巨浩羽,赵海燕,张卫鹏,高振江,肖红伟
·农产品加工工程·
相对湿度对胡萝卜热风干燥过程中热质传递特性的影响
巨浩羽1,赵海燕2,张卫鹏3,高振江4,肖红伟4※
(1. 河北经贸大学生物科学与工程学院,石家庄 050061;2. 河北经贸大学工商管理学院,石家庄 050061; 3. 北京工商大学人工智能学院,北京 100048;4. 中国农业大学工学院,北京 100083)
为了揭示胡萝卜热风干燥过程中阶段降湿的促干机制,该研究在干燥温度60 ℃、风速3.0 m/s 条件下,研究了相对湿度(20%、30%、40%、50%)及第一阶段相对湿度50%保持不同时间(10、30、60、90 min),然后第二阶段相对湿度恒定为20%至干燥结束,干燥过程中对流传热系数、对流传质系数和物料表面微观孔隙结构的变化规律。研究结果表明:20%、30%、40%和50%相对湿度下,干燥初始时刻对流传热系数分别为42.9、64.7、135.1和178.9 W/(m2·℃),提高相对湿度能够显著提高预热阶段的对流传热系数(<0.05),相对湿度越高,物料升温速率越快。物料吸收总热量、水分蒸发消耗热量占比均随着相对湿度的升高而逐渐降低;物料升温消耗热量占比随着相对湿度的升高而逐渐增大。相对湿度为20%时,对流传质系数为1.01×10-6~2.54×10-6m/s;相对湿度为50%时,对流传质系数为0.26×10-6~1.12×10-6m/s;降低相对湿度,能够显著的提高对流传质系数。相对湿度50%保持30 min后降为20%干燥条件下,当干燥时间大于1.5 h后,对流传质系数大于相对湿度50%分别保持10、60和90 min干燥条件下的对流传质系数,此条件下干燥时间也最短。相对湿度50%干燥条件下有利于保持胡萝卜表面的多孔结构,而相对湿度20%干燥条件下,胡萝卜表面因干燥速率过快而导致水分迁移孔道发生收缩堵塞的现象。阶段降湿提高胡萝卜干燥效率的机制在于:干燥升速阶段,高相对湿度提高了对流传热系数,使得物料迅速升至较高温度;且利于维持物料表面多孔结构,有助于内部水分的扩散迁移;干燥恒速和降速阶段,低相对湿度提高了对流传质系数。研究结果可为求解干燥过程中的对流传热系数和对流传质系数提供理论依据,揭示阶段降湿的促干机理,并为阶段降湿干燥方式在农产品的干燥加工应用提供技术支持。
干燥;相对湿度;对流传热系数;对流传质系数;微观孔隙结构
湿度作为热风干燥介质的重要参数之一,对干燥热质传递过程具有显著影响。当干燥温度和总压一定时,在干燥研究中通常以相对湿度来反映干燥介质湿度或湿含量的大小。研究表明,降低相对湿度增大了干燥介质和物料表面的水蒸气分压差,使得干燥推动力加大,故能缩短干燥时间,提高干燥效率[1-5]。此外,针对表面易结壳的多孔农产品物料,阶段降湿干燥方式,即为使用高湿空气对物料进行预热处理,待物料升高至较高温度后降低相对湿度,有助于加快干燥速率并减少结壳现象发生,并应用于山药片、杏子等物料的干燥加工中[6-9]。例如,陆学中等[10]研究发现,当山药片厚度为4 mm、干燥温度60 ℃,相对湿度40%预处理30 min而后热风干燥相对比直接热风干燥,其干燥时间缩短了将近50%;巨浩羽等[5]在胡萝卜的热风干燥研究中发现,第一阶段相对湿度50%保持30 min而后降为相对湿度20%条件下的干燥时间比恒定相对湿度20%条件下缩短了18.5%;王庆惠等[11]和Yu等[12]同样发现,阶段降湿干燥方式有利于提高干燥速率。虽然阶段降湿已被证实可提高干燥效率,但关于阶段降湿的促干机理尚未充分揭示:高湿空气预处理及降湿干燥过程中,物料能够迅速升温及快速脱水的发生机制尚不明确。而对流传热和传质系数能够体现相对湿度对于热质传递的影响特性,物料表面微观孔隙结构可反映相对湿度对于结壳作用的影响。因此本文拟从对流传热传质系数和物料表面微观孔隙结构2个方面来揭示阶段降湿的促干机理。
对流传热系数(convective heat-transfer coefficient,h)和传质系数(mass transfer coefficient,h)通常由努塞尔准数()和舍伍德准数()关联式计算得出,一般用于分析物料与干燥介质的传热传质过程或模拟物料的温度水分空间分布[13-15]。Khan等[16]基于准数关联式求解了h和h,并模拟了苹果块微波热风干燥过程中的温度水分空间分布。Yuan等[17]同样使用准数关联式求解了苹果块热风干燥过程中的h和h,并模拟了温度、水分和应力的空间分布。此外,h和h还可由干燥过程中热量平衡关系确定。Onwude等[18]采用集总热容法求解了红薯片红外热风组合干燥过程中的h。Lemus-Mondaca等[19]基于干燥过程中的热量平衡关系,求解了长20 mm、宽30 mm、高10 mm的木瓜片在干燥温度40~80℃、风速1.5 m/s的热风干燥过程中的h和h,其中h为0.25~4.50 W/(m2·K),h为3.10×10-7~6.05×10-6m/s。再者,张卫鹏等[20]和巨浩羽等[21]基于Dincer模型同样求解得到h。然而,基于准数关联式或模型计算得出的对流传热传质系数为一常数,无法反映相对湿度对干燥过程中对流传热和传质系数变化趋势的影响规律。因此,本研究基于热量平衡关系求解h和h。
综上所述,为揭示阶段降湿干燥方式的促干机理,基于作者前期得出的阶段降湿干燥方式提高胡萝卜干燥效率的结论[5],选用胡萝卜为代表性试验原料,进一步探究胡萝卜在恒定相对湿度和阶段降湿干燥过程中对流传热系数和传质系数的变化规律,物料表面微观孔隙结构,以揭示阶段降湿提高干燥效率的机理,为阶段降湿干燥方式在农产品干燥加工的应用及求解对流传热传质系数提供理论依据和技术支持。
关于干燥介质相对湿度对胡萝卜片热风干燥特性的影响具体见巨浩羽等[5]中的描述。其中试验条件简介如下:试验原料为长(2.0±0.1)cm,宽(2.0±0.1)cm,厚度为(1.0±0.1)cm的胡萝卜片。干燥温度为60 ℃、风速为3.0 m/s,相对湿度分为恒定相对湿度和阶段降湿2种控湿方式(表1)。试验装置为基于温湿度控制的箱式热风干燥实验装置(中国农业大学工学院农产品加工技术与装备实验室自制,图1)。内部扰流风机保障了内部温湿度的均匀性,将温湿度传感器布置于干燥室的中心位置进行温度和相对湿度的监测,传感器型号为SHT15温湿度传感器(瑞士盛世瑞恩传感器公司,温度±0.3 ℃,相对湿度±2.0%)[22]。
表1 试验设计与试验参数
巨浩羽等[5]前期的研究主要结论为:恒定相对干燥条件下,干燥速率先上升后下降,且相对湿度越低干燥速率越大,相对湿度越高物料升温速率越快,相对湿度20%比50%条件下干燥时间缩短了27.6%;阶段降湿干燥条件下,热风相对湿度50%保持30 min后降低为20%,其干燥时间比相对湿度恒定为20%条件下缩短了18.5%,干燥过程出现2个升速阶段。
干燥过程中,干燥介质以热对流形式将热量传递至物料表面,并假设胡萝卜体积收缩可忽略,表面积大小不变[12]。物料表面从干燥介质中所吸收的热量用于物料升温和表面水分蒸发,热量平衡关系为[23]。
其中Q为物料所吸收的总热量,J;Q为物料升温所消耗的热量,J;Q为物料中水分蒸发所消耗的热量,J。将式(1)分别写为式(2)~(4):
式(1)改写为式(5):
其中为物料的干基含水率,kg/kg,干燥时刻的计算公式如式(9)所示:
式中m为物料中绝干物质的质量,kg。
由式(5)和(7)得出对流传热系数h为
干燥过程中对流传质系数h由式(11)计算[25]:
式中M为干燥终了干基含水率,0.119 3 kg/kg;0为物料初始干基含水率,10.764 7 kg/kg;为物料体积,m3。
采用扫描电镜观察胡萝卜的微观组织结构。将干燥过程中的胡萝卜中央部位的表皮部分切分成3 mm×3 mm×3 mm的立方体小样品,样品首先被安装在磁控溅射仪(英国Quorum科技有限公司,SC7640)上,进行5 min喷金处理以固定组织结构,并在10 kV加速电压下对其表面组织微观结构用扫描电镜(日本东京日立集团,S3400)进行观察。重复观看不同区域的组织结构,并选择具有代表性图片进行保存与进一步分析。
恒定相对湿度和阶段降湿干燥条件下胡萝卜的热风干燥特性曲线如图2所示。干燥温度60 ℃,相对湿度为20%、30%、40%、50%条件下,干燥时间分别为8.1、8.6、10.6和11.2 h;前期相对湿度50% 保持时间为10、30、60、90 min时,干燥时间分别为8.1、6.6、8.6、10.1 h。当相对湿度50%保持30 min而后采取恒定相对湿度20%的干燥时间比恒定20%相对湿度干燥条件下缩短了18.5%;保持10 min时干燥时间无显著性差异(>0.05);保持60或90 min时,干燥时间延长。由图2可知,相对湿度越大,干燥速率越低;阶段降低相对湿度有助于提高干燥效率。
阶段降湿干燥条件下,前期较高相对湿度对物料进行预热处理,目的为使物料迅速升至较高温度。故选取干燥过程中0~15 min内胡萝卜温度变化规律作为研究对象。不同恒定相对湿度20%、30%、40%和50%干燥条件下,0~15 min内胡萝卜的温度变化规律如图3所示。由图3可知,不同相对湿度下,0~4 min为物料升温阶段,4 min以后物料温度缓慢上升。相对湿度越大,物料升温速率越快,且能达到的温度越高。当相对湿度为50%时,物料在4 min时迅速升至48.9 ℃,而当相对湿度为20%时,物料在4 min时升至34.9 ℃。此相对湿度对物料温度的影响规律与Curcio等[26]和李长友等[27]的研究结论一致。
由式(5)计算得出不同恒定相对湿度下的对流传热系数h(图4)。不同相对湿度下h整体上呈现出先下降后缓慢上升的趋势,其中20%和30%相对湿度下h出现短暂的上升趋势。20%、30%、40%和50%相对湿度下,在干燥初始时刻h具有显著性区别(<0.05),大小分别为42.9、64.7、135.1和178.9 W/(m2·℃)。相对湿度50%时相对于20%干燥条件下h提高了3.17倍。因此,提高相对湿度可显著的提高h,使物料升温速率加快,这与Yu等[12]在研究多阶段调控相对湿度提高胡萝卜干燥效率的研究中所得结论一致。在干燥4 min以后,不同相对湿度干燥条件下h缓慢上升,从大到小依次为75.9、65.1、60.2和54.8 W/(m2·℃),此时物料温度升温至该干燥温度和相对湿度所确定的湿球温度,且胡萝卜所吸收的热量主要用于水分蒸发,对应于干燥过程逐渐进入恒速干燥阶段[28]。
不同相对湿度下,在干燥前期0~15 min,胡萝卜在每分钟内所吸收的热量Q,及物料升温消耗热量Q和水分蒸发所消耗热量Q的求解结果如图5所示。由图5可知,不同相对湿度下,物料所吸收的总热量变化规律与h相类似。相对湿度为50%时,物料升温幅度最大,故在0~1 min内所吸收的热量最多为543.2 J,且物料升温消耗热量所占百分比越大;相对湿度为20%时,物料升温幅度最小,所吸收的总热量最少为130.4 J。这说明相对湿度越大,物料所吸收的热量热多,且主要用于物料升温,故升温速率越快。在4 min以后,吸收热量多用于水分蒸发,说明干燥逐渐进入恒速干燥阶段。
不同相对湿度下,在干燥前期0~15 min,胡萝卜吸收的总热量Q,及各部分占比如图6所示。由式(6)和(8)可知,在0~15 min内,C为3 914.3~3 926.1 J/(kg·℃);为240 606~2 463 631 J/kg。>>C,故物料每蒸发1 kg水分所消耗的热量远大于1 kg物料每升高1 ℃所消耗的热量。当相对湿度为20%时,干燥速率最快,蒸发水分量最多,故物料吸收总热量最多为1 387.9 J,总热量中64.5%部分用于水分蒸发。而当相对湿度为50%时,干燥速率减小,水分蒸发量较少,故物料吸收的总热量最少为1 159.3 J,总热量中33.0%部分用于水分蒸发。物料吸收总热量、水分蒸发消耗热量占比均随着相对湿度的升高而逐渐降低;物料升温消耗热量占比随着相对湿度的升高而逐渐增大。
相对湿度对h影响机理分析。干燥温度一定时,干燥介质的相对湿度越大,则单位质量的干燥空气所携带的热量,即焓值也越大,故单位时间内物料所吸收的热量则越多。此外,高相对湿度抑制了表面水分蒸发,大部分热量用于物料升温,升温速率加快。例如,当相对湿度为50%和20%时,干燥介质的焓值分别为237.8和127.1 kJ/kg;在0~15 min内分别共计775.8、492.2 J的热量用于胡萝卜片升温。故提高相对湿度能够提高h。
不同恒定相对湿度下,对流传质系数h如图7所示。由图7可知,h随干燥时间呈现出先上升后下降的变化趋势;相对湿度为20%时,h为1.01×10-6~2.54×10-6m/s;相对湿度为50%时,h为0.26×10-6~1.12×10-6m/s。降低相对湿度,能够显著的提高h(<0.05)。物料干燥脱水过程由内而外分为:内部水分扩散迁移至表面和表面水分的蒸发两个步骤[29-31]。相对湿度对表面水分的蒸发影响作用体现为,相对湿度越低,干燥介质和物料表面的水蒸气分压差越大,干燥推动力越大,故h越大[1,22,32]。相对湿度无法直接影响物料内部水分的扩散迁移,但是可以通过影响物料的升温而间接影响内部水分扩散迁移。相对湿度升高时,物料升温速率越快,加剧物料内部水分向外迁移;相对湿度降低时,表面水分蒸发加快,但不利于物料升温和内部水分迁移[33-34]。相对湿度对传热和传质均有影响,且高相对湿度主要体现为对物料温度的影响,而低相对湿度体现为对表面水分蒸发的影响。
相对湿度50%分别保持10、30、60和90 min时,胡萝卜干燥过程中的h变化趋势如图8所示。由图8可知,不同保持时间干燥条件下,h均呈现出随干燥时间先上升后下降的变化规律。当相对湿度保持10 min时,在0~1.5 h干燥速率大于其余3种情况,1.5 h后逐渐降低。这可能因为胡萝卜没有充分预热,仍然存在着由内向外的温度梯度。在降低相对湿度后干燥速率加快,内部水分不能及时扩散迁移至表面而导致胡萝卜表面发生结壳,阻碍内部水分迁移,在1.5 h后干燥速率逐渐降低。当相对湿度50%保持30 min时,在1.5 h后h显著大于其余三者(<0.05),此条件下干燥时间也最短。相对湿度保持30 min时,物料充分预热,物料温度空间分布趋于一致,降低湿度后干燥速率加快。
胡萝卜的热风干燥过程可分为升速、恒速和降速3个干燥阶段。在升速干燥阶段,物料需要充分预热,因此需要利用高相对湿度能够迅速加热物料的优势,即高相对湿度保持一定时间;在恒速干燥阶段,干燥由表面水分蒸发所控制,因此此时需利用低相对湿度能够加快水分蒸发的优势,即相对湿度控制为较低值;在降速干燥阶段,此时物料已逐渐趋于干燥介质的温度,干燥由内部水分扩散迁移所控制,需使内部扩散迁移至表面的水分及时在表面蒸发,故同样需要调控相对湿度为较低值[35-36]。结合胡萝卜的热风干燥特性及相对湿度对热质传递的影响,故阶段降湿干燥方式能够提高胡萝卜的干燥效率。
相同干燥温度下,相对湿度越低时,干燥介质的水蒸气分压越低,则物料表面和干燥介质的水蒸气分压差则越大。根据费克第二定律及其边界条件,干燥推动力越大,单位时间内脱除的水分愈多,故h越大。反之则h越小。在胡萝卜预热阶段高相对湿度提高了h的值,缩短了预热时间;在胡萝卜恒速和降速干燥阶段,胡萝卜已具有较高温度,内部水分扩散迁移速率加剧,此时降低相对湿度以提高h值,故阶段降低相对湿度有助于提高干燥效率。
选取高相对湿度50%在干燥10、30、60 min,以及低相对湿度20%在干燥10、30、60 min时刻的胡萝卜表面微观结构作为分析研究对象(图9)。
由图9可知,相对湿度50%干燥30 min时,胡萝卜表面呈蜂窝状的孔隙结构,干燥60 min后,水分迁移孔道结构愈加凸显;相对湿度20%干燥条件下,胡萝卜表面因干燥速率过快而水分迁移孔道发生收缩堵塞的现象,且随着干燥时间的延长,结壳硬化现象愈明显。因此高相对湿度有利于保持物料表面的多孔结构,从而有助于内部水分向表面的扩散迁移,这与Liu等[37]的研究结论一致。
结合相对湿度对h、h以及物料微观孔隙结构的影响,得出阶段降湿干燥方式中50%相对湿度保持30 min,物料表面具有多孔结构且升至较高温度,此时降低相对湿度,促进表面水分蒸发,有助于提高干燥效率。
1)提高相对湿度越能够显著提高干燥预热阶段的对流传热系数h(<0.05),物料升温速率越快。干燥初始时刻,相对湿度50%时相对于20%干燥条件下h提高了3.17倍。在0~15 min内,物料吸收总热量、水分蒸发消耗热量占比均随着相对湿度的升高而逐渐降低;物料升温消耗热量占比随着相对湿度的升高而逐渐增大。
2)降低相对湿度,能够显著的提高对流传质系数h(<0.05)。当相对湿度50%保持30 min 后降为20%时,在1.5 h后h大于相对湿度50%分别保持10、60和90 min时的h,干燥时间也最短。此外,相对湿度50%干燥条件下有利于保持物料的表面的多孔结构,而相对湿度20%干燥条件下,胡萝卜表面因干燥速率过快而水分迁移孔道发生收缩堵塞的现象。
综上所述,阶段降湿提高胡萝卜干燥效率的机制在于:①干燥升速阶段,高相对湿度提高了h,使得物料迅速升至较高温度;②干燥升速阶段高相对湿度有助于维持物料表面多孔的水分迁移孔道,有助于内部水分的扩散迁移;③干燥恒速和降速阶段,低相对湿度提高了h。本研究结果可为求解干燥过程中的h和h提供理论依据,揭示阶段降湿的促干机理,并为阶段降湿干燥方式在农产品的干燥加工应用提供技术支持。
[1]Phitakwinai S, Thepa S, Nilnont W. Thin‐layer drying of parchment Arabica coffee by controlling temperature and relative humidity[J]. Food Science and Nutrition, 2019, 7(9): 2921-2931.
[2]Ogawa T, Chuma A, Aimoto U, et al. Effects of drying temperature and relative humidity on spaghetti characteristics[J]. Drying Technology. 2017, 35(10): 1214-1224.
[3]Sabudin S, Hakimi Remlee M Z, Mohideen B, et al. Effect of relative humidity on drying kinetics of agricultural products[J]. Applied Mechanics and Materials. 2014, 699: 257-262.
[4]吴中华,李文丽,赵丽娟,等. 枸杞分段式变温热风干燥特性及干燥品质[J]. 农业工程学报,2015,31(11):287-293.
Wu Zhonghua, Li Wenli, Zhao Lijuan, et al. Drying characteristics and product quality of Lycium barbarum under stages-varying temperatures drying process[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(11): 287-293. (in Chinese with English abstract)
[5]巨浩羽,肖红伟,郑霞,等. 干燥介质相对湿度对胡萝卜片热风干燥特性的影响[J]. 农业工程学报,2015,31(16):296-304.
Ju Haoyu, Xiao Hongwei, Zheng Xia, et al. Effect of hot air relative humidity on drying characteristics of carrot slabs[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(16): 296-304. (in Chinese with English abstract)
[6]Ju H Y, Zhao S H, Mujumdar A S, et al. Energy efficient improvements in hot air drying by controlling relative humidity based on Weibull and Bi-Di models[J]. Food and Bioprod Process, 2018, 111: 20-29.
[7]Ju H Y, El-Mashad H M, Fang X M, et al. Drying characteristics and modeling of yam slices under different relative humidity conditions[J]. Drying Technology, 2016, 34(3): 296-306.
[8]Ju H Y, Zhao S H, Mujumdar A S, et al. Step-down relative humidity convective air drying strategy to enhance drying kinetics, efficiency, and quality of American ginseng root (Panax quinquefolium)[J]. Drying Technology, 2020, 38(7): 903-916.
[9]Dai J W, Rao J Q, Wang D, et al. Process-based drying temperature and humidity integration control enhances drying kinetics of apricot halves[J]. Drying Technology, 2015, 33(12): 365-376.
[10]陆学中,刘亚男,张德榜,等. 高湿预处理对怀山药热风干燥特性及复水性的影响[J]. 食品与机械,2017,33(11):147-151,183.
Lu Xuezhong, Liu Yanan, Zhang Debang, et al. Effect of high humidity preconditioning on hot air dyring and its rehydration of Chinese yam[J]. Food and Machinery, 2017, 33(11): 147-151, 183. (in Chinese with English abstract)
[11]王庆惠,李忠新,杨劲松,等. 圣女果分段式变温变湿热风干燥特性[J]. 农业工程学报,2014,30(3):271-276.
Wang Qinghui, Li Zhongxin, Yang Jinsong, et al. Dried characteristics of cherry tomatoes using temperature and humidityby stages changed hot-air drying method[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(3): 271-276. (in Chinese with English abstract)
[12]Yu X L, Zielinska M, Ju H Y, et al. Multistage relative humidity control strategy enhances energy and exergy efficiency of convective drying of carrot cubes[J]. International Journal of Heat and Mass Transfer, 2020, 149, doi: 10.1016/j.ijheatmasstransfer.2019.119231.
[13]程裕东,易正凯,金银哲. 微波干燥过程中南极磷虾肉糜的传热传质及形变参数模型[J]. 农业工程学报,2020,36(3):302-312.
Cheng Yudong, Yi Zhengkai, Jin Yinzhe. Heat and mass transfer and deformation parameter model of minced Antarctic krill during microwave drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(3): 302-312. (in Chinese with English abstract)
[14]魏硕,陈鹏枭,谢为俊,等. 基于三维湿热传递的玉米籽粒干燥应力裂纹预测[J]. 农业工程学报,2019,35(23):296-304.
Wei Shuo, Chen Pengxiao, Xie Weijun, et al. Prediction of stress cracks in corn kernels drying based on three-dimensional heat and mass transfer[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(23): 296-304. (in Chinese with English abstract)
[15]Ju H Y, Law C L, Fang X M, et al. Drying kinetics and evolution of sample’s core temperature and moisture distribution of yam slices () during convective hot air drying[J]. Drying Technology, 2016, 34(11): 1297-1306.
[16]Khan M I H, Welsh Z, Gu Y, et al. Modelling of simultaneous heat and mass transfer considering the spatia distribution of air velocity during intermittent microwave convective drying[J]. International Journal of Heat and Mass Transfer, 2020, 153, 119668.
[17]Yuan Y J, Tian L B, Xu Y Y, et al. Numerical and experimental study on drying shrinkage-deformation of apple slices during process of heat-mass transfer[J]. International Journal of Thermal Sciences, 2019, 136: 539-548.
[18]Onwude D I, Hashim N, Abdan K, et al. Modelling of coupled heat and mass transfer for combined infrared and hot-air drying of sweet potato[J]. Journal of Food Engineering, 2018, 228: 12-24.
[19]Lemus-Mondaca R A, Zambra C E, Vega-Gálvez A, et al. Coupled 3D heat and mass transfer model for numerical analysis of drying process in papaya slices[J]. Journal of Food Engineering, 2013, 116: 109-117.
[20]张卫鹏,肖红伟,高振江,等. 中短波红外联合气体射流干燥提高茯苓品质[J]. 农业工程学报,2015,31(10):269-276.
Zhang Weipeng, Xiao Hongwei, Gao Zhenjiang, et al. Improving quality of Poria cocos using infrared radiation combined with air impingement drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(10): 269-276. (in Chinese with English abstract)
[21]巨浩羽,赵海燕,张菊,等. 基于Dincer模型不同干燥方式下光皮木瓜干燥特性研究[J]. 中草药,2020,51(15):3911-3921.
Ju Haoyu, Zhao Haiyan, Zhang Ju. et al. Drying characteristics of Chaenomeles sinensis with different drying methods based on Dincer model[J]. Chinese Traditional and Herbal Drags, 2020, 51(15): 3911-3921. (in Chinese with English abstract)
[22]巨浩羽,赵海燕,于贤龙,等. 基于温湿度控制的箱式果蔬热风干燥机设计[J]. 食品与机械,2020,36(7):97-103.
Ju Haoyu, Zhao Haiyan, Yu Xianlong, et al. Design and experiment of box type fruit and vegetable hot air dryer based on being controlled temperature and humidity[J]. Food and Machinery, 2020, 36(7): 97-103. (in Chinese with English abstract)
[23]Rahman N, Kumar S. Influence of sample size and shape on transport parameters during drying of shrinking bodies[J]. Journal of Food Process Engineering, 2010, 30(2): 186-203.
[24]Aversa M, Curcio S, Calabro V, et al. An analysis of the transport phenomena occurring during food drying process[J]. Journal of Food Engineering, 2007, 78(3): 922-932.
[25]Kaya A, Aydin O, Cevdet D. Cconcentration boundary conditions in the theoretical analysis of convective drying process[J]. Journal of Food Process Engineering, 2010, 30(5): 564-577.
[26]Curcio S, Aversa M, Calabrò V, et al. Simulation of food drying: FEM analysis and experimental validation[J]. Journal of Food Engineering, 2008, 87(4): 541-553.
[27]李长友,赵懿琨,马兴灶. 荔枝干燥热湿特性模型解析与验证[J]. 农业工程学报,2014,30(15):289-298.
Li Changyou, Zhao Yikun, Ma Xingzao. Model analytical and verification of heat and moisture characteristics in litchi drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(15): 289-298. (in Chinese with English abstract)
[28]Aversa M, Curcio S, Calabrò V, et al. An analysis of the transport phenomena occurring during food drying process[J]. Journal of Food Engineering, 2007, 78(3): 922-932.
[29]Pasban A, Sadrnia H, Mohebbi M , et al. Spectral method for simulating 3D heat and mass transfer during drying of apple slices[J]. Journal of Food Engineering, 2017, 212: 201-212.
[30]Castro A M, Mayorga E Y, Moreno F L. Mathematical modelling of convective drying of fruits: A review[J]. Journal of Food Engineering, 2018, 223: 152-167.
[31]朱文学. 食品干燥原理与原理与技术[M]. 北京:科学出版社,2009.
[32]巨浩羽,赵士豪,赵海燕,等. 干燥介质相对湿度对西洋参根干燥特性和品质的影响[J]. 中草药,2020,51(3):631-638.
Ju Haoyu, Zhao Shihao, Zhao Haiyan, et al. Effect of relative humidity on drying characteristic and quality of Panacis Quinquefolii Radix[J]. Chinese Traditional and Herbal Drags, 2020, 51(3): 631-638. (in Chinese with English abstract)
[33]郑霞,肖红伟,王丽红,等. 红外联合气体射流冲击方法缩短哈密瓜片的干燥时间[J]. 农业工程学报,2014,30(1):262-269.
Zheng Xia, Xiao Hongwei, Wang Lihong, et al. Shorting drying time of Hami-melon slice using infrared radiation combined with air impingement drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2014, 30(1): 262-269. (in Chinese with English abstract)
[34]巨浩羽,张茜,郭秀良,等. 基于监测物料温度的胡萝卜热风干燥相对湿度控制方式[J]. 农业工程学报,2016,32(4):269-276.
Ju Haoyu, Zhang Qian, Guo Xiuliang, et al. Control method of relative humidity of carrot hot air drying based on detecting material’s temperature[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2016, 32(4): 269-276. (in Chinese with English abstract)
[35]张卫鹏,高振江,肖红伟,等. 基于Weibull 函数不同干燥方式下的茯苓干燥特性[J]. 农业工程学报,2015,31(5):317-324.
Zhang Weipeng, Gao Zhenjiang, Xiao Hongwei, et al. Drying characteristics of poria cocos with different drying methods based on Weibull distribution[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(5): 317-324. (in Chinese with English abstract)
[36]Wang J, Bai T Y, Wang D, et al. Pulsed vacuum drying of Chinese ginger (Zingiber officinale Roscoe) slices: Effects on drying characteristics, rehydration ratio, water holding capacity, and microstructure[J]. Drying Technology, 2019, 37(3): 301-311.
[37]Liu L, Wang X C, Chen H C, et al. Numerical modeling of drying shrinkage deformation of cement-based composites by coupling multiscale structure model with 3D lattice analyses[J]. Computers and Structures, 2017, 178: 88-104.
Effects of relative humidity on heat and mass transfer characteristics of carrot during hot air drying
Ju Haoyu1, Zhao Haiyan2, Zhang Weipeng3, Gao Zhenjiang4, Xiao Hongwei4※
(1.,,050061,; 2.,,050061,; 3.,,100048,;4.,,100083,)
Humidity, as an important drying medium parameter, has significant influence on heat and mass transfer during drying process. It has the most significant influence on the heat and mass transfer during the drying process. Relative Humidity (RH) is often used to describe the humidity content of the drying medium under constant drying temperature and atmospheric pressure. The available research reported that the pressure difference of moisture vapor can be enlarged as RH decreased so that the drying force was enhanced for better drying efficiency. Additionally, step-down RH can accelerate the drying rate to prevent surface casehardening in the porous agriculture products whose surfaces were easily crusted during drying. Step-down RH drying means that a high RH is selected to pretreat the material until the temperature increases to a high level, and afterwards a decreased RH with a low value is obtained to increase surface moisture evaporation. Now, step-down RH has been successfully applied into the drying processing of yam slices, and American ginseng root. This study aims to reveal the mechanism for improved drying efficiency with step-down RH drying. Carrot slabs were selected to explore the convective heat transfer (h), convective mass transfer (h), and surface micro-pore structure under the drying condition of constant RH and step-down RH with constant drying temperature 60 ℃ and constant air velocity 3.0 m/s. The results showed that the increase of RH significantly enhancedh, so that the material temperature increased quickly to a high value. With 20%, 30%, 40%, and 50% RH,hwas 42.9, 64.7, 135.1, and 178.9 W/(m·℃), respectively. Thehvalue of 50% RH was 3.17 times that of 20% RH. During 0-15 min with 50% RH, the drying rate was small and little moisture was evaporated. The carrot obtained the least amount of heat of 1 159.3 J, of which 33.0% was used for water evaporation. During 0-15 min with 20% RH, the drying rate was high and more moisture was evaporated. The carrot obtained the most amount of heat of 1 387.9 J, of which 64.5% was used for water evaporation. Both absorbed energy and percentage of moisture evaporating decreased as RH increased. The percentage of energy consumption at material temperature increased as RH increased. When the RH was 20%,hwas 1.01×10-6-2.54×10-6m/s, whereas, when the RH was 50%,hwas 0.26×10-6-1.12×10-6m/s, indicating that the decreasing RH significantly increased thehcoefficient. When 50% RH was kept 30 min and then decreased to 20%, thehvalue was the maximum, compared with the other three holding time with high RH. With 50% RH drying condition, it was beneficial for keeping the material surface porous structure. However, when the RH was 20%, the moisture diffusion duct was easily shrunken and blocked, due to a high drying rate. Therefore, the mechanism of improved drying efficiency with step-down RH drying can be expressed as follows. Firstly, thehvalue was improved with the high RH in an increasing stage of drying rate. Secondly, the surface of the porous structure was also well kept with the high RH in the increasing stage of drying rate. Thirdly, thehincreased with the low RH in constant and falling drying rate. Such investigation can be expected to serve as a theoretical foundation to calculate thehandhduring the drying process. Meanwhile, the specific mechanism of improved drying efficiency can provide technical support for the wide use of step-down RH drying into agriculture products.
drying, relative humidity, convective heat transfer coefficient, convective mass transfer coefficient, micro-pore structure
巨浩羽,赵海燕,张卫鹏,等. 相对湿度对胡萝卜热风干燥过程中热质传递特性的影响[J]. 农业工程学报,2021,37(5):295-302.doi:10.11975/j.issn.1002-6819.2021.05.034 http://www.tcsae.org
Ju Haoyu, Zhao Haiyan, Zhang Weipeng, et al. Effects of relative humidity on heat and mass transfer characteristics of carrot during hot air drying[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(5): 295-302. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.05.034 http://www.tcsae.org
2020-10-09
2020-12-06
河北省自然科学基金资助项目(C2020207004);河北省高等学校科学研究项目(QN2021054);北京市自然科学基金(6204035);北京市教委组织部优秀人才项目(2018000020124G034)
巨浩羽,博士,讲师,研究方向为农产品干燥技术和装备。Email:ju56238@163.com
肖红伟,博士,副教授,博士生导师,研究方向为农产品干燥技术与装备。Email: xhwcaugxy@163.com
10.11975/j.issn.1002-6819.2021.05.034
TS255.1
A
1002-6819(2021)-05-0295-08