黄 兴 习金根 陈 涛 覃 旭 谭施北 陈河龙 易克贤,*
专题
剑麻苯丙氨酸裂解酶基因的鉴定及表达分析
黄 兴1习金根1陈 涛2覃 旭2谭施北1陈河龙3易克贤1,*
1中国热带农业科学院环境与植物保护研究所 / 农业农村部热带作物有害生物综合治理重点实验室 / 海南省热带农业有害生物监测与控制重点实验室, 海南海口 571101;2广西壮族自治区亚热带作物研究所, 广西南宁 530001;3中国热带农业科学院热带生物技术研究所, 海南海口 571101
剑麻是热带地区重要的纤维作物, 但其分子生物学研究基础薄弱, 纤维发育机制尚未明确。苯丙氨酸裂解酶(phenylalanine ammonia-lyase, PAL)是纤维重要组分木质素生物合成的起始酶, 近年来转录组测序技术快速发展, 使开展剑麻基因相关研究更为便利。本文根据已报道转录组数据成功鉴定出2个含完整编码序列的剑麻基因, 其在剑麻叶片发育过程中的表达模式与前人报道的在纤维发育过程中的活性变化规律一致, 表明其与木质素生物合成密切相关。遗传进化分析结果显示, 剑麻和番麻基因进化关系更近, 选择压力分析结果显示, 剑麻和番麻基因序列选择压力一致且高于太匮龙舌兰基因, 这一现象可能由剑麻和番麻纤维性状的趋同进化引起。此外, 剑麻基因在铜铅胁迫后差异表达不显著, 其可能在重金属胁迫后受到转录后调控。值得一提的是, 在烟草疫霉侵染后, 剑麻基因表达水平上调倍数较高, 其可能同时参与苯丙烷类代谢途径中抗病相关次生代谢产物的合成和细胞壁介导的免疫机制。因此开展剑麻基因功能解析可加深对剑麻纤维发育机制和抗病机制的理解, 对培育高产、优质、多抗剑麻新品种具有重要意义。
剑麻; 苯丙氨酸裂解酶基因; 遗传进化; 选择压力; 表达模式; 逆境胁迫
剑麻是我国热带、亚热带地区栽培的重要硬质纤维作物, 其纤维具有质地坚韧、强度高、耐摩擦、耐酸碱腐蚀、不易打滑等特性, 广泛应用于渔业、航海、工矿、汽车、造纸、纤维复合材料等特种行业[1]。国内剑麻主栽品种为H11648, 其主要收获部位叶片生物量大但含水率较高, 纤维含量仅占约5%, 其纤维性状存在较大改良提升空间[2]。目前剑麻研究基础相对薄弱, 特别是分子生物学研究水平较低。剑麻纤维相关研究多集中于田间农艺性状,其分子机制研究相对较少[3]。近年来高通量测序技术的快速发展, 为剑麻分子生物学研究带来了新的发展机遇。Huang等[4]报道了剑麻叶片转录组测序及组装, 并通过同源序列克隆方法获得5个剑麻纤维素合成酶基因, 为解析剑麻纤维合成机制提供了重要基础。Deng等[5]在已公布的剑麻转录组序列中鉴定出24个家族基因, 其中6个在剑麻叶片发育过程中差异表达。此外, Huang等[6]通过转录组比较有效揭示了剑麻种间进化差异, 并通过选择压力分析筛选出6个纤维性状相关候选基因。相比之下, 剑麻木质素合成代谢相关研究尚未见报道。作为纤维的重要组成部分, 木质素合成代谢机制较为复杂, 其生物合成途径大致分为两步: 先是木质素单体的合成, 而后由木质素单体聚合成具有生物活性的木质素[7]。木质素单体合成由十几种酶参与调控, 苯丙氨酸裂解酶(phenylalanine ammonia-lyase, PAL)位于木质素生物合成途径的起步位置, 在木质素生物合成途径中起关键调控作用[8]。拟南芥基因组中包含4个基因, 相关研究报道已证实其在木质素、黄酮类、酚类化合物等次生代谢产物合成过程中的重要作用[9-11]。水稻中也报道了基因的全基因组鉴定, 同时发现其在水稻应答铬胁迫过程中起重要调控作用[12]。随着完成基因组测序的植物种类逐年增加, 除拟南芥、水稻外的其他植物也相继报道了基因家族的全基因组分析, 例如毛果杨、葡萄、西瓜等[13-15]。剑麻尚未开展基因组测序, 但转录组测序数据的公布为基因鉴定工作提供了可用的生物信息[4]。本文将在已公布的剑麻及其近缘物种转录组中通过同源序列比对鉴定家族基因, 并开展遗传进化分析、选择压力分析及表达分析, 阐明剑麻基因的遗传进化规律及其在叶片发育、重金属胁迫及病原侵染等过程中的表达模式, 以期为进一步解析剑麻基因的生物学功能及作用机制提供参考。
剑麻主栽品种H11648种植于中国热带农业科学院环境与植物保护研究所(19.99°N, 110.33°E)。2年生的盆栽剑麻用于不同叶片发育时期取样, 取心叶、未展开叶和完全展开叶(与中轴夹角大于45°)3个发育时期[5]。选取1年生盆栽剑麻进行逆境胁迫处理, 重金属盐处理采用硫酸铜和硝酸铅溶液浇灌, 清水浇灌作为对照, 根据前人报道, 分别设1 g L-1(CuSO4·5H2O)和1.3 g L-1[16-17]2个重金属盐浓度。每个处理浇灌500 mL重金属溶液, 处理后约2周叶片因重金属毒害发生卷曲时进行取样[5]。病原侵染处理根据前人报道采用刺伤接种法接种剑麻斑马纹病病原烟草疫霉, 对照处理仅刺伤不接种病原, 接种5 d后取样[18]。每个发育时期、胁迫处理及对照均在不同植株取样3次作为生物学重复, 取样后立即置于液氮速冻, 通过植物总RNA提取试剂盒(天根生化科技(北京)有限公司)提取RNA并保存于-80°C超低温冰箱备用。
以4个拟南芥和9个水稻基因为检索序列[12], 采用TBlastx方法[19]检索剑麻(H11648)[4]转录组数据库。检索获得的基因由ORF-FINDER分析其编码序列, 仅保留含有完整编码序列的基因用于后续分析[20]。通过ProtParam预测剑麻PAL蛋白长度、分子量和理论等电点[21], 并通过CELLO进行亚细胞定位预测[22]。以含有完整编码序列的剑麻基因为检索序列, 检索其近缘物种沙漠龙舌兰()、太匮龙舌兰()和番麻()转录组数据库[23-24], 以获得剑麻基因在3个近缘物种中的同源序列。选取拟南芥(4个)、水稻(9个)、玉米(17个)、短柄草(8个)、高粱(8个)、棉花(8个)、亚麻(4个)、芦笋(4个)及4个龙舌兰属物种序列进行遗传进化分析, 采用ClustalX 2.0软件进行多重序列比对并构建Neighbor- Joining进化树, Bootstrap分析采用1000次重复[25]。
以龙舌兰属野生种沙漠龙舌兰为参照, 将剑麻、太匮龙舌兰和番麻的基因序列分别与沙漠龙舌兰基因序列进行种间选择压力分析[6]。通过DnaSP软件(5.0版本)分析2个基因序列间的同义突变频率(synonymous substitution, Ks)、非同义突变频率(non-synonymous substitution, Ka)及两者间的比值(Ka/Ks)[26]。此外, 进一步通过滑窗法分析序列间的Ka/Ks值, 窗口长度为30个碱基(bp), 步移长度为6 bp[6]。
由已报道的剑麻、沙漠龙舌兰、太匮龙舌兰和番麻转录组中获取[4,23-24]转录组表达数据(RPKM)。将已提取的剑麻RNA样品通过GoScript Reverse Transcription System (Promega, 美国)反转录为cDNA进行实时定量PCR分析, 仪器采用QuantStudio 6实时荧光定量PCR系统(Thermo Fisher,美国)。扩增体系为20 μL, 其中包括0.5 μL正向引物、0.5 μL反向引物、1 μL cDNA模板、10 μL TransStart Tip Green qPCR Supermix (北京全式金生物技术有限公司)、0.4 μL Passive Reference Dye (北京全式金生物技术有限公司)和7.6 μL双蒸水。反应程序为94℃ 30 s; 94℃ 3 min, 94℃ 10 s, 58℃ 30 s, 共40个循环; 溶解曲线循环。以剑麻基因()为内参基因, 每个样品重复3次作为技术重复, 结果用2−ΔΔCt法进行相对定量分析[27]。采用Primer 3软件[28]设计引物, 其序列见表1。
同源序列检索共获得2个含有完整编码序列的剑麻基因, 将其命名为、, 并上传至GenBank数据库(表2)。其序列长度分别为2112 bp和2118 bp, 分别编码703个和705个氨基酸。其蛋白分子量均超过76 kD, 理论等电点分别为5.85和5.93, 亚细胞定位预测均位于细胞质。
表1 实时定量PCR引物
表2 剑麻PAL基因及其蛋白理化性质、亚细胞定位预测
以拟南芥、水稻基因为参照, 选取纤维作物(棉花、亚麻)、禾本科作物(玉米、短柄草、高粱)、天门冬目作物芦笋、剑麻基因及其近缘物种基因(表3)进行遗传进化分析, 结果如图1所示。70个蛋白序列被分成2个分支, 其中分支I中的亚分支a均为天门冬目作物序列, 亚分支b均为拟南芥、棉花、亚麻序列, 分支II则均为禾本科作物序列。此外, 剑麻和番麻序列均聚类在相同分支, 沙漠龙舌兰和太匮龙舌兰序列也均聚类在同一分支。
表3 龙舌兰属PAL基因序列号
At: 拟南芥; Ah: 剑麻; Am: 番麻; Ad: 沙漠龙舌兰; Aq: 太匮龙舌兰; Ao: 芦笋; Lus: 亚麻; Gorai: 棉花; Os: 水稻; GRMZM: 玉米; Bradi: 短柄草; Sobic: 高粱。利用ClustalX 2.0软件进行氨基酸序列的多重比对并构建Neighbor-Joining进化树(Bootstrap分析采用1000次重复)。
At:; Ah:H11648; Am:; Ad:; Aq:; Ao:; Lus:; Gorai:; Os:; GRMZM:; Bradi:; Sobic:. Multiple alignment of amino acid sequences was carried out and Neighbor-Joining evolutionary tree was constructed by ClustalX 2.0 software (Bootstrap values were tested for 1000 trails).
以龙舌兰属野生种沙漠龙舌兰为参照, 将其余龙舌兰属物种基因序列分别与沙漠龙舌兰基因序列进行种间选择压力分析(表4)。Ka/Ks值大于1表明相应基因受到正向选择, 小于等于1表明其受到纯化选择[6]。龙舌兰属基因种间Ka/Ks值均小于1, 表明基因在龙舌兰属物种进化过程中受纯化选择作用。进一步通过滑窗法分析龙舌兰属基因种间选择压力发现, 剑麻和番麻基因Ka/Ks变化趋势较为接近, 其首尾区段选择压力高于中部区段(图2)。和的部分区段Ka/Ks值大于1, 表明该区域受正选择效应。此外, 太匮龙舌兰基因Ka/Ks值变化趋势与剑麻/番麻差异较大,受选择压力较小,仅前端受选择压力较大, 但两者Ka/Ks值均未超过1。
表4 龙舌兰属PAL基因选择压力分析
物种缩写同图1。
Abbreviations of species are the same as those given in Fig. 1. Ks: synonymous substitution; Ka: non-synonymous substitution.
物种缩写同图1。使用DnaSP进行滑窗法分析, 窗口长度为30 bp, 步移长度为6 bp。
Abbreviations of species are the same as those given in Fig. 1. Sliding window analysis was conducted by DnaSP with a window size of 30 bp and a step size of six bp.
通过已公布的转录组数据获取龙舌兰属基因表达信息发现,仅在太匮龙舌兰中表达水平较高,在剑麻和番麻中的表达水平均低于其余两物种, 表明基因在龙舌兰属不同物种中存在表达模式差异(图3)。
物种缩写同图1。
Abbreviations of species are the same as those given in Fig.1.
qRT-PCR检测结果显示, 剑麻基因在3个时期表达趋势均为先上调之后下调(图4)。其中仅在未展开叶中显著上调, 而仅在展开叶中显著下调。逆境胁迫表达结果显示, 2个基因在铜铅胁迫下差异表达均不显著, 仅在铜胁迫后轻微下调、在铅胁迫后轻微上调。此外, 2个基因在烟草疫霉侵染后均极显著上调。
PAL是苯丙烷类代谢途径的起始酶, 其在植物生长发育及环境适应性等方面起重要调控作用[29]。前人研究已证实PAL与木质素含量直接相关, 因此克隆基因并解析其在剑麻纤维发育过程中的功能, 对改良剑麻纤维相关性状具重要意义[7]。剑麻基因组尚未公布, 其基因组较大、杂合度较高使基因组组装难度较大, 近年来转录组测序技术快速发展,为剑麻基因研究提供了快速、高通量且价格低廉的技术手段[4]。本文成功从已发表的剑麻叶片转录组中鉴定出2个含完整编码序列的基因, 表明上述2个基因主要表达部位之一为叶片。根据已开展基因全基因组分析的植物推测, 剑麻极可能含多个基因[30]。除和外其他剑麻基因可能因在叶片中表达水平较低而未能通过转录组测序组装出完整编码序列。剑麻主要收获部位为叶片, 因此其叶片中的木质素合成途径可能主要由和参与调控。苎麻相关研究发现, 纤维发育至成熟过程中木质素含量逐渐增加, 而PAL活性则先上升后下降[31]。剑麻叶片收获以完全展开叶片为主(与中轴夹角>45°), 叶片完全展开时纤维趋于成熟, 因此本文选取3个叶片发育时期与剑麻纤维发育的前、中、后3个时期相对应。在此过程中, 剑麻基因的表达模式(图4)与苎麻PAL活性变化趋势一致, 表明剑麻基因与木质素合成密切相关。
L0: 心叶; L1: 未展开叶; L2: 完全展开叶; CK: 空白对照; CU: 铜胁迫处理; PB: 铅胁迫处理; PN: 烟草疫霉侵染。*, **分别表示在0.05和0.01水平差异显著。
L0: shoot; L1: unexpended leaf; L2: expended leaf; CK: control; CU: copper stress; PB: lead stress; PN:Breda inoculation. * and** indicate significant differences at the 0.05 and 0.01 probability levels, respectively.
遗传进化分析结果显示, 双子叶作物、禾本科作物和天门冬目作物基因分别聚类在不同分支中, 表明基因具有一定程度的物种特异性进化, 前人报道也证实了在胡桃科和禾本科植物中存在物种特异的基因家族扩张[30]。此外, 剑麻和番麻基因聚类在相同分支, 同时沙漠龙舌兰和太匮龙舌兰基因也聚类在相同分支(图1)。但由4种龙舌兰科植物叶绿体序列构建的进化树则显示剑麻和太匮龙舌兰亲缘关系较近, 而沙漠龙舌兰与其余三者亲缘关系均较远[6]。上述结果间的差异可能由剑麻和番麻纤维性状趋同进化所导致[32]。番麻叶片生物量与剑麻相当, 也可用于纤维加工, 但其叶缘尖刺较多, 收获不便, 因而以纤维生产为用途的规模种植较少[33]。本文进一步分析龙舌兰属基因的选择压力发现, 其均未受到正向选择(表4), 仅剑麻和番麻基因部分区段受到正向选择, 太匮龙舌兰基因区段受到的选择压力均较小(图2)。此外, 转录组数据显示,基因在剑麻和番麻叶片中的表达水平与其余两者存在差异(图3), 同时纤维素合成酶基因也存在相近表达模式[4], 表明剑麻和番麻纤维发育调控机制与其余两者存在较大差异。现有数据未能完全解释其调控机制存在差异的原因, 仍需开展更深入的基因功能及其上下游调控机制的研究。
前人研究表明, 铜铅胁迫处理后PAL活性显著提高, 但其基因表达水平未显著变化, 表明基因在重金属胁迫下存在转录后调控[34-35]。与此类似, 剑麻基因在铜铅胁迫后表达量变化不显著(图4), 表明剑麻中也存在转录后调控。最新研究发现, 水稻基因与抗病性密切相关, 水稻基因组包含9个基因, 其中参与介导了对多种真菌病害的广谱抗性[36]。剑麻基因在烟草疫霉侵染后显著上调, 表明其参与了剑麻抗病响应机制(图4), 但剑麻基因如何通过调控苯丙烷类代谢途径参与抗病机制仍需开展更深入的研究。重金属胁迫通常未对细胞壁造成影响, 相比之下, 病原入侵时会破坏植物细胞壁结构, 植物因细胞壁结构完整性受到破坏而启动天然防御机制并修复受损的细胞壁结构, 即细胞壁介导的免疫机制(plant cell wall-mediated immunity)[37]。因此, 剑麻基因在病原入侵时上调倍数远超纤维发育中期, 其在调控木质素生物合成以修复细胞壁的同时也参与了多种抗病相关次生代谢产物的合成, 例如水杨酸等[38]。因此开展剑麻基因功能解析不仅可加深对剑麻纤维发育机制的理解, 也可提升对剑麻抗病机制的认知, 对培育高产、优质、多抗剑麻新品种具有重要意义。
本文从剑麻转录组中鉴定出2个基因成员, 与番麻亲缘关系较近。剑麻基因进化过程中未受到正向选择, 仅部分区段受到了较强的进化选择压力。基因在龙舌兰属不同物种叶片中存在表达模式差异, 同时剑麻基因广泛参与调控纤维发育和逆境胁迫应答。基因的鉴定有助于解析剑麻纤维发育及抗病机制, 在剑麻高产、优质、多抗剑麻新品种选育中具有重要应用价值。
[1] Li Y, Mai Y W, Ye L. Sisal fibre and its composites: a review of recent developments., 2000, 60: 2037–2055.
[2] 许能琨, 余让水, 孙光明. 氮磷钾钙镁肥不同用量对剑麻产量质量和矿质组分的影响. 热带作物学报, 1994, 15(1): 39–45.Xu N K, Yu R S, Sun G M. Effects of different levels of NPKCaMg fertilizers on yield, fibre quality and nutrient content ofH.11648., 1994, 15(1): 39–45 (in Chinese with English abstract).
[3] 黄兴, 陈涛, 习金根, 贺春萍, 吴伟怀, 梁艳琼, 郑金龙, 李锐, 易克贤. 剑麻单叶农艺性状与鲜叶产量的相关性研究. 中国麻业科学, 2018, 40(2): 70–74.Huang X, Chen T, Xi J G, He C P, Wu W H, Liang Y Q, Zheng J L, Li R, Yi K X. The Correlation between single leaf traits and fresh yield of sisal., 2018, 40(2): 70–74 (in Chinese with English abstract).
[4] Huang X, Xiao M, Xi J, He C, Zheng J, Chen H, Gao J, Zhang S, Wu W, Liang Y, Xie L, Yi K. De novo transcriptome assembly of Agave H11648 by Illumina sequencing and identification of cellulose synthase genes inspecies., 2019, 10: 103.
[5] Deng G, Huang X, Xie L, Tan S, Gbokie T J, Bao Y, Xie Z, Yi K. Identification and expression ofgenes in the CAM plant agave., 2019, 10: 555.
[6] Huang X, Wang B, Xi J, Zhang Y, He C, Zheng J, Gao J, Chen H, Zhang S, Wu W, Liang Y, Yi K. Transcriptome comparison reveals distinct selection patterns in domesticated and wildspecies, the important CAM plants., 2018, 2018: 5716518.
[7] 李潞滨, 刘蕾, 何聪芬, 董银卯, 彭镇华. 木质素生物合成关键酶基因的研究进展. 分子植物育种, 2007, 5(增刊1): 45–51. Li L B, Liu L, He C F, Dong Y M, Peng Z H. Research progresses on the genes encoding the key enzymes in biosynthetic pathway of lignin., 2007, 5(S1): 45–51 (in Chinese with English abstract).
[8] 石海燕, 张玉星. 木质素生物合成途径中关键酶基因的分子特征. 中国农学通报, 2011, 27(5): 288–291. Shi H Y, Zhang Y X. Molecular characterization of key enzyme genes related to the pathway of lignin biosynthesis., 2011, 27(5): 288–291 (in Chinese with English abstract).
[9] Wanner L A, Li G, Ware D, Somssich I E, Davis K R. The phenylalanine ammonia-lyase gene family in., 1995, 27: 327–338.
[10] Olsen K M, Lea U S, Slimestad R, Verheul M, Lillo C. Differential expression of fourgenes;andhave functional specialization in abiotic environmental-triggered flavonoid synthesis., 2008, 165: 1491–1499.
[11] Raes J, Rohde A, Christensen J H, Van Y D P, Boerjan W. Genome-wide characterization of the lignification toolbox in., 2003, 133: 1051–1071.
[12] Yu X Z, Fan W J, Lin Y J, Zhang F F, Gupta D K. Differential expression of thegene family in rice seedlings exposed to chromium by microarray analysis., 2018, 27: 325–335.
[13] Jaillon O, Aury J M, Noel B, Policriti A, Clepet C, Casagrande A, Choisne N, Aubourg S, Vitulo N, Jubin C. The grapevine genome sequence suggests ancestral hexaploidization in major angiosperm phyla., 2007, 449: 463.
[14] Shi R, Sun Y H, Li Q, Heber S, Sederoff R, Chiang V L. Towards a systems approach for lignin biosynthesis in: transcript abundance and specificity of the monolignol biosynthetic genes., 2010, 51: 144–163.
[15] Wada K C, Mizuuchi K, Koshio A, Kaneko K, Mitsui T, Takeno K. Stress enhances the gene expression and enzyme activity of phenylalanine ammonia-lyase and the endogenous content of salicylic acid to induce flowering in pharbitis., 2014, 171: 895–902.
[16] 李福燕, 张黎明, 李许明, 郭彬, 陈柳燕, 漆智平. 剑麻对铜的耐性与累积效应研究初探. 中国农学通报, 2006, 22(12): 417–420.Li F Y, Zhang L M, Li X M, Guo B, Chen L Y, Qi Z P. Sisal tolerance of cupreous and its accumulation preliminary explore., 2006, 22(12): 417–420 (in Chinese with English abstract).
[17] 陈柳燕, 张黎明, 李福燕, 郭彬, 李许明, 廖香俊, 漆智平. 剑麻对重金属铅的吸收特性与累积规律初探. 农业环境科学学报, 2007, 26: 1879–1883.Chen L Y, Zhang L M, Li F Y, Guo B, Li X M, Liao X J, Qi Z P. A primary research on sisal’s uptake property and the accumulation rule to Pb ions., 2007, 26: 1879–1883 (in Chinese with English abstract).
[18] 汪平, 高建明, 杨峰, 郑金龙, 刘巧莲, 陈河龙, 易克贤. 烟草疫霉侵染前后剑麻叶片转录组学研究. 热带作物学报, 2014, 35: 576–582. Wang P, Gao J M, Yang F, Zheng J L, Liu Q L, Chen H L, Yi K X. Transcriptome of sisal leaf pretreated withBreda., 2014, 35: 576–582(in Chinese with English abstract).
[19] Altschul S F, Gish W, Miller W, Myers E W, Lipman D J. Basic local alignment search tool., 1990, 215: 403–410.
[20] Rombel I T, Sykes K F, Rayner S, Johnston S A. ORF-FINDER: a vector for high-throughput gene identification., 2002, 282: 33–41.
[21] Wilkins M R, Gasteiger E, Bairoch A, Sanchez J C, Williams K L, Appel R D, Hochstrasser D F. Protein identification and analysis tools in the ExPASy server., 1999, 112: 531–552.
[22] Yu C, Chen Y, Lu C, Hwang J. Prediction of protein subcellular localization., 2006, 64: 643–651.
[23] Gross S M, Martin J A, Simpson J, Abraham-Juarez M J, Wang Z, Visel A. De novo transcriptome assembly of drought tolerant CAM plants,and., 2013, 14: 563.
[24] Abraham P E, Yin H, Borland A M, Weighill D, Lim S D, De Paoli H C, Engle N, Jones P C, Agh R, Weston D J, Wullschleger S D, Tschaplinski T, Jacobson D, Cushman J C, Hettich R L, Tuskan G A, Yang X. Transcript, protein and metabolite temporal dynamics in the CAM plant., 2016, 2: 16178.
[25] Larkin M A, Blackshields G, Brown N P, Chenna R, McGettigan P A, McWilliam H, Valentin F, Wallace I M, Wilm A, Lopez R, Thompson J D, Gibson T J, Higgins D G. Clustal W and Clustal X version 2.0., 2007, 23: 2947–2948.
[26] Librado P, Rozas J. DnaSP v5: a software for comprehensive analysis of DNA polymorphism data., 2009, 25: 1451–1452.
[27] Livak K J, Schmittgen T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2 (−Delta Delta C(T)) method., 2001, 25: 402–408.
[28] Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B C, Remm M, Rozen S G. Primer3—new capabilities and interfaces., 2012, 40: e115.
[29] Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y H, Yu J Q, Chen Z. Functional analysis of thePAL gene family in plant growth, development, and response to environmental stress., 2010, 153: 1526–1538.
[30] Yan F, Li H Z, Zhao P. Genome-wide identification and transcriptional expression of thegene family in common walnut (L.)., 2019, 10: 46.
[31] 李建军, 郭清泉, 陈建荣. 苎麻木质素形成的相关酶类研究. 中国麻业科学, 2009, 31(2): 119–124. Li J J, Guo Q Q, Chen J R. Study on related enzymes of lignin synthesis in ramie., 2009, 31(2): 119–124 (in Chinese with English abstract).
[32] Pichersky E, Lewinsohn E. Convergent evolution in plant specialized metabolism., 2011, 62: 549–566.
[33] Sghaier A, Chaabouni Y, Msahli S, Sakli F. Morphological and crystalline characterization of NaOH and NaOCl treatedL. fiber., 2012, 36: 257–266.
[34] Kováčik J, Klejdus B, Hedbavny J, Zoń J. Copper uptake is differentially modulated by phenylalanine ammonia-lyase inhibition in diploid and tetraploid chamomile., 2010, 58: 10270–10276.
[35] Pawlak-Sprada S, Arasimowicz-Jelonek M, Podgórska M, Deckert J. Activation of phenylpropanoid pathway in legume plants exposed to heavy metals. Part I. Effects of cadmium and lead on phenylalanine ammonia-lyase gene expression, enzyme activity and lignin content., 2011, 58: 211–216.
[36] Wang R, Wang G L, Ning Y. PALs: emerging key players in broad-spectrum disease resistance., 2019, 24: 785–787.
[37] Bacete L, Mélida H, Miedes E, Molina A. Plant cell wall-mediated immunity: cell wall changes trigger disease resistance responses., 2018, 93: 614–636.
[38] Duan L, Liu H B, Li X H, Xiao J H, Wang S P. Multiple phytohormones and phytoalexins are involved in disease resistance toinvaded from roots in rice., 2014, 152: 486–500.
Identification and expression ofgenes in sisal
HUANG Xing1, XI Jin-Gen1, CHEN Tao2, QIN Xu2, TAN Shi-Bei1, CHEN He-Long3, and YI Ke-Xian1,*
1Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences / Key Laboratory of Integrated Pest Management on Tropical Crops, Ministry of Agriculture and Rural Affairs / Hainan Key Laboratory for Monitoring and Control of Tropical Agricultural Pests, Haikou 571101, Hainan, China;2Guangxi Subtropical Crops Research Institute, Nanning 530001, Guangxi, China;3Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, Hainan, China
Sisal is an important fiber crop in tropical areas, butitsresearch foundation of molecular biology is relatively weak, and the mechanism of fiber development still remains unclear. Phenylalanine ammonia-lyase (PAL) is the first enzyme of lignin bio-synthesis, which is an important component of fiber. According to published transcriptome data, two sisalgenes with complete coding sequences were successfully identified. Their expression patterns during sisal leaf development were consistent with previously reported PAL activity changes during fiber development, indicating that PAL was closely related to lignin bio-synthesis. Phylogenetic analysis showed that sisalwere closely related with. Selection pressure analysis showed similar selection pressure ofin sisal and, which were higher than those in. This might be caused by the convergent evolution of fiber-related traits in sisal and. In addition, sisalwere not significantly expressed under neither copper nor lead stress, which might be caused by post-transcriptional regulation under heavy metal stresses. It was worth noting that the expression of sisalwas highly up-regulated afterBreda inoculation. Sisalmight participate in the bio-synthesis of disease resistance-related secondary metabolites in phenylpropanoid pathway, as well as plant cell-wall mediated immunity. Therefore, functional characterization of sisalcould improve the understanding of mechanisms in fiber development and disease resistance, which is of great importance for breeding new sisal varieties with high yield, high quality and multiple resistance.
sisal;gene; phylogenetic analysis; selection pressure; expression pattern; adverse stress
10.3724/SP.J.1006.2021.04116
本研究由国家重点研发计划项目(2018YFD0201100), 国家现代农业产业技术体系建设专项(CARS-16), 海南省自然科学基金项目(319QN275, 320RC698), 广西重点研发计划项目(桂科AB18221105)和“一带一路”热带项目(BARTP-08)资助。
This study was supported by the National Key Research and Development Program of China (2018YFD0201100), the China Agriculture Research System (CARS-16), the Hainan Provincial Natural Science Foundation of China (319QN275, 320RC698), the Guangxi Key Research and Development Program (GuiKe-AB18221105), and the Belt and Road Tropical Project (BARTP-08).
易克贤, E-mail: yikexian@126.com
E-mail: huangxing@catas.cn
2020-05-30;
2020-09-13;
2020-10-10.
URL: https://kns.cnki.net/kcms/detail/11.1809.S.20201009.1834.004.html