吕沅峻 彭建堂 蔡亚飞
1.中国科学院地球化学研究所,矿床地球化学国家重点实验室,贵阳 5500022.中国科学院大学地球与行星科学学院,北京 1000493.中南大学地球科学与信息物理学院,有色金属成矿预测教育部重点实验室,长沙 410083
华南是世界上最大的钨成矿带,其中仅南岭地区储量就占世界钨储量的54%(毛景文等,2007;Hu and Zhou,2012;Yuanetal.,2018,2019)。此外,位于该地区北侧的湘中金锑成矿带内亦发育有大量的钨矿床,该成矿带内钨矿常常与金锑矿化伴生出现,且矿化形式多样,包括石英脉型、层状矽卡岩型、斑岩型等(彭建堂等,2003,2008,2010;张龙升等,2014,2020;陕亮等,2019)。然而,不同于南岭地区的钨矿床,湘中钨矿的研究程度较低,很多钨矿的矿床成因和成矿机理、以及成矿与其他地质事件的关系,目前仍不太清楚。
近年新发现的杏枫山矽卡岩型钨矿位于湘中金锑成矿带西侧(图1)。初步研究显示,不同于传统的矽卡岩型矿床,杏枫山矿区的含钨矽卡岩均分布于浅变质岩系中,具有极高的钨品位(多在0.5%以上),并与石英脉型金矿共存,而矿区内未发现有明显的岩浆活动(彭建堂,2019)。这些特征表明该矿可能具有较为独特的成矿过程,是研究湘中一带钨矿成矿作用的理想对象,然而目前尚未获得该矿的准确成矿年龄,亦不清楚该矿形成的物理化学条件,这严重制约了我们对其矿床成因、成矿机理以及区域钨成矿事件的进一步认识。
图1 湘中地区矿床分布简图(据Xie et al.,2019改绘)Fig.1 The sketch map of deposits distribution in Xiangzhong region(modified after Xie et al.,2019)
榍石(CaTiSiO5)是一种广泛分布于各类地质体中的矿物,在岩浆岩、变质岩和热液矿床中均有产出。榍石中常有较高的高场强元素(HFSE)和稀土元素(REE)含量(Tiepoloetal.,2002;Marksetal.,2008),并且这些元素含量与分布特征对形成环境敏感,因此可用于指示榍石的成因类型及形成环境的物理化学条件(Haydenetal.,2008;Horieetal.,2008;Kirklandetal.,2020)。另外,榍石中U、Th含量较高,且其U-Pb同位素体系封闭温度可达700~750℃(Kennedyetal.,2010),这使得榍石成为理想的定年矿物而被广泛应用于各类地质事件的定年(Spenceretal.,2013;Gaweedaetal.,2018;Fisheretal.,,2020;Kirklandetal.,2020)。近年来,许多研究利用榍石成功地获得了各类热液矿床的成矿年龄(Lietal.,2010,2020;Dengetal.,2015;Fuetal.,2016,2018;Duan and Li,2017;Huetal.,2017a;Songetal.,2019),显示榍石在热液矿床研究中具有很好的应用前景。在杏枫山矽卡岩钨矿中广泛发育有热液榍石,本次研究在系统野外考察的基础上,以该热液榍石为研究对象,利用电子探针(EPMA)、LA-ICP-MS等技术手段对其进行了地球化学及U-Pb年代学研究,查明了其形成的物理化学条件,精确测定了钨矿成矿时代,在此基础上,我们对区域上钨矿床的成矿时限及钨矿与花岗岩之间的关系进行了限定。
湘中地区主要由两个构造单元组成:西侧NE向展布的雪峰山弧形构造带和中部的湘中盆地(图1)。区域地层具有基底-盖层的双重结构(张东亮等,2016),基底主要出露于雪峰山弧形构造带及湘中盆地中部EW向的白马山-龙山-紫云山隆起带(图1),主要为海相及火山碎屑沉积,并在加里东期遭受了绿片岩相变质;盖层主要为泥盆纪至二叠纪海相碳酸盐夹碎屑沉积、侏罗纪至白垩纪的陆内碎屑沉积,主要出露于湘中盆地(Wangetal.,2013)。区内经历多期构造活动,武陵期、加里东期、印支期以及燕山期均有构造记录。区域西部为NE向的雪峰构造推覆带,中部可见EW向的白马山-龙山-紫云山串珠状隆起及其南北两侧的次级凹陷,呈现出独特的穹盆构造(王建等,2010;柏道远等,2013),其上发育有印支期、燕山期形成的NE-NEE向的褶皱和断裂,它们构成了区域的基本构造格架。区内岩浆活动主要集中在显生宙,以印支期最为显著,可见中酸性岩体沿湘中盆地周缘侵入(图1),局部亦常见小型岩墙岩脉分布(陈佑纬等,2016),岩性主要为花岗闪长岩、二长花岗岩以及二云母花岗岩等,侵位时间集中在印支期(Gaoetal.,2017)。成矿主要集中在NE向雪峰成矿带及EW向白马山-龙山-紫云山成矿带(图1),矿床类型以脉型的金锑钨矿为主(彭建堂等,2003,2008,2021;Zhu and Peng,2015;付山岭等,2016;Huetal.,2017c;Lietal.,2018),另有矽卡岩型钨矿(张龙升,2012;Xieetal.,2019)及斑岩型钨矿(陕亮等,2019)等矿化类型。
本次研究的杏枫山钨矿位于白马山-龙山-紫云山隆起带与雪峰构造带的交汇部位(图1)。其北东西三面可见白马山复式岩体(图2),该岩体又由水车(角闪石黑云母花岗岩)、龙潭(角闪石黑云母花岗岩)、小沙江(黑云母花岗岩)以及龙藏湾(二云母花岗岩)等四个超单元组成,其中除水车超单元形成于加里东期外,其余三个超单元均形成于印支晚期(徐接标,2017)。该岩体各单元均发育钛铁矿而缺失磁铁矿,属还原的钛铁矿花岗岩(Ishihara,1981)。
图2 杏枫山地区地质图(据肖静芸等,2020改绘)Fig.2 Geological map of Xingfengshan region (modified after Xiao et al.,2020)
杏枫山矿区范围内出露地层简单,且未见岩浆岩出露,地层由老到新为青白口系天井组、漠滨组以及震旦系江口组(图3)。其中天井组为灰绿色中厚层粉砂质板岩;漠滨组为灰绿色薄层砂质、粉砂质板岩,中间有钙质板岩夹层,为含钨矽卡岩主要赋存层位;江口组为浅灰色厚层含砾砂质板岩,该层位无矿化。
图3 杏枫山矿区地质图(据肖静芸等,2020改绘)目前钻探工程尚未完全圈定钨矿体范围和具体形态,图中钨矿体形态为目前初步工作推测得出Fig.3 Geological map of Xingfengshan deposit (modified after Xiao et al.,2020)
矿区构造总体较为简单,以一背斜与小规模的几组断裂为主(图3)。主要的褶皱构造为金山鼻状背斜,杏枫山矿区位于该背斜的SW倾伏端。NW向断裂F1为垂直于金山背斜轴部的一组剪切带,产状为215°~240°∠51°~64°,其在几组断裂中形成最早,并控制了金矿体的就位,其中发育数条平行的破碎带并充填有含金石英脉,为金矿主要产出形式。NEE向断裂F2为一小规模压扭性断裂,为成矿后期断裂,其切穿了F1、F3两组断裂,NNE向断裂F3包括陡倾的穿层断裂和缓倾的层间断裂,矿化微弱。
矽卡岩呈层状产出于漠滨组钙质板岩中,平直无变形且连续性好,其产状为280°~310°∠25°~35°,与地层产状一致,具有明显的层控特征,其被后期的NW向的金矿脉所截切(图3、图4a)。钨矿体赋存于矽卡岩中,产状与矽卡岩一致,其平均厚度1.75m,最厚可达7.60m,大部分中段化验结果显示其钨品位多在0.5%以上,部分地段可达3%~8%,属典型的高品位钨矿。典型的含矿矽卡岩呈深绿色,以含棕红色斑点状石榴子石为特征(图4b),主要矿物组成为石榴子石(约20%)、阳起石(约30%~40%)、普通角闪石、绿帘石、斜黝帘石、磷灰石、绿泥石、方解石、符山石、长石等。主要的矿石矿物为白钨矿,含少量毒砂、磁黄铁矿、方铅矿、钛铁矿。白钨矿主要呈脉状、条带状产出于矽卡岩中(图4c)。常有石英-长石脉体呈不规则的短脉状、网脉状分布于矽卡岩中或矽卡岩与围岩的接触部位(图4d-f),脉体宽度不定,多在0.1~5cm之间,其矿物组合与矽卡岩相似,主要为长石、石英、绿泥石、石榴子石、绿帘石、符山石、磷灰石、榍石等脉石矿物以及白钨矿、毒砂、磁黄铁矿等矿石矿物,暗示该类脉体与矽卡岩为同源关系。
图4 杏枫山矽卡岩钨矿的矿床地质特征、榍石的野外产出特征(a)矽卡岩顺层产出,平直无变形,被后期的含金石英脉所切穿;(b)斑点状的矽卡岩,红褐色斑点为石榴子石;(c)矽卡岩中的条带状白钨矿化,在钨矿灯下发出天蓝色荧光;(d)斑点状矽卡岩中的长石石英脉体;(e)不规则的长石石英脉体产出于矽卡岩与围岩接触部位,其中可见榍石;(f)长石石英脉体中的榍石呈粉红色粗大晶粒产出.Qtz-石英;Pl-长石;Sch-白钨矿;Ttn-榍石Fig.4 Field characteristics of Xingfengshan tungsten deposit and titanite
本次研究选取的榍石取自于矽卡岩中的长石石英脉,肉眼观察榍石呈粉红色(图4f),略带金刚光泽,多呈自形-半自形板状、锥状及粒状产出,粒径在0.1~4mm不等,镜下可见其具有正高突起(图5a,b),高级干涉色(图5c,d)以及较高的反射率等特征(图5e),BSE图像下则呈现为不均匀的明暗块状分带(图5f),与石榴子石、绿帘石、绿泥石、长石、白钨矿等矿物共生。
图5 杏枫山矽卡岩钨矿热液榍石的镜下及背散射(BSE)照片(a)单偏光下榍石呈细粒锥状产出,与白钨矿共生;(b)单偏光下榍石呈板状产出,与石榴石共生;(c)正交偏光下榍石呈板状产出,干涉色鲜艳;(d)正交偏光下见榍石与白钨矿共生,干涉色鲜艳;(e)反光镜下榍石呈锥状、板状产出,具有较高的反射率,与绿帘石、绿泥石共生;(f)榍石的BSE图像,呈不规则的明暗斑块状分带.Chl-绿泥石;Ep-绿帘石;Grt-石榴子石Fig.5 Microscope and BSE photos of hydrothermal titanite in Xingfengshan tungsten deposit
在野外考察,手标本观察的基础上,将榍石样品磨制成薄片、探针片,供显微镜下观察及原位微区分析测试。
榍石的主量元素测试工作在中南大学地球科学与信息物理学院电子探针实验室完成,仪器为日本岛津公司生产的EPMA-1720H型电子探针。测试条件:加速电压15.0kV,电流10.0nA,束斑直径10μm,采用人工合成的硅酸盐和氧化物作为标样。
榍石的微量元素采用LA-ICP-MS方法进行测定,测试在南京聚谱检测科技有限公司完成。测试使用的193nm ArF 准分子激光剥蚀系统由 Teledyne Cetac Technologies 制造,型号为Analyte Excite。四极杆型电感耦合等离子体质谱仪(ICP-MS)由安捷伦科技(Agilent Technologies)制造,型号为Agilent 7700x。准分子激光发生器产生的深紫外光束经匀化光路聚焦于矿物表面,能量密度为3.2 J/cm2,束斑直径为40um,频率为7Hz,共剥蚀40秒,剥蚀气溶胶由氦气送入ICP-MS完成测试。采用美国国家标准技术研究院NIST SRM612和NIST SRM610玻璃作为外标。原始的测试数据经 ICPMSDataCal 软件离线处理,采用“无内标-基体归一法”对元素含量进行定量计算(Liuetal.,2008)。
榍石U-Pb同位素组成分析,在中国科学院地球化学研究所矿床地球化学国家重点实验室利用LA-ICP-MS分析完成。激光剥蚀系统为Coherent公司生产的193nm 准分子激光系统,ICP-MS为Agilent 7700x电感耦合等离子质谱仪。激光剥蚀过程中采用氦气作载气,由一个T型接头将氦气和氩气混合后进入ICP-MS中。每个采集周期包括大约30s的空白信号和50s的样品信号。测试激光束斑大小为33μm,能量密度5J/cm2,剥蚀频率为5Hz。榍石U-Pb 同位素定年中采用榍石标样OLT-1 作外标进行同位素分馏校正,并利用清湖岩体中的榍石标样QH-1作为年龄监控,每分析6~8个样品点,分析2次OLT-1和QH-1。对分析数据的离线处理,采用软件ICPMSDataCal (Liuetal.,2008,2010)完成。将所测得的榍石U、Pb同位素组成Isoplot (Ludwig,2003)软件进行处理。
杏枫山钨矿中的热液榍石主量元素组成上较为均一(表1),其SiO2(29.63%~31.71%,平均29.64%)、TiO2(28.97%~33.53%,平均30.74%)、CaO(27.59%~28.58%,平均28.16%)、Al2O3(2.95%~5.79%,平均4.79%)、F(0.23%~1.90%,平均1.19%)和FeOT(0.09%~0.29%,平均0.20%)含量变化均不大(表1)。理论上榍石化学组成为CaTiSiO5,其SiO2=30.6%,TiO2=40.8%,CaO=28.6%。本次研究的榍石SiO2、CaO含量均与理论值接近,但其TiO2含量明显低于理论值,且具有较高的F、Al2O3含量以及少量的FeOT,推测榍石中Al、F、Fe与Ti之间存在替代关系。图6显示本次研究榍石的TiO2、F与Al2O3+Fe2O3之间存在良好的相关关系,提示其存在置换机制:Ti4++O2-=(Al,Fe)3++(F,OH)-(Higgins and Ribbe,1976),并且其具有相对岩浆榍石更高的F、Al2O3含量、更低的TiO2含量,而与已知的热液榍石组成更为相近。
表1 杏枫山热液榍石的主量元素数据(wt%)Table 1 Major element composition (wt%) of hydrothermal titanite in Xingfengshan skarn
图6 榍石的Al2O3+Fe2O3对TiO2 (a)和F (b)图解其他榍石的数据引自:朱乔乔等(2014),Fu et al.(2016,2018),Song et al.(2019)和Xie et al.(2019)Fig.6 Diagrams of Al2O3+Fe2O3 against TiO2 (a) and F (b) in different titanites
本次研究的榍石在微量元素组成方面具有极低的Th/U(0.02~0.11,平均0.06),较高的Sn (69.97×10-6~1211×10-6,平均520.4×10-6)和W(2.29×10-6~239.6×10-6,平均72.12×10-6),而基本不含Mo (表2)。其低Th/U的特征与已报道的热液榍石的分布特征相似(图7a),再次明确其成因分类上属热液榍石,这一比值的偏低可能是由于Th在热液中迁移率远低于U的结果(Balietal.,2011)。由于榍石中存在Ti和Sn的等价对位替代(CaTiSiO5-CaSnSiO5固溶体系列),使得榍石成为地质体中最重要的Sn储存相之一(Xieetal.,2010),本次研究的榍石虽然具有较高的Sn含量,但与其他非Sn矿床中热液榍石的Sn含量相近(图7b),因此其形成的热液流体的Sn含量可能不足以达到矿化级别,这也与我们在矿区中未发现锡矿化的事实相符。此外,尽管针对热液榍石W存储能力的研究较少,但Cheetal.(2013)针对育空一带钨矿中的热液榍石的研究显示其具有较高的W含量,本次杏枫山热液榍石具有与之类似的高W含量(图7c),应该是其形成热液流体具有较高W含量的结果,这与榍石和白钨矿共生的情况是符合的。另外,杏枫山的热液榍石中未能检出Mo,而前人报道的Mo矿热液榍石可含有一定量的Mo(图7d),杏枫山的热液榍石未能检出Mo可能是其形成的热液流体Mo含量低所导致的,这也与本次研究中未发现钼矿化的情况一致。
图7 不同榍石的∑REE对Th/U(a)、Sn(b)、W(c)和Mo(d)图解其他榍石的数据引自:Che et al.(2013),Deng et al.(2015),Fu et al.(2016,2018),Hu et al.(2017a,b),Song et al.(2019)和Li et al.(2020)Fig.7 Diagrams of ∑REE against Th/U (a),Sn (b),W (c) and Mo (d) in different titanites
表2 杏枫山矽卡岩热液榍石的微量元素组成(×10-6)Table 2 Trace elements compositions (×10-6) of hydrothermal titanite in Xingfengshan skarn
续表2Continued Table 2
本次研究的榍石具有变化较大且相对较低的ΣREE(147.2×10-6~7400×10-6,平均1909×10-6),与典型的热液榍石ΣREE相近(图7a),稀土配分形式呈重稀土(HREE)富集、轻稀土(LREE)亏损的左倾式(图8),其LREE/HREE比值为0.01~0.16,由于热液榍石的稀土配分模式受控于其形成热液流体的REE组成以及其共生的矿物类型(Dengetal.,2015),杏枫山热液榍石的稀土配分特征表明其可能形成于富集重稀土亏损轻稀土的热液流体中。此外其δEu=1.19~2.73,δCe=1.06~1.47,稀土配分呈现出明显的Eu正异常和Ce正异常(图8)。前人研究表明,Ce在氧化条件下多呈Ce4+存在,因此会相较于La3+、Pr3+等更少地进入榍石晶格,从而呈现出Ce负异常;在还原条件下,Eu多呈Eu2+,会大量替代榍石中的Ca2+从而在稀土配分上呈现出Eu正异常(Horieetal.,2008;Cheetal.,2013;Songetal.,2019)。因此杏枫山热液榍石的正Ce、Eu异常说明了其形成于还原的环境中,这与矿床中出现还原性的矿物组合如毒砂、磁黄铁矿、钙铝-锰铝榴石以及热液钛铁矿的情况是相符的。
图8 杏枫山矽卡岩热液榍石的球粒陨石标准化稀土元素配分图(标准化值据Sun and McDonough,1989)Fig.8 Chondrite-normalized REE pattern of titanite in Xingfengshan skarn (normalization values after Sun and McDonough,1989)
由于本次研究的榍石含有一定量的普通Pb (表3),不能构筑出谐和年龄。因此将所得U-Pb同位素数据投至Tera-Wasserburg图解上(Tera and Wasserburg,1972),图中不一致线与Y轴的交点为初始207Pb/206Pb组成,下交点年龄则可视为样品的形成年龄。杏枫山热液榍石的U-Pb同位素组成数据在Tera-Wasserburg图解上获得下交点年龄215.2±2.7Ma(1σ,n=47,MSWD=1.07),初始207Pb/206Pb为0.7560(图9a)。样品经207Pb校正后的加权平均206Pb/238U年龄为214.2±2.1Ma(图9b),与下交点年龄在误差范围内一致。
图9 杏枫山矽卡岩榍石的Tera-Wasserburg图解(a)及其207Pb矫正206Pb/238U加权平均年龄(b)Fig.9 Tera-Wasserburg diagram of titanite in Xingfengshan skarn (a) and 207Pb corrected 206Pb/238U weighted mean age (b)
表3 杏枫山热液榍石的LA-ICP-MS U-Pb同位素数据Table 3 LA-ICP-MS U-Pb isotope data of hydrothermal titanite in Xingfengshan skarn
本文选取的热液榍石产出于矽卡岩中的长石-石英脉,根据野外观察,这类长石-石英脉体在空间上与矽卡岩紧密伴生,常呈脉状、网脉状分布于矽卡岩中或矽卡岩与围岩的接触部位(图4d-f)。其次,该脉体中亦可见矽卡岩矿物以及白钨矿与热液榍石共生(图5)。类似的矿物组成和空间紧密关系说明两者之间具有成因联系,推测该含榍石脉体与矽卡岩为同期同源不同阶段热液活动的产物。已有的研究结果表明,榍石的U-Pb同位素体系封闭温度较高,可达700~750℃(Kennedyetal.,2010),而后期NW向含金石英脉和NE向无矿石英脉中石英的流体包裹体最高均一温度分别为420℃和308.5℃(肖静芸等,2020),远低于榍石的U-Pb同位素体系封闭温度;且本次研究选取不含后期脉体的、晶型完整的榍石样品进行U-Pb定年。因此,本次所获得的榍石U-Pb年龄,不仅为该类脉体的形成年龄,也可以代表杏枫山矽卡岩钨矿的成矿年龄,即杏枫山矽卡岩钨矿形成于215.2±2.7Ma。
关于层状矽卡岩白钨矿的成因,目前的研究表明这类矿床主要为岩浆热液作用的产物(Sato,1980;Gaspar and Inverno,2000;Changetal.,2019;Xieetal.,2019;张龙升等,2020)。此外,有少量研究认为此类钨矿可能产出于喷流沉积、区域变质作用中(Skaarup,1974;Larsen,1991;Plimer,1994)。
本次研究的杏枫山层状矽卡岩钨矿成矿年龄为215.2±2.7Ma,显著晚于其围岩沉积时代(新元古代)以及变形变质的时代(加里东期),含矿的矽卡岩产状平直连续,没有明显的变形(图4a),矽卡岩化未明显受构造控制,且围岩的变质级别较低,这一系列证据说明其形成与沉积作用或者变质作用关系不大。而前人大量研究显示白马山岩体在印支晚期活动强烈,如Li and Li(2007)利用SHRIMP锆石U-Pb法获得白马山的成岩年龄为217±2Ma,Chuetal.(2012)利用SIMS锆石U-Pb法获得了白马山217±2Ma的成岩年龄,Qiuetal.(2014)针对杏枫山侧龙潭超单元的SIMS 锆石U-Pb测年结果显示形成于218±0.8Ma,李建华等(2014)利用SHRIMP锆石U-Pb法获得了龙潭超单元215.9±1.9Ma和212.2±2.1Ma的成岩年龄,Fuetal.(2015)针对杏枫山西侧的龙藏湾超单元SIMS锆石U-Pb测年的结果显示该岩体在215.3±3.1Ma至209.3±4Ma之间均有活动,徐接标(2017)利用LA-ICP-MS锆石U-Pb法获得了小沙江和龙藏湾超单元的形成时间为215.4±1.3Ma、215.6±1.2Ma。不难发现,本次获得的杏枫山钨矿成矿年龄与前人研究获得的白马山岩体成岩年龄吻合很好。此外,白马山岩体为一还原性的钛铁矿花岗岩,这一点也与杏枫山矿区矽卡岩钨矿具有还原性的特征相契合。基于以上论述,我们推测该矿的形成应与同期的白马山岩浆热液活动有关。
本文与前人研究数据均表明,湘中地区印支晚期存在区域性的成岩成矿作用,其中湘中地区的钨成矿作用与金、锑成矿作用同期,主要集中在230~200Ma,并与该区中酸性岩浆岩活动处于同一时限(图10)。
图10 湘中地区印支期成矿年代统计(a)及成岩年代统计(b)成矿年龄数据引自:李华芹等(2008),王永磊等(2012),张龙升等(2014),付山岭等(2016),Li et al.(2018),Xie et al.(2019),陕亮等(2019),Zhang et al.(2019)和彭建堂等(2021);岩浆岩年龄数据引自:姚振凯和朱蓉斌(1995),赵军红等(2005),Wang et al.(2007),丁兴等(2012),张龙升等(2012),鲁玉龙等(2017a,b),赵增霞等(2015),陈佑纬等(2016),苏康明等(2016)和徐接标(2017)Fig.10 Geochronological data summary of Indosinian mineralization (a) and magmatism (b) in Xiangzhong region
关于湘中一带的钨成矿作用,我们认为其与该区中酸性岩浆活动密切相关,理由如下:
(1)钨矿成矿与岩浆岩有紧密的时空联系:湘中一带的钨矿大部分在空间分布上与已出露的或者隐伏的中酸性岩有关(图1)。例如木瓜园钨矿产于岩体之中(陕亮等,2019),栗山坡、上茶山、寨溪山、牛角界等钨矿床,则赋存于岩体与围岩的接触带(梁玉明,2015;苏康明等,2016);而大溶溪、包金山、曹家坝以及本次研究的杏枫山等钨矿,则与近邻的花岗岩或者隐伏岩体有关(张龙升等,2014;鞠培姣等,2016;Xieetal.,2019;彭建堂等,2021);其次,目前已获得的该区钨矿床的成矿年龄,与相关岩体的成岩年龄符合较好(图10),如木瓜园斑岩型钨矿,其与白钨矿共生的辉钼矿Re-Os等时线年龄为225.4±1.4Ma,与其赋存的三仙坝岩体锆石U-Pb年龄224.2±2.0Ma一致(陕亮等,2019);大溶溪层控矽卡岩钨矿中与白钨矿共生的辉钼矿Re-Os等时线年龄为224.3±3.9Ma,与邻近的大神山岩体的锆石U-Pb年龄224.3±1.0Ma一致(张龙升等,2014),本次研究获得杏枫山层控矽卡岩钨矿的年龄为215.2±2.7Ma,与白马山花岗岩的形成年龄一致。钨矿与花岗岩之间紧密的时空联系表明该区钨矿在成因上应与中酸性岩浆有关。
(2)湘中一带的印支期花岗岩均具有明显的还原性特征,属钛铁矿花岗岩(徐接标,2017),其Fe3+/FeT均小于0.4(李伟,2019);而相关的钨矿床亦具有明显的还原性特征,矿床中发育钙铝榴石、钙铁辉石、毒砂、磁黄铁矿、低Mo白钨矿、热液钛铁矿等还原性矿物组合(梁玉明,2015;鞠培姣等,2016;Xieetal.,2019;张龙升等,2020),其还原性应该是继承了成矿岩浆热液体系还原特征的结果。
(1)杏枫山矽卡岩钨矿中的榍石具有典型热液榍石的地球化学特征,具有较高的F、Al2O3,较低的TiO2、∑REE以及极低的Th/U。另外,其具有较高的W且不含Mo,表明其形成的热液流体具富W贫Mo的特征。
(2)该榍石的稀土配分模式为左倾式的轻稀土亏损、重稀土富集型,正Ce、Eu异常明显,其形成的环境具有还原的特征。
(3)杏枫山矽卡岩钨矿形成于215.2±2.7Ma,与白马山印支期岩体侵位时间吻合,该矿为白马山岩浆热液作用的产物。
(4)湘中地区钨成矿集中在230~200Ma,主要与同期的还原性花岗质岩浆活动有关,两者均为湘中印支晚期区域性成岩成矿作用的产物。
致谢在本文完成过程中,野外工作得到了湖南金杏矿业有限公司副总经理刘鹏程,地测部门的刘宏钦部长、刘佳工程师、肖鸿杰工程师等全体工作人员的支持与帮助;LA-ICP-MS测试得到了矿床地球化学国家重点实验室唐燕文老师、韩俊杰工程师的指导和帮助;文章成文过程中得到了邢朗彰博士、邓卫博士、魏潞明博士的帮助;中国地质科学院刘俊辰博士以及另一名匿名审稿专家提出了诸多宝贵修改意见;在此一并致谢!