谭凤玲,褚瑞超,司梦雅,王宝石,张明霞
(河南科技学院 生命科技学院,现代生物育种河南省协同创新中心, 河南 新乡,453003)
挥发性硫化物(volatile sulfur compounds,VSCs)是一类小有机分子,在食品和饮料香气中起着重要作用。它们可以与不同风味相互作用,并增加香气的复杂性,构成包括葡萄酒在内的许多食品的品质与独特性[1-2]。但VSCs具有很低的感官阈值和强烈的异味,大多数都被认为具有负面影响[3]。
葡萄酒中VSCs主要来源于酿酒过程中微生物代谢以及化学作用。葡萄园中含硫农药的使用、初始葡萄汁中微生物群落、葡萄汁化学成分、酵母类型、发酵条件以及装瓶和贮存方式等均会影响葡萄酒中VSCs数量和类型[4-5]。葡萄酒中现已报道的VSCs有40多种,从化学结构上可分为硫醇、硫醚、多硫化物、硫酯和含硫杂环化合物5大类[6]。硫化氢、甲硫醇、乙硫醇等低级硫醇具有强挥发性、高活性和低阈值的特点,对葡萄酒的呈香、呈色以及口味都有显著影响,被认为是形成还原味(臭鸡蛋味、臭鼬气味、大蒜味及洋葱味)的主要来源物质,对存在还原性缺陷的葡萄酒起决定性作用,常被称为异味物质。另一方面,部分VSCs在一定浓度下对香气产生积极影响,如白葡萄酒中硫醇3-巯基己醇和红葡萄酒中二甲基硫醚,能够赋予葡萄酒圆润的口感,散发出果香与花香的香味,提高葡萄酒的感官体验[1]。因此,对葡萄酒中VSCs的定性及定量的检测分析具有重要的意义。
由于VSCs在葡萄酒中含量低,检测阈值低,葡萄酒中VSCs的检测困难,常规检测方法对于VSCs的检测具有局限性,不能准确地对其进行定性定量分析。随着现代分析技术的进步,色谱仪以及质谱仪的普遍应用,VSCs检测水平取得了长足的进步,检测结果更加准确、高效。GC-MS[7]以及HPLC-MS/MS[8]逐渐应用到葡萄酒VSCs的检测。
葡萄酒中VSCs可以在葡萄酒酿造及其贮存期间的各个阶段形成,通常为ng/L~μg/L,具有非常低的阈值。葡萄酒的品种香气物质硫醇包括4-巯基-4-甲基戊烷-2-酮、3-巯基己醇、3-巯基己醇乙酸酯等芳香化合物,是由酵母分泌的C—S裂解酶催化,从半胱氨酸和谷胱甘肽结合的前体中释放[9],主要存在于长相思、霞多丽、雷司令、赛美容、施埃博、琼瑶浆、赤霞珠和美乐等品种的葡萄酒中,赋予葡萄酒特征香气。硫化氢、甲硫醇、乙硫醇、二甲基硫醚等一些低分子含硫化合物会产生异味,尤其是在高浓度下,对葡萄酒品质会产生负面影响。表1总结了葡萄酒中一些常见VSCs的感官阈值及香气特征。
表1 葡萄酒中常见VSCs的感官阈值及香气特征[10-11]Table 1 Sensory thresholds and aroma characteristics of VSCs in wine[10-11]
葡萄酒中H2S主要来源于葡萄果实和葡萄酒发酵过程添加的SO2。葡萄从栽培到成熟所使用的农药大多为含硫物质,在酸性介质中,农药中金属离子表面会产生氢原子,氢原子具有强烈的还原性,利于H2S的产生。同时,由于SO2具有抗氧化和抗菌特性,能够降低葡萄酒染菌机率,保证葡萄酒色泽,长期以来在葡萄酒的酿造过程中广泛使用,SO2形成的硫酸根可以被还原成H2S[12]。
酿酒酵母硫代谢过程也是产生H2S的重要途径,酵母能够通过硫酸盐同化途径或通过半胱氨酸和谷胱甘肽的分解代谢产生H2S。同时,此过程往往还会受到果汁澄清度和必需营养素等因素的影响[13]。
酿酒酵母能够将葡萄酒中存在的非挥发性硫前体转化为挥发性的、具有风味活性的硫醇化合物。甲硫醇、乙硫醇、3-甲硫基醇、3-甲硫基丙醛,3-甲硫基-戊酸等硫醇和含硫杂醇油由酵母在发酵过程中转化前体甲硫氨酸而获得[14]。甲硫醇可由甲硫氨酸转氨作用生成4-甲硫基-2-丁酮酸,之后再经裂解生成,也可通过γ-裂解酶直接脱氨基生成。而3-甲硫基丙醛则可通过4-甲硫基-2-丁酮酸的脱羧产生,生成的3-甲硫基丙醛再经脱氢酶催化反应生成3-甲硫基丙醇。但3-甲硫基丙醛仅在发酵结束后才能检测到,其含量在陈酿过程中会增加,进一步反应会生成令人不愉快气味的3-甲硫基丙酯(大蒜味)[15]。硫醇亦可通过半胱氨酸及谷胱甘肽作为前体物质的降解产生,如4-甲硫基丁醇和2-巯基乙醇,但生成途径尚不清晰。
葡萄酒中生成硫醚的原因有多种,葡萄汁发酵时酵母活性、发酵条件、发酵液营养条件都会影响硫醚的产生。葡萄汁中含硫氨基酸、多肽和蛋白质的代谢,以及酵母产生自溶等也可导致硫醚产生,但更多的研究表明[16-17],葡萄酒中大部分硫醚是在装瓶后的陈酿期间,由硫醇进一步氧化得到,如二甲基二硫醚、二甲基三硫醚由甲硫醇进一步氧化生成,对葡萄酒的气味具有不良影响。
含硫杂环化合物会伴随半胱氨酸代谢而形成含硫的五环、六环及稠环化合物[18],能够赋予葡萄酒特殊的烘烤味。2-甲硫基呋喃硫醇和2-甲基-3-呋喃硫醇及其二硫代物能够使葡萄酒具有炭烧咖啡、烤面包以及烤肉味。甲硫醇和乙硫醇与氨基酸、游离脂肪酸或糖代谢中产生的乙酰辅酶A经酯化酶催化反应生成硫代乙酸酯类物质;硫代乙酸脂类物质的增加速度与 H2S 生成速度相关,在发酵初期硫代乙酸甲酯含量升高,而发酵后期硫代乙酸乙酯含量升高[19]。
研究证实H2S在高浓度下与酒中乙醛或乙醇发生化学反应产生乙硫醇,乙硫醇可以二聚生成二乙基二硫化合物以及乙酸乙酯[20]。KINZURIK等[1]通过添加外源VSCs(H2S、乙硫醇、乙酸乙酯、甲硫醇和硫代乙酸甲酯),发现大多数从H2S转化为乙硫醇以及从乙硫醇、甲硫醇到乙酸乙酯的转化依赖活酵母细胞催化。然而,硫代乙酸甲酯到甲硫醇和从乙酸乙酯到乙硫醇的反应主要依靠化学降解。进一步地, KINZURIK等[21]利用模拟葡萄汁培养基和长相思葡萄汁2种培养基,对酿酒酵母菌的2种不同菌株(实验室菌株BY4743和商业菌株F15)进行发酵,分析了葡萄酒发酵过程中VSCs的演化过程。在厌氧生长早期,甲硫醇的产量有一个短暂峰值;在整个发酵过程中,苯并噻唑和硫代乙酸乙酯等VSCs以稳定的速率产生;二乙基硫化物等其他VSCs,在酿酒过程的最后阶段产生。不同的酵母菌株和发酵培养基之间存在显著差异性。
现已报道的葡萄酒中呈香物质大约有1 300余种,其中包括醇、醛、酯、酸、萜烯类物质等,它们在葡萄酒中含量、性质及相互之间的平衡赋予葡萄酒香气,使其存在典型风格和地域特异性。葡萄酒异味性会降低其品质,甚至导致消费者排斥。还原味是葡萄酒中最常见的异味之一,这些异味主要是由巯基化合物(—SH)、H2S和甲硫醇等VSCs引起的[22]。FRANCO-LUESMA等[11]研究表明,H2S和甲硫醇参与了还原味的形成,抑制水果味和花香味。H2S会产生臭鸡蛋味,而甲硫醇会显著增加乳酪味,减少柑橘、烟熏/烤肉味。部分VSCs如4-巯基-4-甲基戊烷-2-酮、3-巯基己醇和3-巯基己醇乙酸酯能够构成葡萄酒风味,呈现出诱人的果香味(如黑莓、黄杨树、西番莲、葡萄柚)[23]。此外,不同浓度VSCs对葡萄酒香气呈现不同的感官特征,如二甲基硫醚低浓度时带来果香味,高浓度时则会破坏葡萄酒香气,若陈酿中存在较高浓度的二甲基硫醚还容易出现金属或者温桲等异味[24]。
VSCs能够提高葡萄酒的稳定性,也能有效防止葡萄酒氧化变酸,使酸度保持在一定范围,同时防止多酚、单宁及色素物质的氧化,避免造成在酿造和储存过程中因氧化而造成的颜色浑浊。并且,硫化物的存在能够防止在酿造过程中感染杂菌,所以在酿造初期会向葡萄汁中加入SO2以提高其稳定性,加速澄清及杀死葡萄自身所带细菌。
葡萄酒中VSCs的含量比较低,仅有10~500 μg/L,但对葡萄酒的感官刺激较为明显。由于其含量低,检测阈值低,挥发性强等特点,使得对VSCs的提取及检测均受到限制,传统的检测手段不能够准确地进行VSCs定性及定量分析。因此,在对葡萄酒异味物质进行检测时,很难分析到准确的呈香物质,但近年来分析技术的进步,质谱仪及色谱仪的普及,使得检测葡萄酒中VSCs更为便利准确。
3.1.1 亚甲基蓝分光光度法
H2S有一种臭鸡蛋味,但检测阈值很低(11~80 μg/L),因此即使少量的H2S也可能对葡萄酒的香气有害。此外,H2S可以与各种葡萄酒成分反应,形成乙硫醇或其他具有负面风味的挥发物[25]。利用亚甲基蓝分光光度法对葡萄酒中H2S进行检测,向酒样中加入指示剂和吸收液,酒样中充入氮气作为载气带出H2S,而后进行水浴,充气完成向里加入呈色试剂,进行比色皿吸光度测定,检出含量在42~76 μg/L[26]。操作简便、速度快、稳定性高是该方法相较于其他方法的优点,缺点是该法只能检测葡萄酒中的H2S气体。
3.1.2 蒸馏法
食品中SO2测定通用方法是GB 5009.34—2016《食品安全国家标准 食品中SO2的测定》,也称蒸馏法。首先对样品进行酸化处理,而后进行蒸馏释放SO2,用乙酸铅溶液作为吸收液,最后加浓盐酸酸化,利用碘液进行滴定。该法优点是实验周期短,操作简单,缺点是H2S会发生氧化,导致结果不准确[27]。
3.1.3 直接碘量法
相对于白葡萄酒,红葡萄酒颜色,会影响滴定终点的判断。但是通过对红葡萄酒进行前处理,利用脱色剂进行脱色处理,然后再进行碘液滴定;或者通过改变减小取样体积,结合超声辅助解离,此时滴定,采用半微量碘量法滴定,可以有效减少颜色干扰,分析结果无显著影响[28]。
色谱技术通常用于测定VSCs,由于VSCs检测阈值很低,因此必须使用敏感和选择性检测系统。常见报道的检测器有硫化学发光检测器(sulfur chemilucminescence detector,SCD)[5,29]、火焰光度检测器(flame photometric detector,FPD)[30]、脉冲火焰光度检测器(pulsed flame photometric detector,pFPD)[31-32]、原子发射检测器[33]和质谱发射检测器[34]。其中SCD因其高灵敏度和等摩尔响应功能被广泛用于葡萄酒中VSCs的检测。FPD能提供较低的检测极限,虽pFPD较FPD提高了灵敏度,灵敏度仍然不及SCD检测方法。目前使用最广泛的是MS,在使用MS检测器时,必须进行样品预处理以及浓缩,从而满足系统的可检测性。
3.2.1 气相色谱-质谱联用
GC-MS是兼具气相色谱和质谱优点的检测方法,通过将目标化合物片断与现有数据库中标准参考物的片断进行比较,能够同时完成待测样品的分离和鉴定,具有更高的灵敏度和分辨率。FARHADI等[35]利用气相色谱质谱联用技术,解析了阿魏样品(药用植物)存在Z-1-丁炔基-1-甲基丙基二硫化物和E-1-丁炔基-1-甲基丙基二硫化物,并指出挥发性硫化物的代谢模式可作为鉴定阿魏(药用植物)种类和含量的方法。TOMINAGA等[36]将羟基汞氯苯甲酸(p-hydroxymercuribenzoic acid,pHMB)添加到葡萄酒中,形成p-HMB -硫醇复合物,利用气相色谱-质谱法检测,测得2-甲基-3-呋喃硫醇为 50~145 ng/L,2-呋喃甲硫醇为25~140 ng/L。该方法相对简便,并且能够降低挥发性硫醇的损失。
复杂基质中低含量挥发性物质检测比较困难,选择合适的样品预处理方法可以有效提升检出灵敏度。稳定同位素稀释法(stable isotopic dilution mass spectrometry, SIDA)是一种准确度和精度高的方法,不需要对被测物质进行定量分离,避免了复杂混合物体系定量分离、纯化的困难,可以有效消除基质效应。稳定同位素稀释-气相色谱质谱联用技术逐渐应用到VSCs检测中。CAPONE等[37]采用SIDA,同时结合顶空固相微萃取(headspace-solid phase micro extraction,HP-SPME)-GC-MS进行分析,测得3-巯基己醇的定性和定量检测限为30和40 ng/L,均低于其香气阈值。
然而,部分VSCs在极低浓度下很难被识别,并且容易被其他较高浓度物质掩盖,可能会超出GC-MS的检测范围[38]。全二维气相色谱-飞行时间质谱(comprehensive two-dimensional gas chromatography-time of flight mass spectrometer,GC×GC-TOFMS)对于分析复杂样品是一种较好的选择,GC×GC系统具有峰容量大、分辨率高的优点。TOFMS分析仪的主要优点是数据采集速度快、分析质量范围广、分析灵敏度高、可同时检测多个离子碎片[39]。YAN等[40]建立了HS-SPME与GC×GC-TOFMS相结合的分析方法,对酱香型白酒VSCs进行表征,首次鉴定出了糠基甲基二硫化物、2-甲基-5-(甲硫基)呋喃、2-甲基-3-(甲基二硫)呋喃、S-甲基丁硫酸酯、噻吩、2-戊基噻吩和5-甲基-2-噻吩甲醛。此外,感官分析显示,二甲基硫、二甲基二硫化物和二甲基三硫醚增强了白酒中水果香味。
综上,由于葡萄酒基质复杂,质谱响应低,一维GC-MS分离能力有限,只能鉴定出少量VSCs。GC×GC和质谱联用技术,具有高分辨率和灵敏度的优势,将在全面科学表征以葡萄酒为代表的复杂基质中的VSCs检测发挥更大作用。
3.2.2 气相色谱-嗅闻-质谱联用法
GC-MS是一种有效的、常用的香气分析技术,然而,其无法确定化合物的气味特性及其贡献,无法识别食品中影响其风味的关键挥发性化合物[41-42]。气相色谱-嗅闻法(gas chromatography-olfactometry,GC-O)技术可对样品中风味物质进行定性分析,但并不能满足于香气成分在结构分析上的需要。GC-O-MS GC-O和GC-MS的结合,是挖掘食品风味的有力工具,已广泛应用于各种食品的香气和风味分析,逐渐成为挥发性硫化物研究方法的热点领域[43]。VILLIERE等[44]采用HS-SPME技术提取酒中VSCs,利用GC-O-MS对16种葡萄酒进行分析,检测得到3-巯基己醇、4-甲基戊醇、乙酸乙酯等近50种香气物质。近年来,随着“分子感官科学”(或感官导向风味分析)学科的兴起及其发展,GC-O-MS应用也将更加广泛。
3.2.3 高效液相色谱-串联质谱法
GC-MS分析VSCs通常需要对样品进行衍生化处理增加稳定性。HPLC-MS/MS对难挥发性及热稳定性差的化合物具有良好的检测性能,技术分离能力高,灵敏度好,专属性强且应用范围广[45]。CAPONE等[18]利用HPLC-MS/MS测定了葡萄酒中的硫醇,测得4-巯基-4-甲基戊烷-2-酮为0.8~1.6 ng/L,3-巯基己醇为6.4~10.6 ng/L,3-巯基己醇乙酸酯为1.2~4.3 ng/L,2-糠醇为0.7~1.5 ng/L,苄基硫醇为1.1~3.7 ng/L。CHEN等[8]结合SIDA,利用HPLC-MS/MS检测葡萄酒中硫醇,得到硫醇前体3-S-谷胱甘肽基己烷1-醇检测范围为33.7~170.7 μg/L,3-S-半胱氨酰己烷-1-醇检测范围为7.9~44.7 μg/L,品种硫醇3-磺酰己烷-1-醇检测范围为29~528 ng/L,3-磺酰基己酸乙酯检测范围为4~53 ng/L,且2种挥发性硫醇的浓度范围均高于香气阈值[8]。HPLC-MS/MS较传统LC-MS而言简化实验步骤,节省时间,分析更加精确,在挥发性硫化物的检测上应用将更加广泛。
综上所述,目前葡萄酒中VSCs主要采用GC-MS和LC-MS(表2),研究主要集中在硫化氢、甲硫醇、乙硫醇、二硫化碳、二甲基硫醚、二乙基硫醚、二甲基二硫醚、二乙基二硫醚、2-呋喃甲硫醇、2-甲基-3-呋喃硫醇、3-巯基己醇、3-巯基己醇乙酸酯、4-巯基-4-甲基戊烷-2-酮、硫代乙酸甲酯、硫代乙酸乙酯、3-巯基己基丁酸、3-巯基-3-甲基丁酸乙酯、3-巯基-3-甲基丁烷-1-醇、2-糠醇、苄基硫醇、3-S-谷胱甘肽基己烷1-醇、3-S-半胱氨酰己烷-1-醇等硫醇及硫醇酯类物质,而关于硫醚、含硫杂环化合物相关报道较少。葡萄酒基质复杂,单独使用某种检测方法只能检测到其中一种或几种VSCs,并不能全面表征葡萄酒中的VSCs,更高分辨率和灵敏度的检测方法有待进一步开发。
表2 葡萄酒中 VSCs检测方法比较Table 2 Comparison of detection method of VSCs in the wine
成品葡萄酒中VSCs对于葡萄酒感官品质具有重要影响。VSCs存在挥发性强、检测阈值低和稳定性差等难题,高效精准定量葡萄酒中VSCs一直面临一些挑战。近年来,随着现代检测技术的进步,GC-MS和LC-MS在VSCs检测中发挥了重要作用,是目前葡萄酒中挥发性硫化物检测的重要方法。然而,由于葡萄酒基质复杂性和VSCs的低浓度,VSCs的分离富集依赖复杂的预处理方法,预处理溶剂往往存在化学毒性。开发复杂样品中VSCs便捷、高灵敏度的检测方法,有助于精准调控葡萄酒感官特性,为创制高品质葡萄酒提供保障。