随着嫦娥五号的发射成功,标志着我国探月工程开启了航天史的新阶段。嫦娥五号此次行程最大的亮点就是从月球采集土壤,带回地球研究。很多人不了解,为什么要花费如此多的心血从月球上“挖土”呢?月球上的土壤到底有什么特别之处呢?
1969年7月20日,阿姆斯特朗和奥尔德林成为了首次踏上月球的人类,这是人类探索太空的一次伟大进步。其中,所带回来的月球土壤样品成为了关于月球最为珍贵的东西。此次“嫦娥五号”也执行迄今为止我国最复杂的航天任务,其中之一就是采集月球土壤。那么,为什么要从月球采集土壤,月球的土壤藏着什么秘密呢?
通过对月球土壤的研究,能够帮助科学家们,近距离接触月球的岩石、土壤性质,使得月球距离我们更近,在显微镜下,其神秘面纱也被层层揭开。
美国史密森尼国家自然历史博物馆地质学家埃里克·贾文曾撰文表示,来自月球的岩石彻底改变了我们对月球表面性质、月球起源以及太阳系演化三大问题的认识。
除了认识月球,还帮助科学家确立了现代行星科学,为认识各类行星的地质演化过程提供了参考。此次,嫦娥五号带回的“高价土”,包含月球岩石碎块、矿物及陨石等物质,能帮助科学家研究月球地质演化历史、了解太阳活动,也将为人类开采月球资源铺平道路。
月球的表面不是坚硬的岩石,而是覆盖了一层松散的土壤,科学家称之为“月壤”。人类目前拥有的月壤,均来自9次探月任务。阿波罗登月计划的6次任务,一共从月球正面的6个不同地点采集并带回了382公斤的月球样品,其中约1/3是月壤;苏联的3次月球号任务,也采回了300克左右的月壤样品。
通过对这些样品的研究,科学家们发现,除了粒度都很细小之外,月球与地球上的土壤有很大的差异。
地球上的土壤大家都很熟悉,是一层疏松的物质,是由岩石风化形成的细粒矿物质,添加了有机质和水,含有微生物等。地球上土壤的形成,除了化学、物理作用之外,生物的活动是其最重要的特征。此外,我国西北地区广泛分布的黄土,是一种比较特殊的土壤,主要由风力搬运、沉积形成。黄土逐年堆积,因此还记录了长达200多万年的气候变化历史。
由于没有大气,月壤被直接暴露在太阳辐射和微陨石的轰击之下,组成和物理性质发生改变,科学家们将这个过程称为“太空风化”,从而与地球上在大气、水和生物共同作用下的“地表风化”相区别。
月壤的形成过程没有生物活动参与,没有有机质,还极度缺水干燥;组成月壤的矿物粉末基本是由陨石撞击破碎形成,因此,粉末颗粒的锐角十分锋利。
不仅如此,月球没有磁场保护,太阳风(主要由氢离子等组成)会注入到粉尘颗粒表面,将矿物中的二价铁离子还原成纳米金属铁微粒,从而改变其电磁特征、光谱特征(颜色)等。
另外,月球表面经常被陨石以每秒10多公里的速度撞击,巨大的能量会使月表一部分物质熔融,形成玻璃,还有一部分物质气化,再重新凝结,成为月壤组成的一部分。
月壤中绝大部分物质是就地及邻近地区物质提供的。由于月球几乎没有大气层,月球表面长期受到微陨石的冲击及太阳风粒子的注入,太阳风粒子的注入使月壤富含稀有气体组分。由于太阳风离子注入物体暴露表面的深度一般小于0.2μm,因此这些稀有气体在细粒月壤中平均含量最高,有些月壤细粒粉末中稀有气体标准状态下含量高达0.1—1cm3/g,相当于1019—1020原子/cm3。在整个月球演化史中,由于外来物体对月球表面的频繁撞击,月壤物质几乎完全混合,在深达数米的月壤中,稀有气体的含量较均匀。
在月壤的稀有气体中,还含有氦3。氦3能够参与核反应聚变。月壤中氦3的含量较为稳定,月壤中氦3的资源总量可达100万—500万吨。而地球上天然气可提取的氦3是非常少的,只有15—20吨。
月球中还有月海玄武岩中的钛、铁等资源,克里普岩与稀土元素、钍、铀等资源。克里普岩(KREEP)是高地三大岩石类型之一,因富含K(钾)、REE(稀土元素)和P(磷)而得名。此外,月球还蕴藏有丰富的铬、镍、钾、钠、镁、硅、铜等金属矿产资源。
看到月球的土壤可以带回地球进行研究,很多人会问,为什么不带火星的土壤进行研究呢?与其说,技术还未达到,不如说,科学家们不敢把火星土壤带回地球,这是为什么呢?
大家都知道,火星被认为和地球非常像,科学家们认为,太阳系内火星很可能出现过生命,
而如果火星曾经出现过生命,那么,这些生命因为什么而灭绝呢?如果火星上的生命是因为病毒而毁灭的,那么火星的土壤中,可能就是蕴含着病毒的因素。而强行将火星的土壤带回地球,也许会导致病毒爆发。這将是非常可怕的后果。因此,目前科学家还无法把火星的土壤带回地球。
(编辑/张峰)