滕建辉 喻奇伟 熊晶 莫泽君 柯渔洲 陈倩 罗雯 张倩 王飞雁 刘仁祥
摘要:【目的】探究煙草叶片数杂交优势表现,并分析烟草叶片数相关基因的差异表达情况及杂种优势形成的原因,为深入研究烟草叶片数的分子遗传基础和选育叶片数较多的杂交种提供理论依据。【方法】以叶片数差异较大的 9个烟草品种(系)为亲本,按照NCⅡ遗传交配设计组配20个杂交组合,并测定亲本和杂交组合的叶片数,计算其杂种优势,从中筛选出强、弱优势组合,利用实时荧光定量PCR检测其叶片相关基因BRI1、BSK3、FLC、FPF1和PHYC的相对表达量。最后,对叶片数相关基因中亲表达优势间及其与叶片数中亲优势进行相关分析。【结果】9个亲本材料的叶片数为20.33~33.22片,以GDH94的叶片数最多,其次是南江三号和毕纳1号,三者间无显著差异(P>0.05,下同),但GDH94显著高于其余6个亲本(P<0.05,下同),表明供试亲本间的叶片数存在真实的遗传差异。20个杂交组合的叶片数存在明显差异,为20.89~31.33片,以GDH94×南江三号的叶片数最多,以NC82×青梗的叶片数最少,说明采用杂种优势育种方法可选育出烟草叶片数较多的杂交种。20个杂交组合叶片数的杂种优势差异较大,其中中亲优势为 -14.71%~11.77%,表现为正向中亲优势和负向中亲优势的组合分别占25%和75%,其中,以K326×GDH88叶片数的正向中亲优势最强,为11.77%,以GDH94×湄潭大蛮烟叶片数的负向中亲优势最强,为-14.71%;NC82×南江三号叶片数的中亲优势最弱,为-0.22%,故选择K326×GDH88和GDH94×湄潭大蛮烟为强优势组合、NC82×南江三号为弱优势组合。不同叶片数相关基因的中亲表达优势之间存在一定的相关性,其中BRI1和BSK3基因的中亲表达优势之间存在显著正相关;FPF1和PHYC基因的中亲表达优势与叶片数杂种优势存在显著负相关。FPF1基因在正向强优势杂交组合K326×GDH88和弱优势组合NC82×南江三号中较其相应亲本下调表达,但负向强优势组合GDH94×湄潭大蛮烟较其亲本上调表达。PHYC基因在正向强优势组合K326×GDH88和弱优势组合NC82×南江三号中较其相应亲本下调表达,但在负向强优势组合GDH94×湄潭大蛮烟较其亲本上调表达。【结论】K326×GDH88组合的叶片数杂种优势最大,具有较大的高产潜力。FPF1和PHYC基因参与调控烟草叶片数杂种优势的形成,其下调表达是烟草叶片数性状杂种优势形成的分子基础,可指导亲本选配,提高烟草杂交选育效率。
关键词: 烟草;叶片数;杂种优势;基因表达
中图分类号: S572.035.1 文献标志码: A 文章编号:2095-1191(2021)02-0420-09
Abstract:【Objective】To explore the performance of heterosis of tobacco leaf number, analyze the differential expression of leaf number related genes and the causes of heterosis, so as to provide a theoretical basis for further research on the molecular genetic basis of tobacco leaf number and breeding of hybrid varieties with more leaves. 【Method】Nine tobacco varieties(lines) with large difference in leaf number were as parents,20 hybrid combinations were set according to the NCⅡ genetic mating,and leaf number of parents and hybrid combinations were measure. Calculated the heterosis,the strong and weak dominant combinations were selected. The relative expression of leaf genes BRI1,BSK3,FLC,FPF1 and PHYC were detected using real-time fluorescent quantitative PCR. Finally,the correlation between leaf number related gene expression dominance and leaf number over-parent heterosis was analyzed. 【Result】The number of leaves of the nine parents was 20.33-33.22,and GDH94 had the most,followed by Nanjiang No.3 and Bina No.1. There was no significant difference among the three parents(P>0.05,the same below),but GDH94 was significantly higher than that of the other six parents(P<0.05,the same below), indicating that there was real genetic difference in the number of leaves among the tested parents. There were significant differences in the number of leaves among the 20 hybrid combinations, ranging from 20.89 to 31.33,with the highest number of leaves in GDH94×Nanjiang No.3 and the lowest number of leaves in NC82×Qinggeng,indicating that the hybridization method could be used to breed the hybrid with the appropriate number of leaves. Among the 20 hybrid combinations,the heterosis of the number of leaves was significantly different,of which the over-parent heterosis was -14.71%-11.77%,and the combinations showing positive over-parent heterosis and negative over-parent heterosis accounted for 25% and 75%,respectively. The positive over-parent heterosis of the number of leaves of K326×GDH88 was the strongest(11.77%),and the negative over-parent heterosis of the leaf number of GDH94×Meitandaman tobacco was the strongest(-14.71%). Over-parent heterosis of the leaf number of NC82×Nanjiang No.3 was the weakest(-0.22%). Therefore,K326×GDH88 and GDH94×Meitandaman tobacco were selected as the representative combinations of strong dominance,while NC82×Nanjiang No.3 was selected as the representative combination of weak dominance. There was a certain correlation in the over-parent heterosis among different leaf number related genes, and there was a significant positive correlation between the over-parent heterosis of BRI1 and BSK3 genes.There was a significant negative correlation between the over-parent heterosis of FPF1 and PHYC genes and leaf number heterosis. The expression of FPF1 gene was down-regulated in positive strong dominant hybrid K326×GDH88 and weak dominant hybrid NC82×Nanjiang No.3 compared with their parents,but up-regulated in negative strong dominant hybrid GDH94×Meitandaman tobacco compared with their parents. The PHYC gene expression was down-regulated in positive strong dominance combination K326×GDH88 and weak dominant combination NC82×Nanjiang No.3 compared with their parents,but up-regulated in negative strong dominant combination GDH94×Meitandaman tobacco compared with their parents.【Conclusion】The combination of K326×GDH88 has the highest leaf number heterosis and high yield potential. FPF1 and PHYC genes are involved in the regulation of the formation of tobacco leaf number heterosis,and their down-regulated expression is the molecular basis for the formation of tobacco leaf number heterosis,which can guide the selection of parents and improve the efficiency of tobacco hybrid breeding.
Key words: tobacco; leaf number; heterosis; gene expression
Foundation item: High-level Innovative Talent Training Plan of Guizhou(QKHPTRC〔2016〕5663);Science and Technology Project of Guizhou Tobacco Company(201602,201904,2020XM07)
0 引言
【研究意义】烟草是我国重要的叶用经济作物。叶片数是烟叶产量的主要构成指标之一,直接影响烟农的经济收益和卷烟原料的市场供应(左伟标等,2020)。杂种优势是生物界的一种普通现象,可提高作物产量和品质,在水稻、玉米等作物中已广泛利用(Chen,2010;王昆等,2018)。杂种优势形成的原因极其复杂,作物杂种优势不仅在不同作物间及不同性状间存在差异,而且同一作物同一性状也可能因杂交组合和杂交方式及栽培环境不同而存在差异,很难明确显性、超显性和上位性效应中哪个在作物杂种优势中占主导作用(Patrick et al.,2013;Shang et al.,2016;商连光等,2017),难以有效指导优良杂交种的选育和利用。基因型杂合化是杂种优势产生的物质基础,杂交种的基因及其互作对杂种优势表现起决定性作用,但基因必须通过转录和蛋白翻译才能对性状起调控作用,从mRNA水平上和基因表达调控角度来分析研究杂种优势的形成机理更为直接和科學(凌亮等,2007;许晨璐等,2013)。因此,研究烟草叶片数杂种优势表现及相关基因差异表达分析对研究烟草杂种优势形成的机理具有十分重要的意义。【前人研究进展】目前大量研究结果表明,烟草叶片数受遗传因素(张兴伟等,2012;李显航,2019;蒲媛媛等,2020)、栽培措施(周俊学等;2016;信俊峰等,2018)、生长调节剂(林姗姗等,2017;苏畅涛,2020)和生态环境(王红锋等,2019;王廷贤等,2019)等因素的影响。烟草叶片数是核基因控制的数量性状,由2对主效基因与微效多基因共同作用,以加性效应和显性×显性上位性效应为主,其遗传力较高(张兴伟等,2012;徐航等,2013;李显航,2019;蒲媛媛等,2020)。植物叶片数是通过众多基因在特定遗传背景和环境条件下相互作用的结果。拟南芥FLC基因在低温处理下的表达量明显升高,延迟了开花时间,导致拟南芥叶片数明显增加(Kim et al.,2004);PHYC基因在短日照条件下高表达抑制了拟南芥开花,增加植株最终叶片数(Franklin et al.,2003);BRI1、BSK3、FLC、FPF1和PHYC基因不仅在拟南芥的花芽分化过程中发挥调控作用,还参与叶片数的调控从而有效影响叶片数(Balasubramanians et al.,2006;罗占春等,2009;王楠,2019)。【本研究切入点】本研究课题组前期研究发现烟草叶片数有较强的杂种优势,采用杂种优势利用育种方法育成了品质优良、叶片数具有超亲优势的2个杂交种(刘仁祥等,2016),但对烟草叶片数杂种优势形成的原因尚不明确,杂交组合的配制仍较盲目。目前鲜见有关烟草叶片数杂种优势表现及相关基因差异表达分析的研究报道。【拟解决的关键问题】以叶片数差异较大的烟草品种(系)为材料,采用NCⅡ遗传设计组配杂交组合,分析烟草叶片数的杂种优势表现,筛选强、弱优势杂交组合,在基因表达水平上探究烟草叶片数杂种优势形成与基因差异表达间的关系,为合理选配亲本从而选育出叶片数较多的杂交种提供指导,以提高烟草杂交种的选育效率,可为阐明作物杂种优势形成的分子机理打下理论基础。
1 材料与方法
1. 1 试验材料
供试亲本材料共9个,其中GDH94、南江三号和毕纳1号的叶片数较多,湄潭大蛮烟、NC82和青梗的叶片数较少,K326、GDH88和Va116的叶片数居中,均由贵州大学贵州省烟草品质研究重点实验室提供。RNAprep Pure Plant Kit试剂盒、FastKing gDNA Dispelling RT SuperMix试剂盒和Talent qPCR PreMix(SYBR Green)试剂盒购自天根生化科技(北京)有限公司。主要仪器设备:CFX96 Real-Time System(Bio-Rad,美国)、凝胶成像系统(Bio-Rad,美国)、冷冻离心机(Thermo,美国)和DYCP-44N电泳仪(新诺,中国)。
1. 2 杂交组合配制及田间试验设计
随机抽取4个材料为母本,另外5个材料为父本,按照NCⅡ设计配制20个杂交组合(表1),并记录亲本和杂交组合的现蕾时间。试验于2020年在贵州大学烟草科研基地(安顺市西秀区杨武乡石平村)进行,烟地的土壤肥力中等。于5月3日进行井窖式移栽,田间试验采用随机区组设计,3次重复,每小区3行,每行15株,行、株距为1.10 m×0.55 m。四周设保护行,每行第1株和最后1株不进行数据测定,其余栽培管理技术按照《安顺市西秀区优质烟叶生产技术方案》执行。
1. 3 叶片数测定方法
待供试材料均进入初花期时,按照YC/T 142—2010《烟草农艺性状调查测量方法》进行调查记载(中国烟草总公司青州烟草研究所,2010)。每小区随机选取3株,测定其叶片数,计算平均值。
1. 4 杂种优势的计算方法
参照陈泽辉(2009)方法计算烟草F1代叶片数的杂种优势,计算公式如下
中亲优势(%)=(F1-MP)/MP×100
超高亲优势(%)=(F1-HP)/HP×100;
超低亲优势(%)=(F1-LP)/LP×100;
式中,MP表示双亲平均值,HP表示高亲值,LP表示低亲值,F1表示杂种一代叶片数的平均值。
1. 5 基因表达量的测定
1. 5. 1 样品采集 参照高凯悦等(2016)的取样方法,于移栽后25 d(花芽分化关键时期),每个材料选定正常生长且长势一致的3株烟,取其长度为5 cm的茎尖均匀混合,并进行液氮速冻,设置3个生物学重复,样品保存于-86 ℃的超低温冰箱中备用。
1. 5. 2 总RNA提取及cDNA合成 采用RNAprep Pure Plant Kit试剂盒提取总RNA,按FastKing gDNA Dispelling RT SuperMix试剂盒说明反转录合成cDNA第一链。
1. 5. 3 实时荧光定量PCR 在NCBI数据库中搜索叶片数相关基因,根据其cDNA全长序列,利用Pri-mer 6.0设计各基因引物(表2),并委托北京擎科生物科技有限公司合成。按照Talent qPCR PreMix(SYBR Green)试剂盒说明对这些基因进行实时荧光定量PCR检测。反应体系20.0 ?L:2×Talent qPCR PreMix 10.0 ?L,上、下引物(10 μmol/L)各0.6 ?L,cDNA模板2.0 ?L,ddH2O补足至20.0 ?L。扩增程序:95 ℃预变性3 min;95 ℃ 5 s;退火温度(表2)10 s,75 ℃ 15 s,进行40个循环。每个样品设3次技术重复。
1. 5. 4 表达量的统计方法 以K326为对照,采用比较阈值法(2-ΔΔCt)计算叶片数相关基因(王秀莉等,2009)。根据实时熒光定量PCR测定的Ct值,计算强、弱优势组合中叶片数相关基因的相对表达量,并据此计算各基因的中亲表达优势,分析其与叶片数杂种优势的相关性。
中亲表达优势=(F1-双亲平均值)/双亲平均值
式中,F1表示杂交种的相对表达量,双亲平均值表示父本和母本相对表达量的平均值。
1. 6 统计分析
采用Excel 2010和SPSS 20.0对叶片数及其杂种优势、叶片数相关基因的表达量等进行单因素方差分析和Pearson相关分析。
2 结果与分析
2. 1 亲本和杂交组合的现蕾时间测定结果
由表3和表4可知,9个亲本材料的现蕾时间为59~62 d;20个杂交组合的现蕾时间为60~64 d,可见,亲本与杂交组合材料的现蕾时间无明显差异,说明各材料花芽分化进程基本一致。由于烟草花芽分化的早晚直接影响其总叶片数,现蕾后才完成烟株花芽分化(胡荣海,2007)。因此,应在烟株花芽分化关键时期(移栽后25 d)进行取样用于基因差异表达研究。
2. 2 亲本间及杂交组合叶片数的差异分析结果
由表5可知,9个亲本材料的叶片数为20.33~33.22片,以GDH94的叶片数最多,其次是南江三号和毕纳1号,三者间无显著差异(P>0.05,下同),但GDH94显著高于其余6个亲本(P<0.05,下同),以青梗的叶片数最少,表明供试亲本间的叶片数存在真实的遗传差异,可用于叶片数性状的遗传利用研究。
由表6可知,20个杂交组合的叶片数为20.89~31.33片,以GDH94×南江三号的叶片数最多,以NC82×青梗的叶片数最少。可见,20个杂交组合叶片数存在明显差异,说明采用杂种优势育种方法可选育出烟草叶片数较多的杂交种。
2. 3 烟草叶片数的杂种优势表现及强、弱优势材料筛选
20个杂交组合叶片数的杂种优势如表7所示。不同杂交组合叶片数的杂种优势差异较大。中亲优势为-14.71%~11.77%,表现为正向中亲优势和负向中亲优势的组合分别占25%和75%,表明烟草叶片数的杂种优势表现以负向优势为主。其中,以K326×GDH88叶片数的正向中亲优势最强,为11.77%,以GDH94×湄潭大蛮烟叶片数的负向中亲优势最强,为-14.71%;NC82×南江三号叶片数的中亲优势最弱,为-0.22%,故选择K326×GDH88和GDH94×湄潭大蛮烟为强优势组合,NC82×南江三号为弱优势组合,用于叶片数相关基因的差异表达分析。超高亲优势为-25.69%~8.75%,仅K326×GDH88、Va116×湄潭大蛮烟和Va116×GDH88表现出正向超高亲优势,说明只要亲本选择得当可育成叶片数较多的杂交种。
2. 4 烟草叶片数杂种优势及相关基因的表达分析结果
以K326为对照,利用实时荧光定量PCR检测5个叶片数相关基因在强、弱优势组合及其亲本中的相对表达量,并计算各基因的中亲表达优势,结果分别如表8和表9所示。不同优势组合中同一基因的中亲表达优势具有明显的差异。在正向强优势组合K326×GDH88中,FLC、BRI1、FPF1和PHYC基因表现为负向优势;在负向强优势组合GDH94×湄潭大蛮烟中,5个相关基因均表现为正向优势;在弱优势组合NC82×南江三号中,FLC和FPF1基因表现为正向优势,BRI1、BSK3和PHYC基因表现为负向优势。表明不同叶片数相关基因在叶片数杂种优势中的差异表达模式较复杂,无明显的规律性。
采用简单相关性方法分析叶片数相关基因中亲表达优势间及其与叶片数杂种优势的关系,结果如表10所示。不同叶片数相关基因的中亲表达优势之间存在一定的联系。其中,BRI1与BSK3基因中亲表达优势的相关系数为0.79,呈显著正相关,说明这2个基因的表达存在互作关系;FPF1和PHYC基因的中亲表达优势与叶片数杂种优势呈显著负相关,相关系数分别为-0.67和-0.71,说明FPF1和PHYC基因中亲表达优势的正向表现抑制了烟草叶片数杂种优势的形成,故推测FPF1和PHYC基因是烟草叶片数杂种优势形成的关键基因。
2. 5 FPF1和PHYC基因在强、弱优势组合及其亲本中的表达分析结果
煙草叶片数杂种优势形成的关键基因FPF1和PHYC在强、弱优势组合及其亲本中的表达情况,如图1所示。FPF1基因在正向强优势杂交组合K326×GDH88和弱优势组合NC82×南江三号中较其相应亲本下调表达,但负向强优势组合GDH94×湄潭大蛮烟较其亲本上调表达。PHYC基因在正向强优势组合K326×GDH88和弱优势组合NC82×南江三号中较其相应亲本下调表达,但在负向强优势组合GDH94×湄潭大蛮烟较其亲本上调表达。故推测FPF1和PHYC基因通过下调表达调控烟草叶片数杂种优势的形成。
3 讨论
3. 1 烟草叶片数及其杂种优势表现
亲本材料间的性状差异是品种改良的物质基础。彭韬屹(2019)、李迪秦等(2020)研究发现,烤烟叶片数因品种不同而存在一定差异,且受遗传的影响较大。本研究结果表明,烟草亲本及杂交组合间烟草叶片数存在明显差异,说明供试材料的遗传背景丰富,适于叶片数的遗传研究和优良品种的杂交选育。烟草叶片数杂种优势总体表现为负向群体中亲优势,表明采用杂种优势育种方法选育叶片数较多杂交种的难度较大,与徐航等(2013)、Shu(2016)对叶片数杂种优势的研究结果一致。本研究发现,有15%的杂交组合表现为正向超高亲优势,说明只要亲本选择适宜也可育成叶片数较多的杂交种。
3. 2 叶片数相关基因表达与烟草叶片数杂种优势的关系
基因协同表达导致植物性状表型的变化。杂种优势的产生是由2个遗传背景不同的亲本相互作用的结果。采用基因差异表达方法,了解相同基因在亲本与杂交组合中的表达差异,寻找与杂种优势形成相关的基因,探讨杂种优势形成与基因表达调控的关系,有望更直接、更科学地从分子水平上解析杂种优势的形成机理(吕有军和张爱芹,2008;王艳欣等,2018)。本研究结果显示,FPF1和PHYC基因的中亲表达优势与叶片数中亲优势呈显著负相关,说明FPF1和PHYC基因中亲表达优势的正向表现抑制了烟草叶片数杂种优势的形成,故推测FPF1和PHYC基因是烟草叶片数杂种优势形成的关键基因。对FPF1和PHYC基因在各杂交种及其亲本中的相对表达情况进一步检测分析,结果发现烟草叶片数杂种优势主要通过FPF1和PHYC基因的下调表达而实现,其下调表达是烟草叶片数杂种优势形成的分子基础,进一步证明二者是烟草叶片数杂种优势形成的关键基因。在今后烟草杂种育种中,应优先选择FPF1和PHYC基因低表达类型的材料为亲本,以获得烟草叶片数较多的杂交种。
4 结论
K326×GDH88组合的叶片数杂种优势最大,具有较大的高产潜力。FPF1和PHYC基因参与调控烟草叶片数杂种优势的形成,其下调表达是烟草叶片数性状杂种优势形成的分子基础,可指导亲本选配,提高烟草杂交选育效率。
参考文献:
陈泽辉. 2009. 群体与数量遗传学[M]. 贵阳:贵州科技出版社. [Chen Z H. 2009. Population and quantitative genetics[M]. Guiyang:Guizhou Science and Technology Press.]
高凯悦,李淑久,江锡瑜,杨昌达,廖海民. 2016. 烤烟南江3号的花芽分化[J]. 烟草科技,49(7):31-35. doi:10.16135/j.issn1002-0861.20160705. [Gao K Y,Li S J,Jiang X Y,Yang C D,Liao H M. 2016. Flower bud differentiation of flue-cured tobacco cv. Nanjiang No.3[J]. Tobacco Science & Technology,49(7):31-35.]
胡荣海. 2007. 云南烟草栽培学[M]. 北京:科学出版社. [Hu R H. 2007. Tobacco cultivation in Yunnan[M]. Beijing:Science Press.]
李迪秦,刘伊芸,胡亚杰,韦建玉,杨全柳,李强. 2020. 不同基因型烤烟农艺性状与质量指标评价及灰色关联分析[J]. 云南农业大学学报(自然科学),35(4):643-650. doi:10.12101/j.issn.1004-390X(n).201903056. [Li D Q,Liu Y Y,Hu Y J,Wei J Y,Yang Q L,Li Q. 2020. Evaluation and grey relational analysis between the agronomic chara-cters and quality indicators of different genotypes flue-cured tobacco[J]. Journal of Yunnan Agricultural University(Natural Science),35(4):643-650.]
李显航. 2019. 烤烟叶片数连锁分子标记筛选[D]. 贵阳:贵州大学. doi:10.16213/j.cnki.scjas.2018.9.027. [Li X H. 2019. Screening of linkage molecular markers for number of flue-cured tobacco leaves[D]. Guiyang:Guizhou University.]
林姗姗,陈健,程森,王生才,尹红慧,徐天养,窦玉青,张伟峰. 2017. 植物生长调节剂对烤烟经济性状与质量的影响[J]. 贵州农业科学,45(10):44-47. doi:10.3969/j.issn.1001-3601.2017.10.010. [Lin S S,Chen J,Cheng S,Wang S C,Yin H H,Xu T Y,Dou Y Q,Zhang W F. 2017. Effects of plant growth regulators on economic characters and quality of flue-cured tobacco[J]. Guizhou Agricultural Sciences,45(10):44-47.]
凌亮,王瑞,尚春樹,代永齐. 2007. 作物杂种优势分子遗传基础研究进展[J]. 山西农业科学,(6):111-116. doi:10. 3969/j.issn.1002-2481.2007.06.034. [Ling L,Wang R,Shang C S,Dai Y Q. 2007. Research advance on the molecular genetics basis of heterosis in crops[J]. Journal of Shanxi Agricultural Sciences,(6):111-116.]
刘仁祥,夏志林,崔庆伟,喻奇伟,张庆明,聂琼,徐秀红,刘洋. 2016. 贵州烤烟育种工作进展与对策探讨[J]. 山地农业生物学报,35(4):1-6. doi:10.15958/j.cnki.sdnyswxb.2016.04. 001. [Liu R X,X Z L,Cui Q W,Yu Q W,Zhang Q M,Nie Q,Xu X H,Liu Y. 2016. Progress in tobacco breeding in Guizhou Province and discussion for solutions[J]. Journal of Mountain Agriculture and Bio-logy,35(4):1-6.]
罗占春,杜伟,张卫星. 2009. 土壤水分与烟草生长发育和生理代谢的相关研究进展[J]. 山地农业生物学报,28(5):446-451. doi:10.3969/j.issn.1008-0457.2009.05.016. [Luo Z C,Du W,Zhang W X. 2009. The progress on the effect of soil water on growth and development and physiological metabolism of tobacco[J]. Journal of Mountain Agriculture and Biology,28(5):446-451.]
吕有军,张爱芹. 2005. 基因差异表达与作物杂种优势分子机理研究[J]. 种子,(12):33-38. doi:10.16590/j.cnki.1001-4705.2005.12.045. [Lü Y J,Zhang A Q. 2005. Molecular mechanism of gene differential expression and crop hetero-sis[J]. Seed,(12):33-38.]
彭韬屹. 2019. 烤烟新品系09011在广元烟区的生态适应性评价[D]. 雅安:四川农业大学. doi:10.27345/d.cnki.gsnyu. 2019.000806. [Peng T Y. 2019. Evaluation of ecological adaptability of new flue-cured tobacco strain 09011 in Guangyuan Tobacco area[D]. Yaan:Sichuan Agricultural University.]
蒲媛媛,郑宏斌,李显航,喻奇伟,熊晶,夏忠文,罗家俊,李星悦,陈谊然,刘仁祥. 2020. 烤烟NC82和毕纳1号品种叶片数的遗传模式分析及分子标记筛选[J]. 山地农业生物学报,39(3):17-22. doi:10.15958/j.cnki.sdnyswxb. 2020.03.003. [Pu Y Y,Zheng H B,Li X H,Yu Q W,Xiong J,Xia Z W,Luo J J,Li X Y,Chen Y R,Liu R X. 2020. The genetic analysig and molecular marker scree-ning of leaf number of flue-cured tobacco varieties NC82 and Bina 1[J]. Journal of Mountain Agriculture and Bio-logy,39(3):17-22.]
商连光,高振宇,钱前. 2017. 作物杂种优势遗传基础的研究进展[J]. 植物学报,52(1):10-18. doi:10.11983/CBB16187. [Shang L G,Gao Z Y,Qian Q. 2017. Progress in understanding the genetic basis of heterosis in crops[J]. Chinese Bulletin of Botany,52(1):10-18.]
苏畅涛. 2020. 植物生长调节剂在烤烟上的应用效果试验[J]. 现代农业科技,(6):120-121. doi:10.19383/j.cnki.nyzhyj.2020.08.003. [Su C T. 2020. Effect of plant growth regulator on flue-cured tobacco[J]. Modern Agricultural Science and Technology,(6):120-121.]
王红锋,孙曙光,杨晓亮,付小红,杨红柯,秦平伟. 2019. 重庆烟区烤烟生态环境与农艺性状的典型相关分析[J]. 湖南农业科学,(2):29-33. doi:10.16498/j.cnki.hnnykx. 2019.002.009. [Wang H F,Sun S S,Yang X L,Fu X H,Yang H K,Qin P W. 2019. Canonical correlation analysis of ecological environment and agronomic traits of flue-cured tobacco in Chongqing tobacco area[J]. Hunan Agricultural Sciences,(2):29-33.]
王昆,于海龙,曹亚从,张正海,王立浩,张宝玺. 2018. 辣椒杂种优势相关研究进展及其展望[J]. 辣椒杂志,16(3):1-7. doi:10.16847/j.cnki.issn.1672-4542.2018.03.001. [Wang K,Yu H L,Cao Y C,Zhang Z H,Wang L H,Zhang B X. 2018. Progress and perspective of heterosis researches on pepper[J]. Journal of China Capsicum,16(3):1-7.]
王楠. 2019. 煙草BR信号通路与成花相关基因在花芽分化响应苗期低温中的表达分析[D]. 重庆:西南大学. [Wang N. 2019. Expression analysis of the gene in tobacco BR signaling pathway and flower-related in flower bud diffe-rentiation in response to low temperature in seedling stage[D]. Chongqing:Southwest University.]
王廷贤,郑小雨,张广东,王刚,杨占伟. 2019. 烤烟生态环境和纹理特征的典型相关分析[J]. 昆明学院学报,41(6):18-23. doi:10.14091/j.cnki.kmxyxb.2019.06.004. [Wang T X,Zheng X Y,Zhang G D,Wang G,Yang Z W. 2019. Typical correlation analysis between flue-cured tobacco ecological environment and texture characteristics[J]. Journal of Kunming University,41(6):18-23.]
王秀莉,姚颖垠,彭惠茹,张一,逯腊虎,倪中福,孙其信. 2009. 赤霉素代谢及其调控相关基因的差异表达与小麦株高杂种优势的关系研究[J]. 科学通报,54(16):2320-2324. doi:10.1007/s11434-009-0518-3. [Wang X L,Yao Y Y,Peng H R,Zhang Y,Lu L H,Ni Z F,Sun Q X. 2009. The relationship of differential expression of genes in GA biosynthesis and response pathways with heterosis of plant height in a wheat diallel cross[J]. Chinese Science Bulletin,54 (16):2320-2324.]
王艳欣,王月星,王位,王建蒙,柴圆,戴豪杨,张文广. 2018. 杂种优势的应用及基因表达的特点[J].畜牧与饲料科学,39(4):32-34. doi:10.16003/j.cnki.issn1672-5190. 2018.04.009. [Wang Y X,Wang Y X,Wang W,Wang J M,Chai Y,Dai H Y,Zhang W G. 2018. Application of heterosis and its gene expression characteristics[J]. Animal Husbandry and Feed Science,39(4):32-34.]
信俊峰,范晓琪,杜卫民,陈利平,顾会战,张启莉,何佶弦,蒋垚,鲁黎明. 2018. 留叶数对烤烟新品系09011生长及产质量的影响[J]. 现代农业科技,(22):1-2. doi:10.3969/j.issn.1007-5739.2018.22.001. [Xin J F,Fan X Q,Du W M,Chen L P,Gu H Z,Zhang Q L,He J X,Jiang Y,Lu L M. 2018. Effects of leaf numbers on growth,yield and quality of new flue-cured tobacco line 09011[J]. Modern Agricultural Science and Technology,(22):1-2.]
许晨璐,孙晓梅,张守攻. 2013. 基因差异表达与杂种优势形成机制探讨[J]. 遗传,35(6):714-726. doi:10.3724/SP.J.1005.2013.00714. [Xu C L,Su X M,Zhang S G. 2013. Gene differential expression and heterosis formation mechanism[J]. Hereditas(Beijing),35(6):714-726.]
徐航,刘仁祥,徐如宏,袁富,吴祖玄. 2013. 烤烟主要农艺性状的遗传分析[J]. 中国烟草科学,34(5):62-66. doi:10.3969/j.issn.1007-5119.2013.05.013. [Xu H,Liu R X,Xu R H,Yuan F,Wu Z X. 2013. Genetic analysis of the main agronomic traits of flue-cured tobacco[J]. Chinese Tobacco Science,34(5):62-66.]
张兴伟,王志德,孙玉合,任民,刘艳华,牟建民,徐军. 2012. 烤烟叶数、叶面积的遗传分析[J]. 植物遗传资源学报,13(3):467-472. doi:10.13430/j.cnki.jpgr.2012.03.017. [Zhang X W,Wang Z D,Sun Y H,Ren M,Liu Y H,Mou J M,Xu J. 2012. Genetic analysis of leaf number and leaf area in flue-cured tobacco[J]. Journal of Plant Genetic Resources,13(3):467-472.]
中国烟草总公司青州烟草研究所. 2010. YC/T 142—2010 烟草农艺性状调查测量方法[S]. 北京:中国标准出版社. [Qingzhou Tobacco Research Institute,China National Tobacco Corporation. 2010. YC/T 142—2010 Survey and measurement methods of tobacco agronomic traits[S]. Beijing:China Standard Press.]
周俊學,王艳芳,刘杉,李继伟,赵世民,王慧,王小东,刘领. 2016. 留叶数目和方式对烤烟生长及光合特性的影响[J]. 湖北农业科学,55(22):5868-5874. doi:10.14088/j.cnki.issn0439-8114.2016.22.036. [Zhou J X,Wang Y F,Liu S,Li J W,Zhao S M,Wang H,Wang X D,Liu L. 2016. Effects of number and pattern of remained leaf on growth and photosynthetic characteristics of flue-cured tobacco[J]. Hubei Agricultural Sciences,55(22):5868-5874.]
左伟标,洪天龙,高远,郭芳阳,鲁松霖,叶谌睿,安银立,毕乐乐,王永齐,柏永超. 2020. 农艺措施调控烤烟营养吸收利用的研究进展[J]. 安徽农业科学,48(22):4-6. doi:103969/j.Issn.0517-6611.2020.22.002. [Zuo W B,Hong T L,Gao Y,Guo F Y,Lu S L,Ye C R,An Y L,Bi L L,Wang Y Q,Bai Y C. 2020. Research progress on the regu-lation of agronomic measures for absorption and utilization of nutrients in flue-cured tobacco[J]. Journal of Anhui Agricultural Sciences,48(22):4-6.]
Balasubramanians S,Sureshkumar S,Agrawal M,Michael T P,Wessinger C,Maloof J N,Clark R,Warthmann N,Chory J,Weigel D. 2006. The PHYTOCHROME C photoreceptor gene mediates natural variation in flowering and growth responses of Arabidopsis thaliana[J]. Nature Genetics,38(6):711-715. doi:10.1038/ng1818.
Chen Z J. 2010. Molecular mechanisms of polyploidy and hybrid vigor[J]. Trends in Plant Science,15(2):57-71. doi:10.1016/j.tplants.2009.12.003.
Franklin K A,Davis S J,Stoddart W M,Vierstra R D,Whitelam G C. 2003. Mutant analyses define multiple roles for phytochrome C in Arabidopsis photomorphogene-sis[J]. The Plant Cell,15(9):1981-1989. doi:10.1105/tpc. 015164.
Kim H J,Hyun Y,Park J Y,Park M J,Kim J. 2004. A genetic link between cold responses and flowering time through FVE in Arabidopsis thaliana[J]. Nature Genetics,36(2):167-171. doi:10.1038/ng1298.
Patrick S,Schnable,Nathan M,Springer. 2013. Progress toward understanding heterosis in crop plants[J]. Annual Review of Plant Biology,64:71-88. doi:10.1146/annurev-arplant-042110-103827.
Shang L G,Wang Y M,Cai S H. 2016. Genetic analysis of upland cotton dynamic heterosis for boll number per plant at multiple developmental stages[J]. Scientific Reports,6:35515. doi:10.1038/srep35515.
Shu H W. 2016. Phenotypic diversity of important agronomic traits in Sichuan sun-cured tobacco local variety[J]. Journal of Agricultural Sciences,6(2):23-30. doi:10.12677/HJAS.2016.62004.
(责任编辑 陈 燕)