俞正秋 马春芳 蔡宛如
[摘要] 急性肺损伤/急性呼吸窘迫综合征是临床常见的危重病症之一,起病急、发展快、病死率高,尽管在过去几年中,重症医学的发展使得ARDS的院内发生率和死亡率大幅下降,但目前临床上仍缺乏特效的治疗手段。肺保护通气、积极抗感染治疗和限制性液体管理是目前主要西医治疗策略,近年来有部分改进从而进一步降低该病的死亡率。此外,关于ARDS异质性的研究是近年来热点,期望找到可靠的生物标志物和适当的治疗靶点,更好地开展精准化治疗。随着医药治疗ARDS的实验和临床研究不断深入,中医药治疗ARDS也取得了一定的成果。本文回顾了近年来国内外相关文献,总结了中西医关于此病的最新研究治疗进展,以期为ALI/ARDS的临床个体化治疗和药物研发提供新思路。
[关键词] 急性肺损伤;急性呼吸窘迫综合征;间充质干细胞;中医药
[中图分类号] R563.8 [文献标识码] A [文章编号] 1673-9701(2021)13-0189-04
Advances in the treatment of acute lung injury/acute respiratory distress syndrome
YU Zhengqiu MA Chunfang CAI Wanru
The Second Clinical Medical College, Zhejiang Chinese Medicine University, Hangzhou 310053, China
[Abstract] Acute lung injury/acute respiratory distress syndrome is one of the common clinical critical illnesses. It has a rapid onset,rapid development,and high mortality rate. Although in the past few years, the development of intensive care medicine has led to a significant drop in the incidence and mortality of ARDS in the hospital. There is still a lack of clinically effective treatments. Lung-protective ventilation,active anti-infective treatment,and restrictive fluid management are currently the main Western medical treatment strategies. In recent years, some improvements have been made to reduce the mortality of this disease further. In addition, research on the heterogeneity of ARDS has been a hot spot in recent years, and it is hoped that reliable biomarkers and appropriate therapeutic targets can be found to better carry out the precision treatment. With the continuous deepening of experimental and clinical research on the medical treatment of ARDS, Chinese medicine treatment of ARDS has also achieved certain results. This article reviews the relevant domestic and foreign literature in recent years, summarizes the latest research and treatment progress of Chinese and Western medicine on this disease, in order to provide new ideas for individualized clinical treatment and drug development of ALI/ARDS.
[Key words] Acute lung injury; Acute respiratory distress syndrome; Mesenchymal stem cells; Traditional Chinese medicine
急性肺損伤(Acute lung injury,ALI)/急性呼吸窘迫综合征(Acute respiratory distress syndrome,ARDS)是重症患者呼吸衰竭的常见病因,临床上常表现为呼吸窘迫和进行性低氧血症[1]。ALI的最终严重阶段定义为ARDS。诱发 ALI/ARDS 发生的危险因素众多,常见的直接因素有严重肺部感染、胃内容物吸入、肺挫伤等,间接因素有肺外严重感染、严重的非胸部创伤、重症急性胰腺炎、大量输血等。
ALI/ARDS 属于临床常见的危重症,发病急骤、病死率高,是临床重症患者死亡的主要原因之一。据统计,美国每年新发ALI/ARDS成人患者的死亡率可达30%,其中老年患者人群的死亡率更高达60%[2]。ALI/ARDS的危害广泛而深远,不仅治疗费用高昂,对个人和社会造成巨大的经济负担,同时幸存者可能遗留较多的、持续的身体、心理和神经认知疾病,严重损害患者的生活质量,且该影响常持续至ARDS康复后5年[3]。目前临床上对此病尚无特效治疗手段。因此,如何有效在早期预防ALI的发生,防止ALI进一步发展成为ARDS是当前急需解决的重要问题。本文围绕目前ALI/ARDS的中医西医研究进展概述如下。
1 发病机制及病理生理
1.1急性炎症反应
ALI/ARDS 确切的发病机制迄今仍未完全阐明,目前认为其实质是由于严重的急性炎症反应,中性粒细胞以及其他炎症介质迁移,使得肺泡-毛细血管膜完整性破坏、渗透性增加,从而表现出的高通透性肺水肿,其产生的急性炎症渗出液会使得肺泡表面活性剂失活,导致终末气道趋于陷闭,肺的气体交换面积减少,从而引发严重的通气/血流比例失调[4]。在重症感染中,病原体及其毒素、部分趋化因子和炎症细胞因子、toll样受体、白细胞蛋白酶和脂质介质引起的急性炎症反应均可导致ALI的发生[5-8]。
1.2内皮完整性
肺泡通透性增加、肺上皮细胞生理屏障破坏以及凝血途径激活被认为是ALI/ARDS最主要的病理生理特征。其中,血管内皮钙黏蛋白(Vascular endothelial cadherin,VE-Cadherin)在维持内皮细胞屏障完整性方面起着关键作用。有研究表明,在ALI/ARDS的病理进程中,各种炎症细胞、炎症介质和细胞因子产生的刺激会通过血管内皮钙黏蛋白的磷酸化、内吞和F-actin重构引起肺血管内皮屏障破坏,增加肺毛细血管通透性[9-10]。目前,已有研究将VE-Cadherin作为内皮屏障修复的靶点,希望借此来逆转由血管通透性增加引起的肺水肿。研究较多的还有S1P(Sphingosine-1-phosphate),是一种具有多种生理功能的脂质,在ALI动物模型中,S1P已证明可以减少血管渗漏从而减轻氧合损伤[11]。一项前瞻性队列研究表明,ARDS患者常伴随较低的血清S1P水平和较差的临床预后[12]。
1.3潜在表型
关于ARDS潜在表型也是另一个研究热点,以往分型主要根据病情严重程度分为轻、中、重度,但这不足以帮助临床更好地进行危险分层[13-14]。Bos等[15]通过20多种生物学标志物分出两种ARDS生物表型,并准确预测了不同表型的ICU死亡率。Calfee等[16]通过英国一项关于辛伐他汀用于ARDS患者的随机对照研究数据分析得出两种ARDS表型,并发现辛伐他汀可提高炎症表型患者的生存率。
2 西医治疗策略进展
2.1保护性肺通气策略
ALI/ARDS管理的基石是机械通气,采用保护性肺通气策略(Lung-protective ventilation strategies,LPVS),目的在于减少呼吸机相关性肺损伤(VILI)。VILI是一种继发性的肺损伤,可增强全身炎症反应,加快多器官功能衰竭的发展和死亡。小潮气量的机械通气策略有助于降低ARDS的死亡率。潮气量降低可减少对肺上皮细胞的损伤,当潮气量从12 mL/kg降低至6 mL/kg时,肺水肿的吸收速率可增快3倍。当潮气量降至6 mL/kg,ARDS的绝对风险下降10.9%,并且小潮气量的ALI患者进展成为ARDS的风险更低[17]。小潮气量机械通气除了肺内保护功能外,还能保护肺外器官功能[18]。2017年ATS机械通气治疗成人急性呼吸窘迫综合征指南,同样强烈推荐对所有ARDS患者使用限制潮气量和限制通气压力[19]。
2.2药物治疗
2.2.1 常规药物 关于治疗ALI/ARDS药物研究主要集中于舒血管药物、肺表面活性物质、抗炎制剂、抗氧化剂等方面[20-21]。一项小型观察性研究表明,外源性吸入一氧化碳对缓解氧合作用能起到一定帮助,但无法降低ALI/ARDS的死亡率[22]。β2受体激动剂可通过刺激β2受体增加肺泡表面Ⅰ型和Ⅱ型细胞的钠离子转运,从而减轻肺水肿[23-24]。他汀类药物能够减轻炎症并促进肺损伤恢复,是治疗ALI/ARDS的潜在药物[25-26]。临床关于全身糖皮质激素在ALI/ARDS患者中的应用指征和疗效尚不明确,根据目前已有RCT研究结果显示,该治疗手段未显示出明确的疗效[27]。考虑到凝血机制与炎症途径之间的密切关系,抗凝可能是有效治疗ALI/ARDS的手段之一。有研究表明,使用阿司匹林抗血小板治疗可以预防高危患者ARDS的发生[28]。
2.2.2 间充质干细胞 针对ALI/ARDS的病理特点,间充质干细胞(Membrane-derived mesenchymal stem cell,MSC)是目前热点研究方向[29]。实验研究已证明,MSC具有抗炎、抗凋亡作用,能促进上皮和内皮细胞的修复,增加肺泡液中病原体清除率[30-34]。因MSC独特的生物学效应,使其成为治疗ALI/ARDS最有潜力的一类干细胞[35]。
3 中医药治疗进展
中醫学虽无“急性肺损伤”病名的记载,但结合 ALI/ARDS 临床表现,该病当属中医学“暴喘”“结胸”“喘脱”等范畴,临床特征可概括为“喘”“昏”“满”“热”四症,基本病机为正气不足、热毒内陷、瘀热互结,属于虚实夹杂之证。近年来随着中医药防治 ALI/ARDS 的研究工作逐渐深入,大量的基础研究均证明了中医药治疗 ALI/ARDS 的有效性[36]。多数医家提倡早期应用清热解毒、活血化瘀药物。章卓[37]发现,积雪草苷能阻止中性粒细胞过度释放炎症因子IL-6、TNF-α等,从而改善内毒素性ALI。丹参的提取成分丹参酮ⅡA可以降低肺泡灌注液中TNF-α、IL-1β的表达,抑制Caspase-3、Bcl-2家族中促凋亡蛋白的表达,由此抑制肺组织的炎症反应和细胞凋亡[38]。谷志龙等[39]发现,姜黄提取物姜黄素能够通过降低小鼠血浆内毒素水平从而减少对肺组织的损伤。余林中等[40]发现,凉膈散可以显著降低模型大鼠肺组织中TLR4蛋白的表达,减轻肺损伤。洪辉华等[41]实验研究表明,芪冬活血饮能够通过多途径调控急性肺损伤大鼠的炎症反应,对于急性肺损伤大鼠具有良好的保护作用。赵鑫民等[42]发现,通腑泻肺方能够降低ARDS模型大鼠的气道阻力,提高肺顺应性。骆长永等[43]发现益气化瘀解毒方可降低ARDS大鼠的血清炎症水平,减轻肺组织损伤。
綜上所述,中西医在治疗ALI/ARDS均有新进展,但迄今为止尚无特效药及特效疗法,主要根据其病理生理改变和临床表现进行针对性或支持治疗,以原发病的治疗、呼吸支持治疗和药物治疗为主。目前,关于ALI/ARDS的发病机制尚未完全明确。实验发现,治疗有效的药物运用于临床仍需进一步研究和全面评估,新的治疗机制有待于阐明,以期为ALI/ARDS的临床个体化治疗和药物研发提供新思路。
[参考文献]
[1] Ware LB,Matthay MA. The acute respiratory distress syndrome[J]. New England Journal of Medicine,2000,342(18):1334-1349.
[2] Rubenfeld GD,Herridge MS. Epidemiology and outcomes of acute lung injury[J]. Chest,2007,131(2):554-562.
[3] Bos LD,Martin-Loeches I,Schultz MJ. ARDS:Challenges in patient care and frontiers in research[J]. European Respiratory Review,2018,27(147):170 107.
[4] Finney S,Salam A,Silversides J,et al. Guidelines on the management of acute respiratory distress syndrome[J]. BMJ Open Respiratory Research,2019,6(1):e000 420.
[5] Song C,Li H,Li Y,et al. NETs promote ALI/ARDS inflammation by regulating alveolar macrophage polarization[J]. Experimental Cell Research,2019,382(2):111 486.
[6] Suresh MV,Thomas B,Dolgachev VA,et al. Toll like receptor-9 (TLR9) is requisite for acute inflammatory response and injury following lung contusion[J]. Shock (Augusta,Ga),2016,46(4):412.
[7] Williams AE,José RJ,Mercer PF,et al. Evidence for chemokine synergy during neutrophil migration in ARDS [J].Thorax,2017,72(1):66-73.
[8] Kellner M,Noonepalle S,Lu Q,et al. ROS signaling in the pathogenesis of acute lung injury(ALI) and acute respiratory distress syndrome (ARDS)[J]. Adv Exp Med Biol,2017,967:105-137.
[9] Shi Z,Ye W,Zhang J,et al. LipoxinA4 attenuates acute pancreatitis-associated acute lung injury by regulating AQP-5 and MMP-9 expression,anti-apoptosis and PKC/SSeCKS-mediated F-actin activation[J]. Molecular Immunology,2018,103:78-88.
[10] Villar J,Zhang H,Slutsky AS. Lung repair and regeneration in ARDS:Role of PECAM1 and Wnt signaling[J]. Chest,2019,155(3):587-594.
[11] Obinata H,Hla T. Sphingosine 1-phosphate in coagulation and inflammation[J].Semin Immunopathol,2012,34(1):73-91.
[12] Zhao J,Tan Y,Wang L,et al. Serum sphingosine-1-phosphate levels and Sphingosine-1-Phosphate gene polymorphisms in acute respiratory distress syndrome:A multicenter prospective study[J]. Journal of Translational Medi-cine,2020,18:1-11.
[13] Shankar-Hari MMcauley DF. Acute respiratory distress syndrome phenotypes and identifying treatable traits. The dawn of personalized medicine for ARDS[J]. American Thoracic Society,2017,195(3):280-281.
[14] Wilson JG,Calfee CS. ARDS subphenotypes:Understanding a heterogeneous syndrome[J]. Critical Care,2020, 24:1-8.
[15] Bos L,Schouten L,Van Vught L,et al. Identification and validation of distinct biological phenotypes in patients with acute respiratory distress syndrome by cluster analysis[J]. Thorax,2017,72(10):876-883.
[16] Calfee CS,Delucchi KL,Sinha P,et al. Acute respiratory distress syndrome subphenotypes and differential response to simvastatin:Secondary analysis of a randomised controlled trial[J]. The Lancet Respiratory Medicine,2018,6(9):691-698.
[17] Simonis FD,Neto AS,Binnekade JM,et al. Effect of a low vs intermediate tidal volume strategy on ventilator-free days in intensive care unit patients without ARDS:A randomized clinical trial[J]. Jama,2018,320(18):1872-1880.
[18] Beitler JR,Sands SA,Loring SH,et al. Quantifying unintended exposure to high tidal volumes from breath stacking dyssynchrony in ARDS:The BREATHE criteria[J]. Intensive Care Medicine,2016,42(9):1427-1436.
[19] Fan E,Del Sorbo L,Goligher EC,et al. An official American Thoracic Society/European Society of Intensive Care Medicine/Society of Critical Care Medicine clinical practice guideline: Mechanical ventilation in adult patients with acute respiratory distress syndrome[J]. American Journal of Respiratory and Critical Care Medicine,2017,195(9):1253-1263.
[20] Duggal A,Rezoagli E,Pham T,et al. Patterns of use of adjunctive therapies in patients with early moderate to severe ARDS:Insights from the LUNG SAFE Study[J]. Chest,2020,157(6):1497-1505.
[21] Rosenberg OA. Pulmonary surfactant preparations and surfactant therapy for ARDS in surgical intensive care:A literature review[J]. Creative Surgery and Oncology,2019, 9(1):50-65.
[22] Creagh-Brown BC,Griffiths MJ,Evans TW. Bench-to-bedside review:Inhaled nitric oxide therapy in adults[J]. Critical Care,2009,13(3):221.
[23] Fouad M,Mohamed M,Ammar M,et al. The role of inhaled corticosteroids and B2 agonist in prevention of ARDS in high risk patients admitted to ICU [J]. QJM:An International Journal of Medicine,2020,113(Supplement_1):DOI:10.1093/qjmed/hcaa039.072.
[24] Wang Y,Zhang S,Zhang YD,et al. A single-center retrospective study of factors related to the effects of intravenous glucocorticoid therapy in moderate-to-severe and active thyroid-associated ophthalmopathy[J]. BMC Endocr Disord,2018,18:13.
[25] Heijnen NF,Bergmans DC,Schnabel RM,et al. Targeted treatment of acute respiratory distress syndrome with statins—a commentary on two phenotype stratified re-analysis of randomized controlled trials[J]. Journal of Thoracic Disease,2019,11(Suppl 3):S296.
[26] Calfee CS,Delucchi KL,Sinha P,et al. ARDS subphenotypes and differential response to simvastatin:Secondary analysis of a randomized controlled trial[J]. The Lancet Respiratory Medicine,2018,6(9):691.
[27] Steinberg KP,Hudson LD,Goodman RB,et al. Efficacy and safety of corticosteroids for persistent acute respiratory distress syndrome[J]. New England Journal of Medicine,2006,354(16):1671-1684.
[28] Washington AV,Esponda O,Gibson A. Platelet biology of the rapidly failing lung [J]. British Journal of Haematology,2020,188(5):641-651.
[29] Huppert LA,Liu KD,Matthay MA. Therapeutic potential of mesenchymal stromal cells in the treatment of ARDS[J].Transfusion,2019,59(S1):869-875.
[30] Pedrazza L,Cunha AA,Luft C,et al. Mesenchymal stem cells improves survival in LPS-induced acute lung injury acting through inhibition of NETs formation[J]. Journal of Cellular Physiology,2017,232(12):3552-3564.
[31] Cóndor JM, Rodrigues CE, De Sousa Moreira R,et al. Treatment with human Wharton's jelly-derived mesenchymal stem cells attenuates sepsis-induced kidney injury,liver injury,and endothelial dysfunction[J]. Stem Cells Translational Medicine,2016,5(8):1048-1057.
[32] Silva JD,Lopes-Pacheco M,Paz AH,et al. Mesenchymal stem cells from bone marrow,adipose tissue,and lung tissue differentially mitigate lung and distal organ damage in experimental acute respiratory distress syndrome[J]. Critical Care Medicine,2018,46(2):e132-e140.
[33] Jackson MV,Morrison TJ,Doherty DF,et al. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS [J]. Stem Cells,2016,34(8):2210-2223.
[34] Gentile LF,Cuenca AG,Efron PA,et al. Persistent inflammation and immunosuppression:A common syndrome and new horizon for surgical intensive care[J]. J Trauma Acute Care Surg,2012,72(6):1491-1501.
[35] Enes SR, Mckenna JRD, Dos Santos C, et al. Inflammatory microenvironment in ARDS patients polarize clinically utilized MSCs towards a pro-inflammatory MSC phenotype[J]. Cytotherapy,2020,22(5):S99.
[36] 苏景深,刘恩顺,赵鑫民. 急性肺损伤/急性呼吸窘迫综合征中医药治疗研究进展[J]. 吉林中医药,2019(5):37.
[37] 章卓. 积雪草苷对 LPS 致急性肺损伤保护作用实验研究[D].重庆:重庆医科大学,2007.
[38] Xu M,ZhangYF,Shan L,et al. Tanshinone IIA therapeutically reduces LPS-induced acute lung injury by inhibiting inflammation and apoptosis in mice[J]. Acta Pharmacologica Sinica,2015,36(2):179-187.
[39] 谷志龙,姜华茂,胡占升. 姜黄素对内毒素诱发的小鼠急性肺损伤的保护作用探讨[J]. 山东医药,2015,55(22):5-8.
[40] 余林中,刘建新,胡孔友,等. 凉膈散对内毒素诱导大鼠急性肺损伤模型 Toll 样受体 4 表达的影响[J]. 中药新药与临床药理,2010,21(4):334-337.
[41] 洪辉华,蔡宛如. 芪冬活血饮对急性肺损伤模型大鼠 caveolin-1 和细胞因子的影响[J]. 浙江中西医结合杂志,2015,25(5):431-435.
[42] 赵鑫民,苏景深,张虹,等. 通腑泻肺方对 ALI/ARDS 大鼠呼吸力学的影响[J]. 吉林中医药,2017,37(5):494-496.
[43] 骆长永,李雁,李昕,等. 益气化瘀解毒方、超低頻电磁场处理水对 ARDS 大鼠血清 IL-4,IL-10 水平的影响[J].中国中医急症,2019,28(8):1430-1434.
(收稿日期:2020-10-26)