2008a, b, 2009, 2010, 2011, 2012, 2016, 2017; Mattinsonetal., 2007; Chenetal., 2009, 2012; Xiongetal., 2012; Yuetal., 2013, 2019a; Zhaoetal., 2017; Wuetal., 2019)。柴北缘地区的金矿主要分布在柴北缘构造带的西段(图1b),自西向东依次发育胜利沟金矿、野骆驼泉金矿、千枚岭金矿、红柳沟金矿、青龙沟金矿、滩间山金矿、鱼卡金矿、双口山金矿;柴北缘构造带东段发育赛坝沟金矿和阿哈大洼金矿(张德全等, 2001; 丰成友等, 2002; 范贤斌, 2017; Caietal., 2019; 李治华等, 2020)。苦水泉金矿位于柴北缘构造带的中段(图1b),是近年来发现的金矿床;苦水泉金矿的矿体主要分布在英云闪长岩中,金矿体与细粒闪长岩关系密切,前人对矿床地质特征和流体包裹体进行了研究(廖宇斌, 2020),缺乏对与成矿有关的侵入岩进行系统地研究,这对于深入的研究该矿床的形成时间、成因和构造环境是不利的,也制约了对柴北缘金成矿作用的整体认识。
图1 柴北缘地图(a,利用GeoMapApp制作,http://geomapapp.org)和地质简图(b,据Zhao et al., 2017;造山型金矿空间位置据张德全等, 2001)断裂:Ⅰ-拉鸡山-中祁连南缘断裂;Ⅱ-宗务隆-青海南山断裂;Ⅲ-乌兰-鱼卡断裂;Ⅳ-柴北缘断裂;Ⅴ-阿尔金走滑断裂;Ⅵ-哇洪山-温泉断裂.金矿床:1-胜利沟金矿;2-野骆驼泉金矿;3-千枚岭金矿;4-红柳沟金矿;5-青龙沟金矿;6-滩间山金矿;7-鱼卡金矿;8-双口山金矿;9-苦水泉金矿;10-赛坝沟金矿;11-阿哈大洼金矿Fig.1 Map (a, made using GeoMapApp, http://geomapapp.org) and geological sketch map of the North Qaidam (b, after Zhao et al., 2017; spatial location of orogenic gold mineral deposits after Zhang et al., 2001)Faults: Ⅰ-Lajishan-zhongqiliannanyuan fault; Ⅱ-Zongwulong-Qinghainanshan fault; Ⅲ-Wulan-yuka fault; Ⅳ-North Qaidam fault; Ⅴ-Altyn Tagh Strike-slip fault; Ⅵ-Wahongshan-Wenquan fault. Gold mineral deposits: 1-Shengligou; 2-Yeluotuoquan; 3-Qianmeiling; 4-Hongliugou; 5-Qinglonggou; 6-Tanjianshan; 7-Yuka; 8-Shuangkoushan; 9-Kushuiquan; 10-Saibagou; 11-Ahadawa
本文选取苦水泉金矿区内与金矿化密切相关的细粒闪长岩和作为容矿围岩的英云闪长岩进行系统的岩石学、地球化学、年代学和Hf同位素研究,厘定成岩成矿时代,揭示岩石成因和构造背景,为柴北缘构造演化和金成矿作用研究以及找矿工作提供重要依据。
柴北缘构造带位于柴达木地块和祁连地块的结合部位,从西向东依次经过小赛什腾山、达肯大坂山、鱼卡、绿梁山、锡铁山,一直到都兰,呈北西向展布,全长超过700km(图1b)。柴北缘构造带的南北边界分别为柴北缘断裂和拉鸡山-中祁连南缘断裂,西侧为阿尔金走滑断裂,东侧为哇洪山-温泉断裂,其内部可根据宗务隆-青海南山断裂和乌兰-鱼卡断裂进一步划分三个次级构造单元,从北向南依次为宗务隆山晚古生代-早中生代裂陷带、全吉地块和柴北缘早古生代结合带,高压-超高压变质岩石均分布在早古生代结合带(潘桂棠等, 2002; 朱小辉等, 2014, 2015; Yuetal., 2019a)。
苦水泉金矿位于柴北缘构造带中段,锡铁山镇东南方向41.3km处(图1b)。苦水泉地区出露的地层有古元古代的达肯大坂岩群、晚泥盆世牦牛山组、早侏罗世大煤沟组、古-始新世路乐河组、渐-中新世干柴沟组和第四系;区内构造较发育,以断裂构造为主,分布在各个时代的地层和侵入岩中,受多次构造活动影响,区域内呈现多组构造相互交切的格局,可分为北西向和东西向两组断裂,褶皱构造主要发育于达肯大坂岩群和牦牛山组地层中,区域上还发育一条北西向韧性剪切带;区域上岩浆活动频繁,有早古生代辉长岩、似斑状黑云母二长花岗岩、闪长岩、石英闪长岩、英云闪长岩,和晚古生代英云闪长岩、二长花岗岩、似斑状粗粒二长花岗岩;区域矿产有锡铁山铅锌矿床、孔雀沟金铜矿点、铅石山铜矿点等。
苦水泉金矿矿区内出露的地层主要有古元古代达肯大坂群、古-始新世路乐河组和第四系,达肯大坂群主要分布在矿区西北部,岩性为黑云斜长片麻岩,路乐河组在矿区西南部和北东部,岩性以含砾粗砂岩、细砂岩、泥岩为主(图2);矿区的构造主要为断裂构造,断裂多呈北西向展布,部分呈北东向展布(图2);矿区侵入岩为英云闪长岩和细粒闪长岩(图2),英云闪长岩在矿区内呈岩株状产出,细粒闪长岩以脉岩的形式产出,侵入到英云闪长岩内部(图3a),走向主要为NW向和NE向,倾角35°~60°。
苦水泉金矿的矿体主要赋存于石英脉和蚀变英云闪长岩中,在细粒闪长岩中也存在部分矿体,矿体受严格受断裂构造控制,走向为NE向和NW向(图2)。细粒闪长岩多沿构造呈北东向和北西向展布,矿体和细粒闪长岩脉多呈近平行产出(图2),局部位置矿体分布在细粒闪长岩脉的上下盘(图3b, c);野外观察和室内分析发现位于矿体上盘的细粒闪长岩发生了强烈地蚀变和矿化(图3c);分布在细粒闪长岩下盘的金矿体品位(可达84.5g/t)要远高于平均品位(3~5g/t)(图3b, c)。矿石类型为石英脉型(图3b, c)、含矿蚀变英云闪长岩型和含矿蚀变细粒闪长岩型,前两种类型含矿性好;金属矿物组成较为简单,主要有黄铁矿、黄铜矿,次生矿物有孔雀石、蓝铜矿、辉铜矿、针铁矿以及纤铁矿,非金属矿物主要有石英、钾长石、绢云母、方解石等;围岩蚀变主要有绢英岩化和硅化,其次有绢云母化、白云母化、绿泥石化、绿帘石化和碳酸盐化,局部发育有钾化和云英岩化。
图2 苦水泉金矿矿区地质图(据青海省第一地质勘查院, 2018(1)青海省第一地质勘查院.2018. 青海省都兰县苦水泉一带金多金属矿预查报告修改)
图3 苦水泉金矿英云闪长岩、细粒闪长岩和金矿体野外及镜下照片(a)侵入到英云闪长岩中的细粒闪长岩;(b、c)细粒闪长岩下盘的含金石英脉(品位分别为13.6g/t和84.5g/t);(d)新鲜的英云闪长岩和细粒闪长岩;(e)英云闪长岩镜下照片;(f)细粒闪长岩镜下照片;Pl-斜长石;Hb-角闪石;Qz-石英(矿物缩写据Whitney and Evans, 2010)Fig.3 Photos (a-d) and microphotographs (e-f) of tonalite, fine-grained diorite and ore body in the Kushuiquan gold deposit(a) fine-grained diorite dike in tonalite; (b, c) gold-bearing quartz vein in the footwall of fine-grained diorite (the grade are 13.6g/t and 84.5g/t, respectively); (d) fresh tonalite and fine-grained diorite; (e) the microscope of tonalite; (f) the microscope of fine-grained diorite. Pl-plagioclase; Hb-hornblende; Qz-quartz (The mineral abbreviations is after Whitney and Evans, 2010)
本次工作选取矿区的英云闪长岩和细粒闪长岩两种岩性,样品均采自探槽揭露的新鲜岩石。英云闪长岩的采样位置经纬度坐标:37°07′46″N、95°57′26″E,细粒闪长岩的采样位置经纬度坐标:37°07′50″N、95°57′29″E(图2)。
英云闪长岩:风化面黑褐色,新鲜面灰白色、灰绿色,中粒花岗结构,块状构造,局部片麻状构造。主要矿物组合为斜长石、石英、角闪石。其中,斜长石呈半自形-自形晶,发育聚片双晶,可见绢云母化,粒度为0.5~5mm,含量约为65%;石英多呈他形粒状晶形,充填在角闪石和斜长石之间的空隙,粒度为0.2~1.5mm,含量约为25%;角闪石:长柱状,发育两组斜交解理,粒度为1~4mm,含量约为10%(图3d, e)。
细粒闪长岩:风化面为黑褐色,新鲜面为灰黑色,细粒结构,块状构造,主要矿物组合为斜长石、角闪石和少量石英。斜长石呈板状,多分解为微晶石英和绢云母,0.05~0.3mm,含量约55%;角闪石,长柱状,多蚀变为绿泥石,0.05~0.35mm,含量约40%;石英,他形粒状,0.1~0.3mm,含量约5%(图3d, f)。
全岩主微量和稀土元素测试在北京燕都中实测试技术有限公司完成;将岩石粗碎至厘米级,选取新鲜样品用纯化水洗净,烘干、粉碎至200目以备测试使用。主量元素测试先将粉末样品称量后加Li2B4O7(1:8)助熔剂混合,利用融样机加热至1150℃,使其在铂金坩埚中熔融成均一玻璃片体,再使用XRF(Zetium,PANalytical)测试,测试结果误差小于1%。微量元素测试先将200目粉末样品称量并置放入聚四氟乙烯溶样罐并加入HF+HNO3,在干燥箱中将的高压消解罐保持在190℃温度72小时,后取出经过赶酸并将溶液定容为稀溶液上机测试。使用ICP-MS(M90,Analytik Jena)完成, 所测数据根据监控标样GSR-2显示误差小于5%, 部分挥发性元素及极低含量元素的分析误差小于10%,分析结果见表1。
本文的锆石分选工作在在廊坊市宇能矿岩技术服务有限公司完成,锆石制靶和CL图像采集在北京中兴美科科技有限公司完成;将分选好的锆石置于双目镜下,选择无裂隙、透明、无包裹体的具有代表性的锆石颗粒,将其制成环氧树脂样品靶,磨至锆石颗粒中心部位,进行抛光。锆石CL图像采用扫描电镜FEI Quanta450和阴极发光系统Gatan MonoCL4完成。
LA-ICP-MS锆石U-Pb同位素定年在北京燕都中实测试技术有限公司完成,ICP-MS为布鲁克M90,激光剥蚀系统为NewWave UP 213。测试剥蚀光斑直径为25μm,频率为10Hz,能量密度约为2.5J·cm-2。激光剥蚀过程中采用氦气作载气、氩气为补偿气以调节灵敏度,二者在进入ICP之前通过一个匀化混合器混合,每个样品点分辨包括大约20~30s的空白信号和50s的样品信号,U-Pb同位素定年中采用锆石标准91500和Plesovice作为外标进行同位素分馏校正,数据处理采用GLITTER(Ver4.0,Macquarie University)完成,锆石样品的U-Pb年龄谐和图绘制和年龄权重平均计算均利用ISOPLOT(Ver3.0)完成,分析结果见表2。
表2 苦水泉金矿英云闪长岩和细粒闪长岩的锆石U-Pb同位素定年结果
锆石原位Lu-Hf同位素测试在中国地质科学院地质研究所大陆构造与动力学实验室完成,采用配有193nm激光的Neptune多接收电感耦合等离子质谱仪进行测定,测试步骤与校准方法见参考文献(Wuetal., 2006),分析过程中标准锆石GJ-1的176Hf/177Hf测试加权平均值为0.282285±13(n=35),锆石εHf(t)值计算采用176Lu衰变常数为1.867×10-11y-1(Söderlundetal., 2004),球粒陨石的176Hf/177Hf=0.282772,176Lu/177Hf=0.0332(Blichert-Toft and Albarède, 1997),Hf亏损地幔二阶段模式年龄的计算采用平均陆壳的176Lu/177Hf比值0.015(Griffinetal., 2000)。分析结果见表3。
表3 苦水泉金矿英云闪长岩和细粒闪长岩锆石Lu-Hf同位素组成
苦水泉英云闪长岩和细粒闪长岩的主微量元素组成原始数据如表1所示。岩石产于矿区,本身存在一定的蚀变,尤其细粒闪长岩是与成矿密切相关的成矿期或成矿前的岩石,造成英云闪长岩和细粒闪长岩的烧失量较高,分别为2.31%~5.38%和6.08%~9.12%,因此必须评估岩石中元素的迁移情况(后文讨论已扣除烧失量重新计算主量元素)。一般情况下, 岩石中的稀土元素、 高场强元素、Th元素和过渡元素即使在很强的热液蚀变中均不发生迁移(刘光贤等, 2017; 谭清立等, 2019),可以用于岩石成因分析。主量元素中,Mg元素在不含橄榄石和辉石的中酸性岩石内基本不受蚀变的影响(刘光贤等, 2017),Ti、P、Al、Fe和Mn在热液蚀变的过程中不易发生迁移,但Ca、Na、K和大离子亲石元素(如Sr、Ba、Rb)容易在热液蚀变中迁移(Smith and Smith, 1976),在烧失量(LOI)与易迁移元素的双变量图解中(图4),苦水泉英云闪长岩的主微量元素与烧失量的相关性较弱,细粒闪长岩的主微量元素与烧失量的相关性较强,说明英云闪长岩中的易迁移元素未发生明显迁移,而细粒闪长岩内的易迁移元素发生了迁移,这些元素不适用于细粒闪长岩的成因分析。
表1 苦水泉英云闪长岩和细粒闪长岩的主量元素(wt%)、稀土元素和微量元素(×10-6)含量及有关参数
续表1
图4 苦水泉金矿英云闪长岩和细粒闪长岩的LOI-Na2O (a)、CaO (b)、K2O (c)、Rb (d)、Sr (e)和Ba (f)图解Fig.4 Plots of LOI against. Na2O (a), CaO (b), K2O (c), Rb (d), Sr (e) and Ba (f) for tonalite and fine-grained diorite in the Kushuiquan gold deposit
主量元素组成上,苦水泉英云闪长岩富硅(SiO2=62.11%~66.18%)、富铝(Al2O3=18.16%~19.51%),相对贫碱(K2O+Na2O=5.40%~6.51%),富钠、贫钾(Na2O=4.91%~5.89%,K2O=0.40%~0.79%,Na2O/K2O=6.24~13.09),此外岩石还具有低的铁、镁、钛和磷含量(Fe2O3T=2.47%~4.81%,MgO=0.86%~1.80%,TiO2=0.27%~0.36%,P2O5=0.11%~0.15%),CaO含量为5.38%~5.67%,Mg#值为38.96~42.72。样品在(Na2O+K2O)-SiO2图解和Zr/TiO2×0.0001-SiO2图解中(图5a, b)大多数样品点落入花岗闪长岩的区域,在K2O-SiO2图解(图5c)中落入低钾拉斑系列区域,A/CNK值介于0.88~1.01,A/NK值介于1.78~2.18,属于I型花岗岩(图5d)。多数主量元素与SiO2间的相关性较弱(图6)。
图5 苦水泉金矿英云闪长岩和细粒闪长岩的岩石系列判别图解(a) (Na2O+K2O)-SiO2图解(据Middlemost, 1994);(b) Zr/TiO2×0.0001-SiO2分类图解(据Middlemost, 1994);(c) K2O-SiO2图解(据Peccerillo and Taylor, 1976);(d) A/NK-A/CNK图解(据Maniar and piccolo, 1989).数据来源:锡铁山榴辉岩中的浅色脉体据Chen et al., 2012; Yu et al., 2015;都兰英云闪长岩据Song et al., 2014a;图7、图11、图12同Fig.5 Rock series diagrams of tonalite and fine-grained diorite in the Kushuiquan gold deposit(a) (Na2O+K2O) vs. SiO2 diagram (Middlemost, 1994); (b) Zr/TiO2×0.0001 vs. SiO2 diagram (Middlemost, 1994); (c) K2O vs. SiO2 diagram (Peccerillo and Taylor, 1976); (d) A/NK vs. A/CNK diagram (Maniar and piccoli, 1989). Data sources: Felsic veins within the Xitieshan eclogite from Chen et al., 2012; Yu et al., 2015; tonalite in Dulan area from Song et al., 2014a; also in Fig.7, Fig.11 and Fig.12
图6 苦水泉金矿英云闪长岩和细粒闪长岩的主量元素地球化学特征Fig.6 Major elements compositions of tonalite and fine-grained diorite in the Kushuiquan gold deposit
苦水泉英云闪长岩样品的稀土总量很低(∑REE)为15.08×10-6~34.98×10-6,平均值为22.86×10-6(n=10),多数样品具有明显的Eu正异常,δEu为0.76~1.53,平均值为1.25(n=10)。LREE/HREE=6.11~9.58,(La/Yb)N值为6.37~17.45,稀土配分曲线表现为较为明显的右倾(图7a),轻重稀土分馏明显,重稀土分馏较弱,呈较平坦的趋势。富集大离子亲石元素(LILEs)如Rb、Ba、K、U和Sr,明显亏损高场强元素(HFSEs)Nb、Ta、Ti(图7b),岩石还具有高的Sr/Y比值(205~335),呈现出埃达克岩的特征。
图7 苦水泉金矿英云闪长岩和细粒闪长岩的球粒陨石标准化稀土元素配分曲线(a)和原始地幔标准化微量元素蛛网图(b)(标准化值据Sun and McDonough, 1989)Fig.7 Chondrite-normalized REE (a) and primitive-mantle normalized multi-element (b) diagrams of tonalite and fine-grained diorite in the Kushuiquan gold deposit (normalization values after Sun and McDonough, 1989)
苦水泉细粒闪长岩主量元素的SiO2含量变化范围为54.16%~58.76%,全碱含量为K2O+Na2O=5.14%~6.11%,多数样品的钠含量高于钾含量(Na2O=2.52%~4.38%,K2O=1.58%~2.71%,Na2O/K2O=0.97~2.78)。样品在Zr/TiO2×0.0001-SiO2图解(图5b)中落入闪长岩的区域,在K2O-SiO2图解中样品落入高钾钙碱性-钙碱性系列区域(图5c),富铁贫镁(Fe2O3T=6.36%~8.35%,MgO=2.68%~3.51%,Mg#=44.30~45.90),岩石富钙、铝(CaO=5.25%~9.41%,Al2O3=18.36%~19.36%)。
苦水泉细粒闪长岩的球粒陨石标准化稀土元素配分曲线与苦水泉英云闪长岩具有相似的形态特征(图7a),即富集轻稀土元素(LREEs),亏损重稀土元素(HREEs);相较于英云闪长岩((La/Sm)N=1.96~2.79),细粒闪长岩的轻稀土分馏程度((La/Sm)N=4.01~5.58)更高;稀土元素总量(∑REE)为198×10-6~413×10-6,轻重稀土分馏明显,LREE/HREE=11.44~18.01,(La/Yb)N值为14.87~33.22。细粒闪长岩样品全部具有明显的Eu负异常(图7a),δEu为0.50~0.66,表明岩石可能经历了斜长石的分离结晶,或者有斜长石在源区残留。在原始地幔标准化微量元素蛛网图中,细粒闪长岩富集大离子亲石元素(LILEs)如Rb、U、K,明显亏损Nb、Ta、Ti、P等高场强元素(HFSEs)。
苦水泉英云闪长岩LA-ICP-MS锆石U-Pb同位素定年的测试结果如表2所示。锆石表面较为干净,多呈自形-半自形长柱状,晶棱平直,在阴极发光(CL)图像(图8a)下,可见明显的岩浆振荡环带,粒度多在67~122μm之间,长宽比值多数介于1.80~3.32之间。测试结果显示,测试点的Th和U的含量分别为7.14×10-6~1.03×10-6和31.23×10-6~106.2×10-6,Th/U比值为0.22~1.03,锆石的形态、结构以及Th/U比值均表明该组锆石为岩浆成因的锆石(Wu and Zheng, 2004),本次实验获得的206Pb/238U加权平均年龄为429.9±2.5Ma(MSWD=0.22,n=21)(图9a),应代表英云闪长岩的结晶年龄,属于早志留世。此外,在英云闪长岩的第20、24号锆石得到了446.3±7.1Ma和450.5±7.5Ma的表面年龄,与锡铁山榴辉岩的变质时代是一致的(Zhangetal., 2011)。
图8 苦水泉金矿英云闪长岩(a)和细粒闪长岩(b)的锆石CL图像Fig.8 Cathodoluminescence (CL) images of zircons from tonalite (a) and fine-grained diorite (b) in the Kushuiquan gold deposit
图9 苦水泉金矿英云闪长岩(a)和细粒闪长岩(b)的锆石U-Pb年龄谐和图和频数图Fig.9 Concordia diagram and frequency diagram showing zircon U-Pb dating result of tonalite (a) and fine-grained diorite (b) in the Kushuiquan gold deposit
苦水泉细粒闪长岩LA-ICP-MS锆石U-Pb同位素定年的测试结果如表2所示。锆石形态为椭圆形或近似圆形,在阴极发光(CL)图像(图8b)下,未见明显的振荡环带。锆石粒度多在49~106μm之间,长宽比值小于1.64,测试结果显示,测试点的Th含量低(Th=1.62×10-6~23.41×10-6,平均为4.05×10-6),U含量变化范围226×10-6~486×10-6, Th/U比值变化范围为0.01~0.05,相对于一般岩浆锆石要低,与变质锆石较为相似(Wu and Zheng, 2004)。细粒闪长岩具有较高的烧失量,表明受流体活动的影响,岩石发生了蚀变,这种很低的Th/U比值的锆石是在含水的环境中沉淀形成的(Hawkesworthetal., 1997),这些锆石U-Pb定年的结果也代表锆石形成的时间(陈道公等, 2001),进而代表细粒闪长岩的形成年龄,从测试结果看细粒闪长岩的年龄为428.0±1.9Ma(MSWD=0.23,n=21)(图9b),比英云闪长岩的结晶年龄429.9±2.5Ma要晚,与细粒闪长岩侵入到英云闪长岩中的地质事实也是相符的。综上,我们认为实验所获得的年龄应代表细粒闪长岩的结晶年龄。
苦水泉英云闪长岩和细粒闪长岩样品的锆石176Lu/177Hf比值均小于0.002(表3),表明锆石在岩体形成之后具有很低的衰变成因的Hf积累,可以利用锆石176Hf/177Hf比值来讨论岩体的成因(吴福元等, 2007)。
苦水泉英云闪长岩锆石的176Hf/177Hf比值为0.282773~0.282845,锆石εHf(t)值为+9.3~+11.9,测试点均投在球粒陨石演化线和亏损地幔演化线之间(图10),靠近亏损地幔演化线。锆石的fLu/Hf为-0.98~-0.97,显著小于镁铁质地壳和硅铝质地壳(分别为-0.34和-0.72),因此二阶段模式年龄能更真实地反映其源区物质从亏损地幔抽取的时间或源区物质在地壳中的平均存留年龄(第五春荣等, 2007),锆石Hf同位素单阶段模式年龄(tDM1)为571~676Ma,二阶段模式年龄(tDM2)为613~747Ma。
图10 苦水泉金矿英云闪长岩和细粒闪长岩的锆石年龄-εHf(t)值相关图数据来源:都兰英云闪长岩据Song et al., 2014aFig.10 Age vs. εHf(t) diagram for zircons from tonalite and fine-grained diorite in the Kushuiquan gold depositData sources: tonalite in Dulan from Song et al., 2014a
苦水泉细粒闪长岩锆石的176Hf/177Hf比值为0.281621~0.282230,除第22号之外的锆石εHf(t)值-17.2~-9.9(图10),单阶段模式年龄(tDM1)为1421~1693Ma,二阶段模式年龄(tDM2)为1722~2089Ma,平均值为1903Ma,第22号锆石的εHf(t)值和模式年龄都与其他锆石相差较大,锆石εHf(t)值-31.4,单阶段模式年龄(tDM1)为2249Ma,二阶段模式年龄(tDM2)为2803Ma。
5.1.1 英云闪长岩
从前文的分析中可以看出苦水泉英云闪长岩的地球化学特征与Defant and Drummond (1990)定义的埃达克岩十分相似:(1)主量元素上,SiO2=62.11%~66.18%(>56%),Al2O3=18.16%~19.51%(>15%),MgO=0.86%~1.80%(<3%),富钠(K2O/Na2O=0.08~0.16);(2)稀土、微量元素上,高Sr低Y(Sr=724×10-6~1173×10-6,Y=2.95×10-6~4.45×10-6,Sr/Y=205~335),低Yb(0.24×10-6~0.33×10-6),Sr和Eu都呈现明显的正异常。在Sr/Y-Y图解(图11a)中,苦水泉英云闪长岩均落入埃达克岩的区域。埃达克岩原指由年龄较新(≤25Ma)的大洋板片部分熔融形成于岛弧环境中的火山岩或侵入岩(Defant and Drummond, 1990),即洋壳俯冲到榴辉岩相环境时发生部分熔融形成的产物,石榴石或角闪石作为主要的残留物质,而具有高Sr低Y的地球化学特征的岩石(张旗等, 2001, 2002)。随着研究的不断深入,一些学者发现还有许多机制可以形成具有埃达克岩地球化学特征的岩石:(1)加厚下地壳部分熔融(Atherton and Petford, 1993; Kay and Kay, 1993; Wenetal., 2008);(2)俯冲陆壳部分熔融(Wangetal., 2008);(3)原始玄武质岩浆的同化混染和分离结晶(Castilloetal., 1999);(4)酸性与基性岩浆的混合作用(Guoetal., 2007; Strecketal., 2007);(5)拆沉下地壳的部分熔融(Xuetal., 2002; Gaoetal., 2004)。一般将具有埃达克质地球化学组成特征但不是板片熔融形成的火成岩统称为埃达克质岩(许继峰等, 2014)。下面对苦水泉英云闪长岩的成因机制进行探讨:
图11 苦水泉金矿英云闪长岩和细粒闪长岩的Sr/Y-Y (a)和(La/Yb)N-YbN (b)图解(底图据Defant and Drummond, 1990)Fig.11 Sr/Y vs. Y (a) and (La/Yb)N vs. YbN (b) diagrams of tonalite and fine-grained diorite in the Kushuiquan gold deposit (base map after Defant and Drummond, 1990)
(1)加厚下地壳部分熔融形成的埃达克岩的K2O含量较高(Wangetal., 2005),而苦水泉英云闪长岩的K2O含量为0.40%~0.79%,属于拉斑系列,远低于加厚下地壳部分熔融形成的埃达克岩,排除加厚下地壳成因模型;(2)俯冲陆壳部分熔融形成的埃达克岩具有K2O含量高于3%的特征(Wangetal., 2008),而苦水泉英云闪长岩的K2O含量很低,而Na2O含量很高,排除来自俯冲陆壳部分熔融;(3)在研究区内未发现同期的大规模的基性侵入岩,且苦水泉英云闪长岩样品在La/Yb-La图解(图12a)中,呈现出部分熔融的变化趋势,与分离结晶趋势不符,因此,排除玄武质岩浆的同化混染和分离结晶的可能;(4)酸性与基性岩浆的混合作用形成的埃达克岩通常具有高的MgO含量(>4.5%)和高Mg#(>66)(Strecketal., 2007),苦水泉英云闪长岩样品贫镁(MgO=0.86%~1.80%, Mg#=38.96~42.72),并且在岩石中没有发现暗色包体,表明其并非酸性岩浆与基性岩浆混合的产物;(5)拆沉下地壳的部分熔融形成的熔体与地幔橄榄岩发生交代形成的埃达克岩具有Ni、Co含量高且Mg#>50的特征(Huangetal., 2007),苦水泉英云闪长岩苦水泉英云闪长岩明显偏低的Ni(1.88×10-6~15.63×10-6)、Co(4.33×10-6~11.08×10-6)和明显小的Mg#(38.96~42.72),排除拆沉下地壳部分熔融的可能。剩下俯冲洋壳部分熔融的成因模型,但苦水泉英云闪长岩形成于429.9±2.5Ma,比柴北缘超高压变质的峰期(约450Ma)晚20Myr,处于陆壳折返阶段(Songetal., 2014a; Yuetal., 2019a, b),且在地球化学特征上,苦水泉英云闪长岩的Mg#较低,低于俯冲洋壳熔体与地幔楔反应后形成的埃达克岩。因此,苦水泉英云闪长岩的成因不能用俯冲洋壳部分熔融进行解释。从上述的讨论可以看出,利用流行的埃达克岩成因模型不能很好的解释苦水泉英云闪长岩的成因。
图12 苦水泉金矿英云闪长岩和细粒闪长岩的La/Yb-La (a)和(La/Yb)N-δEu (b)图解(底图据邹洁琼等, 2018)Fig.12 La/Yb vs. La (a) and (La/Yb)N vs. δEu (b) diagrams of tonalite and fine-grained diorite in the Kushuiquan gold deposit (base map after Zou et al., 2018)
柴北缘构造带内存在与苦水泉英云闪长岩同期的埃达克质熔体(420~433Ma),主要为都兰英云闪长岩岩体,和都兰、锡铁山、绿梁山等超高压变质地体中榴辉岩在陆壳折返阶段部分熔融形成的埃达克质浅色脉体(Chenetal., 2012; Yuetal., 2012, 2015, 2019b; Liuetal., 2014; Songetal., 2014a; Caoetal., 2017),Songetal.(2014a)认为都兰英云闪长岩(423±4Ma)是俯冲洋壳经历超高压变质形成的榴辉岩在陆壳折返阶段发生部分熔融的产物。我们将苦水泉英云闪长岩与都兰英云闪长岩和锡铁山榴辉岩中的浅色脉体进行了对比,发现他们地球化学、年代学等方面具有相似性:
(1)苦水泉英云闪长岩、锡铁山榴辉岩浅色脉体以及都兰英云闪长岩(Chenetal., 2012; Yuetal., 2015; Songetal., 2014a)都具有高Sr、低Y的埃达克质岩石的特征(图11a),并且岩石的K2O、MgO、MnO和TiO2含量都相对较低,SiO2、Al2O3、Na2O含量相对较高,Na2O/K2O比值的平均值分别为9.51、7.61以及4.62,三类岩石的大部分样品点都落入低钾拉斑系列的区域(图5c);
(2)苦水泉英云闪长岩和锡铁山洋壳榴辉岩中的浅色脉体(Chenetal., 2012; Yuetal., 2015)的稀土元素含量都很低(∑REE平均值分别为为22.86×10-6和28.74×10-6),稀土配分曲线近乎重合(图7a),所有的稀土元素的含量都十分接近,微量元素配分曲线也呈现出大致相同的变化趋势(图7b),这表明它们的成因很可能是相同的;
(3)苦水泉英云闪长岩的Sr=724×10-6~1173×10-6,Yb=0.24×10-6~0.33×10-6,说明其源区无斜长石残留,而有石榴石残留(Xiongetal., 2005),金红石的Ta的分配系数大于Nb,在部分熔融过程中,金红石残留在源区,会造成熔体中的Nb/Ta比值增加(Xiongetal., 2005),苦水泉英云闪长岩的Nb/Ta比值很大,为42.88~55.60,说明其源区有金红石残留,说明其形成深度较深,大于50km;从(La/Yb)N-YbN图解(图11b)可以看出苦水泉英云闪长岩和锡铁山洋壳榴辉岩中的浅色体(Chenetal., 2012; Yuetal., 2015)的源区残留相均为榴辉岩。
(4)二者形成时代较为接近,苦水泉英云闪长岩形成于429.9±2.5Ma,锡铁山榴辉岩中的浅色脉体形成于428±2Ma和433±3Ma(Chenetal., 2012; Yuetal., 2015),都兰英云闪长岩形成于423±4Ma(Songetal., 2014a);
(5)在苦水泉英云闪长岩的锆石中获得了446.3±7.1Ma和450.5±7.5Ma的表面年龄,与锡铁山榴辉岩的变质时代(~450Ma)是一致的(Zhangetal., 2011),表明苦水泉英云闪长岩的源岩经历了超高压变质作用,也从侧面说明俯冲洋壳变质形成的榴辉岩可能是苦水泉英云闪长岩的源岩;
(6)苦水泉英云闪长岩锆石εHf(t)值为+9.3~+11.9,与都兰英云闪长岩的Hf同位素组成相似(Songetal., 2014a),都具有接近亏损地幔的Hf同位素组成(图10);
从前面的讨论可以看出苦水泉英云闪长岩与锡铁山榴辉岩中的浅色脉体之间的相似性,说明苦水泉英云闪长岩是可以由榴辉岩部分熔融而成,在Mg#-SiO2和MgO-SiO2图解(图13)中多数样品点落入榴辉岩熔融实验的范围。但这并不是说苦水泉英云闪长岩就来自于锡铁山榴辉岩的部分熔融,因为锡铁山榴辉岩的原岩较为复杂,且主要形成于750~850Ma(Yangetal., 2006; Zhangetal., 2010, 2011, 2017; Chenetal., 2009; Songetal., 2010, 2014b; Yuetal., 2013),比苦水泉英云闪长岩的Hf同位素二阶段模式年龄(平均值为675Ma)要老,我们推测苦水泉英云闪长岩的源岩为新元古代形成的洋壳在早古生代发生超高压变质形成的榴辉岩。
图13 苦水泉金矿英云闪长岩和细粒闪长岩的Mg#-SiO2图解(a, 据Wang et al., 2006)和MgO-SiO2图解(b, 据王强等, 2001)Fig.13 Mg# vs. SiO2 (a, after Wang et al., 2006) and MgO vs. SiO2 (b, after Wang et al., 2001) diagrams of tonalite and fine-grained diorite in the Kushuiquan gold deposit
5.1.2 细粒闪长岩
目前研究表明闪长岩主要有以下3种成因模式:(1)幔源岩浆的分离结晶(Shawetal., 1993);(2)俯冲组分与地幔楔橄榄岩相互作用而形成(Carmichael, 2002; Parman and Grove, 2004);(3)玄武质下地壳的脱水熔融(Jungetal., 2002)。下面对苦水泉细粒闪长岩的成因进行讨论:
(1)由幔源岩浆通过分离结晶作用形成的闪长岩具有Ni、Co含量高、Mg#值(>60)和低TiO2(<0.5%)的地球化学特征(Tatsumi, 1982; Groveetal., 2003),而苦水泉细粒闪长岩低的Ni含量(2.23×10-6~3.42×10-6)、Co含量(14.90×10-6~19.42×10-6)和低Mg#(44.30~45.90),高的TiO2(1.17%~1.24%),与幔源岩浆分离结晶的特征不相符,具有壳源的特点,在La/Yb-La图解(图12a)中,细粒闪长岩样品呈现出的变化趋势与分离结晶趋势不相符,而更加符合部分熔融的变化趋势,因此,苦水泉细粒闪长岩不是幔源岩浆分离结晶的产物。(2)苦水泉细粒闪长岩低Ni、Co含量和Mg#值也不符合俯冲组分与地幔楔橄榄岩相互作用的产物的特征,说明其来源于玄武质下地壳的脱水熔融,(La/Yb)N-δEu图解(图 12b)也显示其具有壳型的特征。
苦水泉细粒闪长岩样品亏损稀土元素Dy和Ho,并且具有较为平坦的HREE配分模式(图7a),Y/Yb比值为10.14~11.77,接近10,表明其源区残留相主要为角闪石(葛小月等, 2002)。细粒闪长岩具有较强的Eu负异常,δEu为0.50~0.66,且在SiO2和CaO、Al2O3图解(图6)中呈现负相关关系,再结合岩石以部分熔融作用为主的特点(图12a),我们认为细粒闪长岩的Eu负异常是由斜长石在源区残留所致。我们大致确定苦水泉细粒闪长岩的源区残留相为斜长角闪岩,这也得到了(La/Yb)N-YbN图解(图11b)的支持。苦水泉细粒闪长岩大多数锆石εHf(t)值-17.2~-9.9,负值程度较高,变化范围较大,二阶段模式年龄为1722~2089Ma,表明源区的物质组成复杂,主要为古老的玄武质下地壳;另外,有一颗锆石的εHf(t)值为-31.4,二阶段模式年龄为2803Ma,指示源区有太古代物质的存在。
近年来,人们为了明确柴北缘构造带的演化历史,对超高压变质地体内的榴辉岩以及作为围岩的各类片麻岩进行了大量的研究,发现片麻岩除了记录早古生代超高压变质事件外,还记录了与Rodinia超大陆聚合有关的造山事件(陆松年等, 2002; Zhangetal., 2006, 2008b, 2012; Songetal., 2012, 2014b; Yuetal., 2013),根据花岗片麻岩的原岩年龄得出柴北缘新元古代大陆聚合的时间约为950~900Ma(Zhangetal., 2012; Songetal., 2014b; 任云飞, 2017)。
柴北缘构造带内的榴辉岩主要呈透镜状或夹层状产在片麻岩中,大多数已发现的榴辉岩原岩并非早古生代的俯冲洋壳(孟繁聪等, 2003; Yangetal., 2006; Zhangetal., 2006, 2017; Chenetal., 2009; Songetal., 2010)。Yangetal.(2006)把柴北缘构造带内的榴辉岩分为低Ti、中Ti和高Ti三种类型,原岩年龄为800~750Ma和~1000Ma,并认为它们可能来源于大洋环境,Songetal.(2010, 2014b)认为鱼卡榴辉岩的原岩为850Ma的大陆溢流玄武岩,也有研究者认为柴北缘构造带内榴辉岩原岩为新元古代大陆裂谷环境下形成的玄武质岩石(Chenetal., 2009; Yuetal., 2013; Zhangetal., 2017)。柴北缘构造带内榴辉岩的原岩年龄集中在750~850Ma(Zhangetal., 2006, 2010, 2011, 2017; Chenetal., 2009; Songetal., 2010, 2014b; Xiongetal., 2012; Yuetal., 2013),这些榴辉岩与围岩片麻岩具有相同的变质时代和变质P-T轨迹,指示它们同时经历了早古生代大陆深俯冲作用,表明原岩年龄为新元古代的榴辉岩在新元古代就已经就位到陆壳之中(Chenetal., 2009; Songetal., 2010; Yuetal., 2013)。榴辉岩的原岩在新元古代大陆裂谷环境下大量出现,标志着该地区进入大陆裂解、洋壳形成阶段。
目前,柴北缘还没有新元古代形成的早期洋壳(约550~750Ma)的报道,有研究者在柴北缘东段都兰沙柳河识别出一套经历超高压变质的蛇绿岩组合,原岩年龄为516Ma,证明该地区存在早古生代的洋壳,并发生了深俯冲(Zhangetal., 2008a)。此外,研究者们还识别出了其他与大洋有关的岩石,如都兰托莫尔洋中脊玄武岩(480±1Ma, 朱小辉等, 2015),锡铁山洋岛玄武岩(521±7Ma, 朱小辉等, 2012),绿梁山弧后盆地型蛇绿岩(493~535Ma, 王惠初等, 2005; 朱小辉等, 2014);吉绿素和双口山地区发现了洋壳俯冲形成的埃达克岩(514.2±8.5Ma, 史仁灯等, 2004),这些证据表明柴北缘存在早古生代的俯冲洋壳。近年来柴北缘报道的榴辉岩和围岩片麻岩的超高压变质的年龄普遍集中在460~420Ma(Yangetal., 2006; Songetal., 2010, 2014b; Mattinsonetal., 2007; Chenetal., 2009; Xiongetal., 2012; Zhangetal., 2008a, 2010, 2011, 2012, 2016, 2017; Yuetal., 2013),超高压变质年龄变化跨度较大,主要归因于各个超高压变质地体折返的路径和机制不同(Zhangetal., 2017)。
许多研究者注意到榴辉岩和围岩片麻岩中经常发育有各类浅色脉体,形成时限约为422~433Ma,并且普遍认为这些脉体形成于陆壳折返阶段(Chenetal., 2012; Yuetal., 2012, 2015, 2019b; Songetal., 2014a; Caoetal., 2017; 于胜尧等, 2019),其形成机制可能为热松弛(Songetal., 2014a; Yuetal., 2019b),Songetal.(2014a) 认为都兰埃达克质英云闪长岩(423Ma)为俯冲洋壳经历榴辉岩相变质,并在大陆折返阶段减压熔融的产物,同理,笔者认为苦水泉英云闪长岩也是在相同的机制下形成的,即苦水泉英云闪长岩为新元古代洋壳变质形成的榴辉岩在大陆折返阶段发生减压熔融的产物。苦水泉细粒闪长岩形成于约428Ma,稍晚于苦水泉英云闪长岩,是俯冲陆壳折返的构造背景下,古老的玄武质下地壳发生部分熔融的产物。
国内很多金矿均存在中基性脉岩与金矿体具有密切时空关系的特征,如胶东和西秦岭地区的金矿(毛景文等, 2005; 柯昌辉等, 2020)。有学者认为矿区中与金矿化时空关系密切的中基性脉岩与金矿具有同样的深部来源,脉岩为成矿提供成矿流体或成矿物质(毛景文等, 2005; 柯昌辉等, 2020)。苦水泉金矿内也分布有与成矿关系密切的中性脉岩,我们观察到以下现象:(1)该矿床的矿体严格受NE和NW向断裂构造控制,细粒闪长岩也受构造控制,走向主要为NE向和NW向,与矿体在空间上多呈近平行产出,部分位置矿体分布在细粒闪长岩脉的上下盘;(2)位于矿体上盘的细粒闪长岩发生了强烈地蚀变和矿化;(3)通过野外观察和原生晕分析我们发现,在NE走向的Ⅲ矿带地表,分布细粒闪长岩上下盘的金矿体品位局部变富(图3b,c),表明细粒闪长岩为成矿提供热动力、热液,可能提供了部分矿质(微量元素和原生晕分析显示细粒闪长岩具有较高的Cu(42×10-6~148×10-6)和Au(16.3×10-9)含量,要远高于地层和英云闪长岩)。通过对这些现象的观察,笔者认为细粒闪长岩是与成矿关系密切的脉岩,脉岩的形成时间略早于金矿体,本文近似地将细粒闪长岩的年龄作为金矿的形成时间,即苦水泉金矿的形成时间约为428Ma,这只是根据野外观察和室内分析测试得到的初步认识,还有待进一步工作来验证。
柴北缘已发表成矿年龄的金矿有赛坝沟金矿(426±2Ma, 丰成友等, 2002)、鱼卡金矿(377±4Ma, 范贤斌, 2017)、滩间山金矿(主要有409Ma、345Ma、269Ma等,张德全等, 2001, 2005; 李世金, 2011; 姜芷筠等, 2020)和野骆驼泉金矿(246±3Ma, 张德全等, 2005),这些年龄数据表明柴北缘在加里东期、海西期和印支期均有金矿形成,本文报道的苦水泉金矿(~428Ma)与赛坝沟金矿(426±2Ma, 丰成友等, 2002)的形成时间在误差范围内是一致的,指示柴北缘在早志留世陆壳折返阶段存在一期金矿化。前期研究显示该期金矿表现为中(深)成造山型金矿特征,成矿深度较大,即使考虑后期剥蚀,仍具有较大的找矿潜力。
(1)苦水泉英云闪长岩形成于429.9±2.5Ma,表现出富硅、铝、钠,贫镁和高Sr低Y的特点,具有埃达克岩的地球化学特征,锆石εHf(t)值为+9.3~+11.9,二阶段模式年龄(tDM2)为613~747Ma,为俯冲洋壳变质形成的榴辉岩在陆壳折返阶段部分熔融的产物。
(2)苦水泉细粒闪长岩形成于428.0±1.9Ma,具有富铝、钙、铁,贫镁,富集轻稀土和大离子亲石元素,贫高场强元素,Ni、Co含量低的地球化学特征,多数锆石的εHf(t)值为-17.2~-9.9,二阶段模式年龄(tDM2)为1722~2089Ma,起源于陆壳折返阶段古老玄武质下地壳的部分熔融。
(3)苦水泉细粒闪长岩脉在空间上与金矿体关系密切,产在细粒闪长岩脉上下盘的矿体局部品位变富,说明细粒闪长岩为金矿化提供了热动力和热液,可能还提供了部分成矿物质,初步地将细粒闪长岩的形成年龄作为金矿的形成时代(~428Ma)。
(4)苦水泉金矿成矿时代和构造背景的确定,指示柴北缘在早志留世陆壳折返阶段存在一期金矿化,应重视这一期金矿的找矿工作。
致谢本次研究野外工作得到了苦水泉项目组的热情帮助;吉林大学张骞在论文撰写过程中给予了热情帮助;审稿专家和编辑部老师提出的建设性修改意见极大的提高了本文的质量;在此一并致以衷心的感谢。