陈鹏 甘桂云 汪茜 罗艳 王先裕
摘 要:番茄细菌性髓部坏死病是一种危害维管束的新兴土传病害,近年来在我国番茄产区逐渐蔓延流行,并日趋严重。根据国内外对番茄细菌性髓部坏死病的研究报道,对番茄细菌性髓部坏死病的发展历史、病症、病原菌、致病机制、遗传多样性及防治方法等方面的研究进展进行综述,以期为番茄细菌性髓部坏死病的深入研究和制定科学的防治策备提供参考。阐述番茄细菌性髓部坏死病的研究现状,以期为该病害的深入研究和制定科学的防治策略提供参考。
关键词:番茄;细菌性髓部坏死病;病原菌检测;防治措施
中图分类号:S641.2 文献标志码:A 文章编号:1673-2871(2021)05-008-07
Research progress of tomato pith necrosis
CHEN Peng1, GAN Guiyun2, WANG Qian1, LUO Yan1, WANG Xianyu1
(1. College of Agriculture, Guangxi University, Nanning, 530000, Guangxi, China; 2. Vegetable Research Institute, Guangxi Academy of Agricultural Sciences, Nanning 530000, Guangxi, China)
Abstract: Tomato Pith necrosis is a new soil-borne disease that affects plant vascular. In recent years, it has gradually spread and become increasingly serious in tomato producing areas in China. This review summarized the history and main symptoms of tomato pith necrosis caused by Pseudomonas and other bacteria. In this paper, the current situation of the tomato pith necrosis was reviewed, including the advances in the detection,pathogenic mechanism, genetic diversity and prevention of tomato pith necrosis.
Key words: Tomato; Pith necrosis; Pathogen detection; Prevention
番茄因其独特的风味和丰富的营养成为世界上重要的蔬菜经济作物。据FAO统计,2019年我国产量高达6 286.95万t,番茄种植面积达到108.67万hm2,产量和种植面积位居世界第一。随着番茄栽培面积的不断扩大,各种生物胁迫和非生物胁迫因素严重制约了番茄产业的发展。番茄细菌性髓部坏死病(tomato pith necrosis,TPN)是由假单胞菌属(Pseudomonas)以及其他细菌引起的危害维管束系统的细菌性土传病害,发病率在10%~50%之间,严重地块高达90%[1],可减产60%~90%,造成重大经济损失[2]。1971年英国学者Scarlett[3]首次发现该病害由皱纹假单胞菌Pseudomonas. corrugata引起。随后,番茄细菌性髓部坏死病在全球范围内均有发现[2-8]。在我国,自1998年赵海棠等[9]在田间首次发现番茄细菌性髓部坏死病以来,目前在浙江、山东、山西、陕西、福建、台湾、湖南、湖北、江苏、河北、广东、广西等地均有报道[9-12],是近年来威胁我国番茄安全生产的一种新兴土传病害,并逐渐由一种不常见病害发展成为严重病害。
1 病害症状及病原菌的研究
番茄细菌性髓部坏死病是一种维管束系统病害,明显症状多出现在始花期。主要症状包括植株萎蔫,顶部叶片边缘褪色,茎秆和分枝、叶柄、果柄出现黄褐色或黑色病斑,茎髓部出现褪色、空心、褐化、水浸状或者干缩中空等,维管组织的褪色和坏死,植株的黄化、萎蔫和早衰,有时在茎基部病变部位产生不定根,发病严重时茎伤口处有黄褐色菌膿溢出[12-13]。该病的典型特征是茎髓部的坏死、干缩中空[14]。
番茄细菌性髓部坏死病是由革兰氏阴性假单胞菌属致病菌以及其他细菌引起的,目前,世界上已报道的可引起番茄细菌性髓部坏死病的病原菌多达11种,包括假单胞菌属(Pseudomonas):菊苣假单胞菌(P. cichorii)[15-16]、荧光假单胞菌(P. fluorescens)[17]、绿黄假单胞菌(P. viridiflava)[18]、皱纹假单胞菌(P. corrugata)[8,19]、地中海假单胞菌(P. mediterranea)[6,9,20]、恶臭假单胞菌(P. putida)[21]、边缘假单胞菌(P. marginalis)[6];果胶杆菌属(Pectobacterium)的黑腐果胶杆菌(Pe. atrosepticum)[6]、胡萝卜软腐果胶杆菌胡萝卜亚种(Pe. carotovorum subsp. carotovorum)[21],黄单胞菌属穿孔黄单胞菌(Xanthomonas perforans)[21]及菊迪基氏菌(Dickeya chrysanthemi)[22]。不同的病原菌造成的病症也略有不同,P. corrugata和P. mediterranea病原菌会导致髓部坏死,造成髓内部干裂;P. marginalis、P. viridiflava以及P. cichorii这些病菌引起的主要症状是茎内部变色,但未出现髓部组织腐烂[6]。在中国报道的引起番茄细菌性髓部坏死病原主要是P. cichorii 和P. corrugata。
4 番茄细菌性髓部坏死病致病机制
革兰氏阴性细菌致病过程主要包括:首先病菌在寄主表面附着,包括群体感应(quorum sensation,QS)系统和胞外多糖的产生等;而后,病菌从寄主的机械伤口、自然孔口进入寄主内部,包括T3SS分泌系统、毒素等;最后进入寄主内部,病菌克服植物免疫反应、破坏寄主细胞结构和生理过程,进而使病菌在寄主体内增殖和系统迁移[35]。毒素在病菌致病中有着重要作用,P. cichorii产生的一种非特异性毒素菊苣素会引起莴苣叶片的细菌性腐爛症状[28]。Ⅱ型分泌系统(T2SS)和Ⅲ型分泌系统(T3SS)是病原菌入侵植物的重要系统,Ⅱ型分泌系统能将水解蛋白分泌到植物细胞间[36];Ⅲ型分泌系统位于细菌细胞膜上,可将特定的效应蛋白转运至真核细胞体内[37],干扰寄主免疫反应和扰乱寄主生理过程,使得病菌能够定殖和致病[38]。植物病菌的T3SS可分为两类,一类是hrp/hrc 1,主要分布在Pseudomonas和Erwinia,另一类是hrp/hrc 2,主要存在于Xanthomonas、Ralstonia、Burkholderia和Acidovorax中。这些T3SS存在于基因组或质粒的基因簇上,以多个操纵子形式存在,包括hrp ( hypersensitive response and pathogenicity)和hrc ( hrp conserved)基因[38]。Liu等[39]研究发现,丁香假单胞PstDC3000和PssB728a通过细菌中分泌出的特异性效应蛋白并将其转移到宿主细胞的细胞质中,抑制宿主细胞防御机制进而引起病害,T3SS是PstDC3000和PssB728a的关键致病因素。Ishiga等[40]将缺乏T3SS的hrcN突变体丁香假单胞菌猕猴桃致病变种(Psa3)接种至猕猴桃体内,未发生病害特征,进一步说明T3SS在丁香假单胞菌的毒力致病性中起着重要作用。Robert等[41]研究发现,细胞程序性死亡是丁香假单胞菌(P. syringae)基于过敏反应的免疫力的关键组成部分。Kiba等[42]研究发现,与其他细菌性病害不同,P. cichorii不产生破坏植物细胞壁的果胶裂解酶,而是通过类似于过敏反应(HR)的细胞凋亡方式引起细菌性腐烂症状。
5 番茄细菌性髓部坏死病抗性机制研究
5.1 植物抗性基因的研究
为抵御外界环境中病原体对植物生长发育的胁迫,植物发展出一套完整复杂的免疫系统,目前,已探明的植物免疫系统有两种方式:一种是通过跨膜模式识别受体(PRRs),对进化缓慢的微生物或病原相关的分子模式(MAMPS或PAMPs)作出PTI免疫反应(pattern-triggered immunity)[43]。另一种是ETI免疫反应(effectortriggered immunity),主要在细胞内发挥作用,利用大多数R基因(Resistant gene)编码的多态核苷酸结合亮氨酸丰富重复蛋白NB-LRR蛋白产物作为免疫传感器,识别病原体传递的效应物[44]。NLRs被认为是植物免疫的关键组成部分,植物NLRs能够快速识别进化的效应因子[45]。根据基因对基因的假说,植物的R基因特异性识别侵染病原菌的无毒基因(Avr基因),通过发生互作反应进而激发下游系列抗病信号传导,诱导植物对病原菌产生抗性反应。常见的R基因类型有核苷酸结合位点-富亮氨酸重复(NB-LRR,简称NLR)、激酶、富亮氨酸重复-激酶类型、胞外富亮氨酸重复类型等,其中NLR约占80%。根据其N-端结构的不同NLR又可分为卷曲螺旋CC-NB-LRR(CNL)类型和果蝇Toll蛋白/白细胞介素受体1-NB-LRR(TNL)类型,以及缺少N端结构域的NB-LRR等亚类[45]。番茄的抗性蛋白Pto是一种丝氨酸-苏氨酸激酶,通过与来自紫丁香假单胞菌pv.tomato的AvrPto或AvrPtoB特异识别相互作用产生抗性[46]。无毒基因是决定病菌能否具有致病效应的两性效应因子,植物若含有对应的抗病基因,抗病基因抑制无毒基因的毒性效应,植株表现为抗病;反之无毒基因表现其致病性,使植物感病。目前在番茄中已报道的免疫相关NLRs基因如表2所示。
5.2 抗性材料的筛选
番茄细菌性髓部坏死病是近年来威胁我国番茄产业健康发展的新兴土传细菌性病害之一。目前针对病害的抗性材料筛选和鉴定在国内外均有报道,荆子桓等[12]通过田间抗性鉴定发现野生番茄材料T034和T103对髓部坏死病表现出抗性。孙福在等[60]通过对112个番茄品种进行抗性鉴定,发现高抗品种20个,抗病品种30个。Stockinger等[61]通过研究发现番茄L. hirsutum中的PI 134417对丁香假单胞菌ptll和pt14D46菌株表现抗性。González等[62]以233份番茄品种为材料接种P. solanacearum,其中CATIE 17331、17334、17349、1773917740、Hawaii 7998和UC-82B表现出抗性。
6 防治方法
番茄细菌性髓部坏死病的发生受品种、地区、栽培方式、气候条件和环境等多种因素的影响。因此,在病害的防治中应根据病害发生的原因,遵循预防为主、综合防治的原则。
6.1 植物检疫
种子带菌是细菌性病害的发生侵染源之一,也是病害异地传播的最重要途径。加强检疫措施能够有效地阻断病原菌传播。虽然该病害在我国已有发生,但各地发生情况不一。引起番茄细菌性髓部坏死病的P. cichorii是多寄主的病原菌,能够引起多种农作物发生病害,可能严重影响当地的农业种植结构[8]。因此,种苗在各区间的调运仍有必要将该病原作为检疫对象,这将有利于从源头控制该病害的扩散蔓延[63]。
6.2 抗病品种的选育
在番茄的生产中选用抗病品种是植物病害综合防治中最安全、简便、经济和有效的方式。可通过抗病种质资源筛选,利用常规杂交育种技术结合分子标记辅助品种选育,快速高效地创制抗性种质资源,挖掘抗性基因,结合转基因以及基因编辑等生物技术手段创制抗病材料。
6.3 农业防治
番茄细菌性髓部坏死病在逆境条件下危害加重,因此合理的田间栽培管理措施对防治细菌性髓部坏死病十分重要。种子消毒能够有效杀除种子表面所携带的病原菌,进而降低病害发生率。病原菌能够在土壤中长时间存活,通过合理的轮作与套作以避免髓部坏死病的暴发,避免番茄连作,可与非假单胞菌寄主作物进行轮作。一旦发现感染植株,应立即拔除清理。在番茄生长发育过程中,合理均衡施肥,适时配施锌、钙、硼等叶面肥,促进植株生长,提高植株的抗病能力。
6.4 化學防治
目前国内外尚没有开发出防治番茄细菌性髓部坏死病的特效药。发病初期可喷施新植霉素、噻唑锌、甲霜恶霉灵等药物防治;如发病严重,可采用注射法防治,可选用四环霉素、氧氟沙星、链霉素,但该方法仅适用于小范围防治。根据前人的研究可知,P. corrugata和P. cichorii对铜制剂有较高的耐受性,因此在化学防治中应避免选用铜制剂[17]。
7 展 望
番茄是世界范围内广泛种植的蔬菜作物,对番茄细菌性髓部坏死病症、传播途径、鉴定方法、致病机制、抗病机制以及防治方法进行归纳总结,具有重要的理论意义和实践价值。
目前,我国已有多地发生细菌性髓部坏死病的报道,并呈现出日益严重的趋势,但目前我国针对该病害的研究极少。因此,今后应加强以下几个方面的研究:(1)检测技术。开展番茄产区的病害调查,利用代谢组学技术探索开发感染细菌性髓部坏死病的代谢标志物,结合形态学和分子生物学技术进行鉴定;开发简便、快捷的田间检测方法。(2)抗病机制。明确病原菌的致病机制和变异机制、遗传多样性,根据“基因对基因”假说,明确寄主的无毒基因和病菌的致病基因,采用蛋白互作的方法和基因定位技术获得抗性基因,为分子标记辅助育种和克隆抗性基因奠定基础。(3)综合防治。广泛收集国内外番茄种质资源,并进行抗病性鉴定,挖掘抗性资源,利用传统育种方法、转基因和基因编辑技术创制抗病品种,加快培育高抗的商业化品种。开展病害的综合防治研究,开发和筛选防治番茄细菌性髓部坏死病的新型药剂和诱抗剂。
参考文献
[1] BELLA P,CATARA V.Occurrence of tomato pith necrosis caused by Pseudomonas marginalis in Italy[J].Plant Pathology,2010,59(2):402.
[2] 蔡佳欣,安宝贞,吕昀陞,等.Pseudomonas mediterranea引起之番茄髓坏疽病[J].台湾农业研究,2018,67(1):16-27.
[3] SCARLETT C M,FLETCHER J T,ROBERTS P,et al.Tomato pith necrosis caused by Pseudomonas corrugata n.sp.[J].Annals of Applied Biology,1978,88(1):105-114.
[4] TRANTS E A,SARRIS P F,MPALANTINAKI E E,et al.A new genomovar of Pseudomonas cichorii,a causal agent of tomato pith necrosis[J].European Journal of Plant Pathology,2013,137(3):477-493.
[5] KUDELA V,KREJZAR V,PNAKOVA I.Pseudomonas corrugata and Pseudomonas marginalis associated with the collapse of tomato plants in rockwool slab hydroponic culture[J].Plant Protection Science,2010,46(1):1-11.
[6] AIELLO D,SCUDERI G,VITALE A,et al.A pith necrosis caused by Xanthomonas perforans on tomato plants[J].European Journal of Plant Pathology,2013,137(1):29-41.
[7] POPVIC T,IVANOVIC Z,IGNIJATOV M.First report of Pseudomonas viridiflava causing pith necrosis of tomato (Solanum lycopersicum) in Serbia[J].Plant Disease,2015,99(7):1033.
[8] TRANTAS E A,SARRIS P F,PENTARI M G,et al.Diversity among Pseudomonas corrugata and Pseudomonas mediterranea isolated from tomato and pepper showing symptoms of pith necrosis in Greece[J].Plant Pathology,2015,64(2):307-318.
[9] 赵海棠,安学君,胡芝莲,番茄细菌性髓部坏死病及防治方法[J].长江蔬菜,2000(8):17-18.
[10] RUAN H,SHI N,DU Y,et al.First report of Pseudomonas cichorii causing tomato pith necrosis in Fujian province China[J].Plant Disease,2019,103(1):145.
[11] 佘小漫,湯亚飞,何自福,等.番茄细菌性髓部坏死病病原的鉴定[J].植物病理学报,2017,47(2):180-186.
[12] 荆子桓,王先裕,龙安四,等.广西番茄砧木多抗材料筛选[J].中国蔬菜,2016(10):28-32.
[13] CATARA V,SUTRA L,MORINEAU A,et al.Phenotypic and genomic evidence for the revision of Pseudomonas corrugata and proposal of Pseudomonas mediterranea sp.nov[J].International Journal of Systematic and Evolutionary Microbiology,2002,52(5):1749-1758.
[14] 李秀芹,姜京宇,张丽.河北省番茄细菌性髓部坏死病的发生与防治[J].中国蔬菜,2013(7):25-26.
[15] JUNIOR T A F S,GIORIA R,MARINGONI A C,et al.Gama de hospedeiros e rea??o de genótipos de tomateiro a Pseudomonas cichorii[J].Summa Phytopathol,2009,35(2):127-131.
[16] TIMILSINA S,ADKISON H,TESTEN A L,et al.A novel phylogroup of Pseudomonas cichorii identified following an unusual disease outbreak on tomato[J].Phytopathology,2017,107(11):1298-1304.
[17] ALIPPI A M,BO D E,RONCO L B,et al.Pseudomonas populations causing pith necrosis of tomato and pepper in Argentina are highly diverse[J].Plant Pathology,2003,52(3):287-302.
[18] SARRIS P F,TRANTAS E A,MPALANTINAKI E,et al.Pseudomonas viridiflava,a multi host plant pathogen with significant genetic variation at the molecular level[J].PLoS One,2018,7(4):e36090.
[19] PEKHTEREVA E S,IGNATOV A N,SCHAAD N W,et al.Pith necrosis of tomato in Russia[J].Acta Horticulturae,2009(808):251-253.
[20] CATARA V,ARNOLD D,CIRVILLERI G,et al.Specific oligonucleotide primers for the rapid identification and detection of the agent of tomato pith necrosis,Pseudomonas corrugata,by PCR amplification:Evidence for two distinct genomic groups[J].European Journal of Plant Pathology,2000,106(8):753-762.
[21] AIELLO D,VITALE A,RUOTA A D L,et al.Synergistic interactions between Pseudomonas spp.and Xanthomonas perforans in enhancing tomato pith necrosis symptoms[J].Journal of Plant Pathology,2017,99(3):731-740.
[22] ALIVIZATOS A S.Bacterial wilt of tomato in Greece caused by Erwinia chrysanthemi[J].Plant Pathology,1985,34(4):638-639.
[23] LAMICHHANE J R,VENTURI V.Synergisms between microbial pathogens in plant disease complexes:a growing trend[J].Front in Plant Science,2015,6:1-12.
[24] IBRAHIM Y E,KOMY M H E,BALABEL N M,et al.Saline and alkaline soil stress results in enhanced susceptibility to and severity in tomato pith necrosis when inoculated with either Pseudomonas corrugata and/or P.fluorescens[J].Journal of Plant Pathology,2020 102(3):849-856.
[25] PETRICCIONE M,ZAMPELLA L,MASTROBUONI F,et al.Occurrence of copper-resistant Pseudomonas syringae pv.syringae strains isolated from rain and kiwifruit orchards also infected by P.s.pv.actinidiae[J].European Journal of Plant Pathology,2017,149(4):953-968.
[26] YAMAMOTO S,KASAI H,ARNOID D L,et al.Phylogeny of the genus Pseudomonas:Intrageneric structure reconstructed from the nucleotide sequences of gyrB and rpoD genes[J].Microbiology,2000,146(10):2385-2394.
[27] TAYEB L A,AGERON E,GRIMONT F,et al.Molecular phylogeny of the genus Pseudomonas based on rpoB sequences and application for the identification of isolates[J].Research in Microbiology,2005,156(5/6):763-773.
[28] COTTYN B,BAEYEN S,PAUWELYN E,et al.Development of a real-time PCR assay for Pseudomonas cichorii,the causal agent of midrib rot in greenhouse-grown lettuce,and its detection in irrigating water[J].Plant Pathology,2011,60(3):453-461.
[29] MIRIK M,AYSAN Y,SAHIN F.Characterization of Pseudomonas cichorii isolated from different hosts in Turkey[J].International Journal of Agriculture and Biology,2011,13(2):203-209.
[30] SARRIS P,ABDELHALIM M,KITNER M,et al.Molecular polymorphisms between populations of Pseudoperonospora cubensis from greece and the czech republic and the phytopathological and phylogenetic implications[J].Plant Pathology,2009,58(5):933-943.
[31] STAGER C E,P DAVIS J R.Automated systems for identification of microorganisms[J].Clinical Microbiology Reviews,1992,5(3):302-327.
[32] RAJENDRAN D K,PARK E,NAGENDRAN R,et al.Visual analysis for detection and quantification of Pseudomonas cichorii disease severity in tomato plants[J].Plant Pathology Journal,2016,32(4):300-310.
[33] HIKICHI Y,WALI U M,OHNISHI K,et al.Mechanism of disease development caused by a multihost plant bacterium,Pseudomonas cichorii,and its virulence diversity[J].Journal of General Plant Pathology,2013,79(6):379-389.
[34] BELIMOV A A,DODD I C,SAFRONOVA V I,et al.Pseudomonas brassicacearum strain Am3 containing 1-aminocyclopropane-1-carboxylate deaminase can show both pathogenic and growth-promoting properties in its interaction with tomato[J].Journal of Experimental Botany,2007,58(6):1485-1495.
[35] PENA R T,BLASCOL L,AMBROA A,et al.Relationship between quorum sensing and secretion systems[J].Frontiers in Microbiology,2019,10(7):doi:10.3389/fmicb.2009.01100.
[36] PFEILMEIER S,CALY D L,MALONE J G.Bacterial pathogenesis of plants:future challenges from a microbial perspective:Challenges in bacterial molecular plant pathology[J].Molecular Plant Pathology,2016,17(8):1298-1313.
[37] BUTTNER D,HE S Y.Type III protein secretion in plant pathogenic bacteria[J].Plant Physiology,2009,150(4):1656-1664.
[38] TAMPAKAKI A P,SKANDALIS N,GAZI A D,et al.Playing the ‘harp:evolution of our understanding of hrp/hrc genes[J].Annual Review of Phytopathology,2010,48:347-370.
[39] LIU J,YU M,CHATNAPARAT T,et al.Comparative transcriptomic analysis of global gene expression mediated by (p) ppGpp reveals common regulatory networks in Pseudomonas syringae[J].BMC Genomics,2020,21(1):1-18.
[40] ISHIGA T,SAKATA N,NGUYEN V T,et al.Flood inoculation of seedlings on culture medium to study interactions between Pseudomonas syringae pv. actinidiae and kiwifruit[J].Journal of General Plant Pathology,2020,86(4):257-265.
[41] ABRAMOVITCH R B,KIM Y J,CHEN S,et al.Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death[J].EMBO Journal,2003,22(1):60-69.
[42] KIBA A,SANGAWA Y,OHNISHI K,et al.Induction of apoptotic cell death leads to the development of bacterial rot caused by Pseudomonas cichorii[J].Molecular Plant-Microbe Interactions,2006,19(2):112-122.
[43] KAPOS P,DEVEDRAKUMAR K T,LI X.Plant NLRs:from discovery to application[J].Plant Science,2019,279:3-18.
[44] JONES J D G,DANGL J L.The plant immune system[J].Nature,2006,444(7117):323-329.
[45] 邢苗苗,劉星,孔枞枞,等.甘蓝NLR家族全基因组鉴定、进化分析及在不同病害胁迫下的表达分析[J].园艺学报,2019,46(4):723-737.
[46] XIAO F,HE P,ABRAMOVITCH R B,et al.The N-terminal region of Pseudomonas type III effector AvrPtoB elicits Pto-dependent immunity and has two distinct virulence determinants[J].Plant Journal,2007,52(4):595-614.
[47] HOUTERMAN P M,MA L,OOIJEN G V,et al.The effector protein Avr2 of the xylem-colonizing fungus Fusarium oxysporum activates the tomato resistance protein I-2 intracellularly[J].Plant Journal,2009,58(6):970-978.
[48] CASTEEL C L,WALLING L L,PAINE T D.Behavior and biology of the tomato psyllid,Bactericerca cockerelli,in response to the Mi-1.2 gene[J].Entomologia Experimentalis et Applicata,2006,121(1):67-72.
[49] MA L,HOUTERMAN P M,GAWEHNS F,et al.The AVR2-SIX5 gene pair is required to activate I-2-mediated immunity in tomato[J].New Phytologist,2015,208(2):507-518.
[50] NOMBELA G,WILLAMSON V M,MUNIZ M.The root-knot nematode resistance gene Mi-1.2 of tomato is responsible for resistance against the whitefly Bemisia tabaci[J].Molecular Plant-Microbe Interactions,2003,16(7):645-649.
[51] NTOUKAKIS V,BALMUTH A L,MUCYN T S,et al.The tomato Prf complex is a molecular trap for bacterial effectors based on Pto transphosphorylation[j].PLoS Pathogens,2013,9(1):1-14.
[52] RATHJEN J P,CHANG J H,STASKAWICZ B J,et al.Constitutively active Pto induces a Prf-dependent hypersensitive response in the absence of avrPto[J].EMBO Journal,1999,18(12):3232-3240.
[53] BROMMONSCHENKEL S H,FRARY A,FRARY A,et al.The broad-spectrum tospovirus resistance gene Sw-5 of tomato is a homolog of the root-knot nematode resistance gene Mi[J].Molecular Plant-Microbe Interactions,2000,13(10):1130-1138.
[54] SCHORNACK S,BALLVORA A,GURLEBECK D,et al.The tomato resistance protein Bs4 is a predicted non-nuclear TIR-NB-LRR protein that mediates defense responses to severely truncated derivatives of AvrBs4 and overexpressed AvrBs3[J].Plant Journal,2004,37(1):46-60.
[55] PEIRO A,CANIZARES M C,RUBIO L,et al.The movement protein (NSm) of tomato spotted wilt virus is the avirulence determinant in the tomato Sw-5 gene-based resistance[J].Molecular Plant Pathology,2014,15(8):802-813.
[56] WEBER H,PFITZNER A J P.Tm-22 resistance in tomato requires recognition of the carboxy terminus of the movement protein of tomato mosaic virus[J].Molecular Plant-Microbe Interactions,1998,11(6):498-503.
[57] POCH C H L,LOPEZ R H M,KANYUKA K.Functionality of resistance gene Hero,which controls plant root-infecting potato cyst nematodes,in leaves of tomato[J].Plant,Cell and Environment,2006,29(7):1372-1378.
[58] ERNST K,KUMAR A,KRISELEIT D,et al.The broad-spectrum potato cyst nematode resistance gene (Hero) from tomato is the only member of a large gene family of NBS-LRR genes with an unusual amino acid repeat in the LRR region[J].Plant Journal,2002,31(2):127-136.
[59] BALLVORA A,PIERRE M,ACKERVEKEN G V D,et al.Genetic mapping and functional analysis of the tomato Bs4 locus governing recognition of the Xanthomonas campestris pv.vesicatoria AvrBs4 protein[J].Molecular Plant-Microbe Interactions,2001,14(5):629-638.
[60] 孫福在,赵廷昌,刘永.山东鱼台县发生番茄细菌性髓部坏死病[J].植物保护,2003(6):56-57.
[61] STOCKINGER E J,WALLING L L.Pto3 and Pto4: novel genes from Lycopersicon hirsutum var. glabratum that confer resistance to Pseudomonas syringae pv. tomato [J].Theoretical & Applied Genetics,1994,89(7/8):879-884.
[62] GONZALEZ W G,SUMMERS W L.Host-plant resistance to Pseudomonas solanacearum in tomato germplasm[J].Genetic Resources and Crop Evolution,1996,43(6):569-574.
[63] 罗来鑫,赵廷昌,李健强,等.番茄细菌性溃疡病研究进展[J].中国农业科学,2004,37(8):1144-1150.