海藻多糖抗蚀剂对红壤坡面侵蚀过程的影响

2021-04-01 01:54丁文峰林庆明康靖羚韩昊宇张平仓
农业工程学报 2021年1期
关键词:坡面水性坡度

丁文峰,林庆明,李 昊,康靖羚,韩昊宇,张平仓

海藻多糖抗蚀剂对红壤坡面侵蚀过程的影响

丁文峰1,2,林庆明3,李 昊1,2,康靖羚1,2,韩昊宇1,2,张平仓1,2※

(1. 长江水利委员会长江科学院,武汉 430010;2. 水利部山洪地质灾害防治工程技术研究中心,武汉 430010; 3. 长江水利委员会水土保持监测中心站,武汉 430010)

为探究海藻多糖抗蚀剂(SA-01)在控制坡面水土流失中的效果及作用机理,该研究以南方红壤区典型红壤为例,通过人工模拟降雨试验(雨强90 mm/h,坡度5°、10°、15°),设置不同施加浓度(0、0.25%、0.50%、0.75%、1.00%),分析SA-01施加浓度对红壤坡面产流产沙过程的影响,并结合土样斥水性试验、团聚体稳定性试验和电镜扫描分析SA-01影响坡面土壤侵蚀的作用机理。结果表明:与不施加SA-01的坡面相比,施加SA-01后坡面产流时间提前,稳定径流量增大。随施加浓度增大,坡面产流量增加比例也增大。施加SA-01后能显著降低坡面土壤侵蚀产沙量,这主要是由于土壤施加SA-01后,与土壤中的Ca2+等阳离子发生螯合反应,在土壤颗粒表面生成有一定强度的保护层有关,保存层的存在使土壤斥水性增大,减少了土壤团聚体的遇水分散性,提高了各级粒径土壤团聚体的稳定性。0.25%的施加浓度即可将团聚体水稳性提升到70%以上,这为中国南方以排水保土为核心的水土保持工作提供了新思路。

土壤;侵蚀;抗蚀剂;海藻多糖;红壤坡面

0 引 言

坡耕地是水土流失的主要策源地,坡耕地水土流失不仅使土地生产力下降,而且水土流失引起的泥沙输移会对下游河道及江河湖库等造成淤积和污染问题,因此控制坡耕地水土流失意义重大[1]。长期以来,生物措施、耕作措施和工程措施是坡耕地水土流失调控的三大措施类型,在中国坡耕地水土流失防治中发挥了重要作用。土壤抗蚀剂作为减少土壤侵蚀的一种新方法,能在一定程度上改善土体结构,强化土壤抗剪强度,提高水稳性及土壤抗蚀性等[2-6]。目前常见的土壤抗蚀剂有聚丙烯酰胺(PAM)[7-11]、新型亲水性聚氨酯复合材料(W-OH)[12-13],路邦EN-1固化剂[14-16]、STW型高分子土壤稳定剂[17]、LY-1离子型土壤抗蚀剂[18]、大豆中提取天然聚合物[19-20]等,这些材料在增加土壤抗蚀性、减少地表径流和减少土壤侵蚀等方面效果明显,已经部分应用于生态环境保护领域。尽管上述抗蚀剂在各类工程边坡、侵蚀劣地、甚至部分坡耕地等环境中表现出良好效果,但多为工业合成物,存在实际应用流程复杂和成本高等问题,是否适应耕地等对环保要求高的区域有待研究。因此,开发具有良好生态效益、施工简单方便的新型抗蚀材料是耕地水土流失防治新材料领域研究的关键。项目组近年来通过研究,从海洋植物中提取合成了一种天然多糖聚合物——海藻多糖抗蚀剂SA-01[21-22],它不仅成本低廉(每公斤成本在10元以内),可自动降解且对环境无害。李昊等[23]分析了SA-01对坡面土壤抗剪与入渗特性的影响。为验证SA-01在控制坡面水土流失中的作用,本研究采用人工模拟降雨试验,通过施加不同浓度的海藻多糖抗蚀剂SA-01,阐明其对坡面产流产沙变化规律及土壤斥水性、团聚体稳定性等的影响,并结合电镜扫描等揭示其水土保持原理,以期为今后水土保持提供新思路。

1 材料与方法

1.1 试验材料

试验用土取自于湖北省武汉市长江科学院沌口基地,试验土样属中国土壤系统分类(2001年)中的红壤,土壤质地为壤质砂土,试验前,将野外采集的表层20 cm的土样风干后用吸管法测其土壤结构组成,并过筛(10 mm)以避免存在杂草与石块对试验的干扰,试验用土沙粒、粉粒和黏粒的质量分数分别为35.08%,46.45%,18.47%,有机质为1.78%。

海藻多糖是一种从海洋植物中提取的由1-4聚-D-甘露糖醛酸和-L古罗糖醛酸组成的天然多糖聚合物,能溶于水形成透明有一定黏度的溶液,能与土壤中的Ca2+等高价阳离子发生螯合反应作用,生成三维网状结构。试验所用的海藻多糖抗蚀剂(SA-01)是一种以海藻多糖高分子材料为主要成分,添加醇类助剂、黏度调节剂、表面活性剂、去离子水等组成的一种土壤抗蚀剂(各成分质量分数分别为海藻酸盐5%,大豆分离蛋白5%,醇类助剂1%,黏度调节剂2%,表面活性剂1%,其余为去离子水)。SA-01天然状态下为白色粉末状固体,可在室温干燥条件下长期保存,遇水后可较快完全溶解,形成具有一定黏度的无色无味水溶液[21-23],根据上述添加物质配比的不同,其黏度为50~1 000 mPa·s,密度为1.02~1.09 g/cm3,凝固时间为60~3 600 s。

1.2 试验方法

1.2.1 扫描电镜测试

扫描电子显微镜是一种利用电子与物质的相互作用来对物质微观形貌进行表征的方法,常用于测定各种固体的表面形貌,其放大倍数为1.0×102~1.0×105。本试验测试仪器为Sigma场发射扫描电镜,所有测试样品放大倍数为1 000倍,测试前将处理好的样品在60 ℃条件下真空干燥4 h,并喷金以增强其导电性,减小干扰。

1.2.2 SA-01对红壤坡面产流产沙的影响

试验采用人工模拟降雨法,试验土槽规格为2.0 m×1.0 m×0.5 m(长×宽×高)。试验前,先在土槽底层铺15 cm厚的细沙,以保证试验土层的透水性与天然坡面相近。之后将土分层装填于土槽内,每层填土5 cm,边填土边压实,填土总厚度为30 cm。填土容重保持为1.25 g/cm3左右。填土后在土槽表面喷洒不同浓度的SA-01水溶液(0.25%、0.50%、0.75%、1.00%),并设置不添加对照土槽(0%),为保证所有试验场次土槽内的土壤含水率基本一致,所有试验土槽喷洒量均为5 L。

由于本研究侧重于分析施加不同浓度SA-01对坡面土壤侵蚀过程的影响及机理,若雨强过小,坡面产流产沙量小,不能客观反映其在水土保持中的作用,因此,本研究选取暴雨级别进行研究,雨强选择90 mm/h,坡度分别选取5°、10°、15°,降雨时间为60 min。由于不同SA-01浓度凝固时间不同,为保证施加SA-01后在坡面充分凝固,统一选择在喷洒SA-01后24 h进行人工模拟降雨试验。试验前1 d用20 mm/h雨强湿润土壤,降雨时间30 min,以保证每次土壤含水率基本一致。试验开始后,当土槽下方集水口产流时记录产流时间。坡面产流后,用500 mL烧杯接样,前7 min,每分钟接一次样,8~10 min接一次样,10 min后,每隔5 min接一次样,直至降雨结束,接样时间均设置为20 s。试验结束后,用量筒测定采集的径流泥沙样体积,用烘干法测定各个样品中的泥沙量。取3次重复试验的产流产沙平均值作为最终试验结果。

1.2.3 SA-01对土壤斥水性的影响

为保证测得土壤斥水性有代表性,采用目前国内外最常用的2种测定方法,滴水穿透时间法(Water Drop Penetration Time,WDPT)和酒精溶液入渗法(Molarity of an Ethanol Droplet,MED)分别测试。试验前,将预备的土壤风干后过2 mm筛,按试验要求将试样置于干净的玻璃培养皿(115 mm×22 mm)中。测定之前在土壤表面喷洒一定量不同浓度的SA-01溶液(0.25%、0.50%、0.75%、1.00%),并设置不添加对照(0 %),喷洒SA-01溶液量固定为0.4 g/cm2。

1)滴水穿透时间法(WDPT)

用滴定管将10滴纯净水滴到制备的土壤样品上,记录每一滴纯净水渗入土壤表面所需的时间,取10滴纯净水所用时间的算术平均值作为土壤样品的最终取值。为防止水滴高度过高,势能转化的动能过大对土壤表面产生冲击,滴管高度设置在样品上方5 mm处。试验时根据Dekker等[24]提出的斥水性分类标准,按水滴消失时的时间分出等级如下:无斥水性、轻微、中等、严重和极度斥水性的穿透时间分别为5、>5~60、>60~600、>600~3 600、>3 600 s。

2)酒精溶液入渗法(MED)

用纯度为95%的酒精配制成不同浓度的溶液,用滴定管将6滴不同的酒精+水溶液滴到制备的土壤样品上,观察其在5 s内能否完全渗入土壤。试验时根据观察的实际入渗时间,将溶液按酒精所占百分数从低到高逐一测试,直到选取到满足要求的酒精浓度,根据Doerr等[25]的研究分类标准,采用其摩尔浓度值作为该土壤样品的土壤斥水性(表1)。

表1 酒精溶液入渗法(MED)测定土壤斥水性分类标准

1.2.4 SA-01对土壤团聚体稳定性的影响

将预备土样经过风干、过筛后,选出粒径分别为2~<5、5~<10、10~<20、≥20 mm的团聚体颗粒,然后分组将不同浓度SA-01溶液(0.25%、0.50%、0.75%、1.00%)均匀喷洒在团聚体表面,进行团聚体水稳性试验。每种浓度条件下,分别选上述4个粒径组团聚体各50颗,放置在口径0.5 mm的筛子上,平行试验3组。将团聚体放置于筛网上,向容器中加水,直至水面高于筛网5 cm,而后将团聚体浸入水中开始计时。每组试验共进行10 min,每分钟记录一次分散个数。本研究采用水稳性指数反应团聚体遇水后稳定的性能,按下列公式计算(无量纲)[17,26-27]:

式中P为时间为时分散的团粒数;为时间,min;P为10 min内未分散的团粒数;K为时间为时的校正系数;为供试团聚体总数,本次试验为50。

2 结果分析

2.1 SA-01对坡面产流过程的影响

不同坡度红壤坡面施加不同浓度SA-01条件下的产流时间见表2。从表2可见,在相同坡度条件下,产流时间随施加浓度的增大呈先增大后减小趋势,各施加浓度条件下坡面产流时间差异显著(<0.05)。0.25%施加浓度条件下坡面产流时间大于对照坡面,这主要是由于低浓度条件下SA-01与坡面土壤颗粒作用后形成的凝胶层薄,土壤孔隙仍存在且一定程度上增大了团聚体的稳定性,入渗速率增大,产流时间延长。随施加浓度的增大,SA-01与土壤中的阳离子发生反应形成的凝胶层厚度增大,使得土体中孔隙被堵塞,减小了入渗速率,致使产流时间减小[23]。在相同施加浓度条件下,产流时间随坡度增大而减小,但施加浓度为0.75%和1.00%时,3个坡度坡面产流时间差异不显著,对照组和施加浓度为0.25%和0.50%条件下15°坡面产流时间显著小于5°和10°(<0.05)。这主要是由于施加浓度越大,SA-01在土壤颗粒表面形成的保护层强度越大,保护层对坡面产流的影响大于坡度对坡面产流的影响所致。

表2 不同坡度条件下不同海藻多糖抗蚀剂(SA-01)浓度对坡面初始产流时间的影响

注:不同小写字母表示同一坡度下不同SA-01浓度间差异显著(<0.05),不同大写字母表示同一SA-01浓度下不同坡度间差异显著(<0.05)。下同。

Note: Different lowercase letters indicate the significant difference among SA-01 concentrations at the same slope gradients, and different capital letters indicate the significant difference among slopes at the same SA-01 concentration(<0.05 ). Same as below.

图1为不同坡度、不同施加浓度条件下的坡面产流过程。从图中可以看到,未施加SA-01与施加SA-01的坡面产流过程均呈现先增加后趋于稳定的趋势。总体上来看,在相同坡度条件下,施加SA-01的坡面稳定产流率均大于未施加坡面,5°条件下,施加SA-01与未施加SA-01坡面稳定产流率差异显著,10°和15°条件下,除施加浓度0.25%条件下稳定产流率与未施加条件下稳定产流率差异不显著外,其余施加浓度条件下的稳定产流率与未施加条件下稳定产流率均差异显著,最大施加浓度条件下(1.00%)的坡面产流率是未施加坡面产流率的2倍左右。这主要是由于施加SA-01后,SA-01在土壤表面形成一层保护膜,土壤的斥水性增大,入渗量减小,坡面径流量增大。

对比施加与不施加SA-01坡面的径流总量可知(图2),同样坡度条件下,除施加SA-01浓度为0.25%坡面总径流量与对照坡面总径流量间差异不显著(>0.05)外,其余施加SA-01浓度条件下的坡面总径流量与未施加SA-01坡面总径流量间差异均表现为在0.05水平上显著,且坡面总径流量均大于对照坡面,随施加浓度增大,坡面产流量间差异逐渐增大。如当坡度为5°,施加SA-01浓度为0.50%时,坡面产流量为对照组的1.77倍;当施加浓度增大到1.00%时,坡面产流量为对照组的4.97倍。在相同施加浓度条件下,3个坡度间的产流量无显著差异,不施加SA-01的坡面径流总量与施加SA-01的坡面径流总量相比,后者径流量较前者径流量仅增加4.7%~6.1%。

2.2 SA-01对坡面侵蚀产沙过程的影响

不同坡度、不同SA-01施加浓度条件下坡面侵蚀产沙过程如下图3所示。从图3中可以看出,坡面侵蚀产沙率随降雨时间的延长先减小后增大,然后又缓慢波动下降并趋于稳定。这主要是由于坡面侵蚀产沙过程初期坡面松散土壤颗粒多,雨滴击溅侵蚀占主导地位,侵蚀产沙率较大。随着降雨时间的延长,坡面径流侵蚀开始占主导地位,同时由于雨滴击溅等作用,坡面土壤结皮开始产生,土壤侵蚀产沙率逐渐减小;随着降雨时间继续延长,坡面土壤含水率增大,入渗量减小,坡面径流进一步增大,剥蚀输移能力增大,侵蚀产沙率增大,最后随着坡面径流的稳定,侵蚀产沙率也逐渐趋于稳定。

从施加和未施加SA-01的坡面产沙率对比来看,在相同坡度条件下,随施加SA-01浓度的增大,坡面侵蚀产沙率降低。如对照坡面在5°、10°、15°时稳定产沙率分别为0.67、0.78、0.81 g/(m2·min);而施加SA-01浓度为0.25%时,其稳定产沙率为0.45、0.42、0.45 g/(m2·min),分别为对照组的67%、53%、56%;当浓度增加到1.00%时,其稳定产沙率分别为对照组的45%、38%、44%。从图中还可以看出,施加SA-01坡面达到稳定产沙率的时间也比对照组提前,如对照坡面产沙率稳定时间都在40 min以后,且随着坡度的增加还会相应的延迟,而施加SA-01的坡面侵蚀产沙率达到稳定的时间均在15~20 min内。这主要是由于SA-01遇水后与土壤中的Ca2+等高价阳离子发生螯合反应,生成三维网状结构,这种三维网状结构具有较强的凝结力,增强了土壤团聚体的水稳性,土壤可蚀性降低,因此,土壤侵蚀产沙率与对照组相比降低。

从图4中可以看到,施加SA-01的坡面侵蚀累积产沙量均小于对照坡面,施加浓度越大,累积产沙量越小。如对照坡面在坡度为5°、10°、15°时累积产沙量分别为22.9、23.25、22.35 g,施加SA-01浓度为0.25%的坡面累积产沙量分别为6.25、6.33、6.26 g,为对照组的27.29%、27.23%、28.01%;当施加SA-01浓度为0.50%时,坡面累积产沙量分别为照组的19.26%、19.05%、19.78%;当施加SA-01浓度继续增加到1.00%时,其累积产沙量仅分别为对照组坡面的5.24%、4.81%、5.27%。

2.3 SA-01对坡面土壤斥水性的影响

滴水穿透时间法(WDPT)和酒精溶液入渗法(MED)测定不同浓度SA-01对土壤样品斥水性的影响的结果见表3。从表3可以看出,2种方法测得的土壤斥水性结果一致,不施加SA-01和施加浓度0.25%的土壤样品呈现亲水性特征,施加SA-01浓度大于0.50%的土壤样品均表现出不同程度的斥水性。

表3 滴水穿透时间法(WDPT)和酒精溶液入渗法(MED)测定土壤斥水等级

2.4 SA-01对坡面土壤团聚体稳定性的影响

表4给出了不同SA-01施加浓度条件下不同粒径土壤团聚体在静水中浸泡10 min的崩解情况,可以看出,与未施加SA-01相比,施加SA-01后土壤各个粒级团聚体崩解率都下降,施加浓度越大,各个粒级团聚体崩解数量越少,当施加浓度到1.00%时,土壤团聚体几乎不发生崩解。

表4 不同粒径团聚体在不同SA-01施加浓度下的崩解个数

图5给出了不同粒径团聚体在不同SA-01施加浓度条件下的水稳定性指数,由图可知,施加SA-01可大幅提升团聚体水稳定性,当施加浓度为0.25%时,4种粒径的团聚体水稳性指数均较未施加组提高,最低提高到原来的1.71倍,团聚体稳定性指数达到78.9%。当施加浓度为1.00%时,土壤团聚体的水稳性指数基本达到100%。施加相同浓度SA-01条件下,水稳性指数随着团聚体粒径的增大而减小,而当粒径相同时,水稳性指数与SA-01施加浓度呈显著的正相关关系。

通过不同坡度、不同施加SA-01浓度条件下坡面产流产沙结果看,SA-01能显著降低坡面侵蚀产沙量,施加浓度越大,土壤侵蚀量减少越显著,0.25%施加浓度条件下坡面产流量与对照坡面差异不显著,施加浓度大于0.50%后,坡面径流总量明显增大,分析产生这种现象的原因主要与SA-01的固土机理有关。通过对未施加SA-01的对照组与施加浓度分别为0.25%、0.50%、0.75%和1.00%浓度的SA-01团聚体表面进行扫描电镜测试,结果如图6所示。从图6中可以看出,未施加SA-01的对照组团聚体表面具有很多直径小于10m的颗粒状结构,颗粒结构间有许多孔隙,随施加SA-01浓度的增大,这种颗粒状多孔结构发生改变,孔隙被填充逐渐变得光滑,类似覆盖了一层薄膜状涂层。这主要与施加SA-01后,土壤颗粒表面被以多糖为基材的SA-01覆盖,其中亲水羟基(-OH)基团可通过氢键作用连接土壤颗粒,且其中活性基团可与土壤中的Ca2+等阳离子发生反应,在土壤颗粒表面生成有一定强度的保护层有关,保护层的存在,使得土壤团聚体遇水崩解概率降低,增强了土壤抗蚀性,且一定程度上减少了土壤水分的入渗,增大了地表径流。SA-01浓度越大,与土壤团聚体发生相互作用越强烈,团聚体表层形成的保护膜强度就越大,团聚体颗粒越难崩解,水稳定性越大,因此土壤抗蚀性值随着SA-01浓度的增加而增加。由此也可以看出,SA-01与以往聚丙烯酰胺(PAM)、新型亲水性聚氨酯复合材料(W-OH)等通过自身对水的亲和性,增加入渗减少坡面径流的水土保持机理有所不同,SA-01通过覆盖土壤颗粒表面,形成保护层增大土壤斥水性,增强土壤团聚体的稳定性而减少水土流失,这可为中国南方以排水保土为核心的水土保持工作提供新思路。

3 结 论

1)在相同坡度条件下,各施加SA-01浓度坡面稳定产流率均大于对照坡面,随施加浓度增大,坡面产流量增加比例也增大。施加SA-01能显著降低坡面土壤产沙量,在相同坡度条件下,随施加SA-01浓度的增大,坡面侵蚀产沙率降低。

2)土壤施加SA-01后,斥水性随施加浓度的增大而增大,SA-01施加后能显著提高各粒级团聚体的水稳性,在粒径相同时,团聚体水稳性随施加浓度增加而增大。

3)从不同施加浓度条件下的坡面累计产流量、累计产沙量、斥水性等级以及团聚体稳定性等指标看,0.25%的施加浓度即可获得较为满意的水土流失控制效果,这为中国南方以排水保土为核心的水土保持工作提供了新思路。

[1]张平仓,丁文峰. 长江中上游坡耕地侵蚀产沙调控理论与实践[J]. 人民长江,2018,49(1):23-27.

Zhang Pingcang, Ding Wenfeng. Theory and practice of sediment erosion control on slope cropland in upper and middle reaches of Yangtze River[J]. Yangtze River, 2018, 49(1): 23-27. (in Chinese with English abstract)

[2]García-orenes F, Guerrero C, Mataix-solera J, et al. Factors controlling the aggregate stability and bulk density in two different degraded soils amended with biosolids[J]. Crossref, 2005, 82(1): 65-76.

[3]王浩然. 土壤结构改良剂的改土效果及其使用的探讨[J]. 北京农业,2011(33):103-104.

Wang Haoran. Study on the effects of soil structural amendment on soil properties and its utilization[J]. Beijing Agriculture, 2011(33): 103-104. (in Chinese with English abstract)

[4]Kukal S S, Kaur M, Bawa S S, et al. Water-drop stability of PVA-treated natural soil aggregates from different land uses[J]. Catena, 2007, 70(3): 475-479.

[5]Li Qiang, Liu Guobin, Zhang Zheng, et al. Relative contribution of root physical enlacing and biochemistrical exudates to soil erosion resistance in the Loess soil[J]. Catena, 2017, 153: 61-65.

[6]Reverchon F, Yang H, Ho T Y, et al. A preliminary assessment of the potential of using an acacia-biochar system for spent mine site rehabilitation[J]. Environmental Science and Pollution Research, 2015, 22(3): 2138-2144.

[7]雷廷武,唐泽军,张晴雯,等. 聚丙烯酰胺增加土壤降雨入渗减少侵蚀的模拟试验研究Ⅱ.侵蚀[J]. 土壤学报,2003,40(3):401-406.

Lei Tingwu, Tang Zejun, Zhang Qingwen, et al. Effects of polyacrylamid application on infiltration and soil erosion under simulated rainfalls Ⅱ. erosion control[J]. Acta Pedologica Sinica, 2003, 40(3): 401-406. (in Chinese with English abstract)

[8]Mcneal J P, Krutz L J, Locke M A, et al. Application of Polyacrylamide (PAM) through Lay-Flat Polyethylene Tubing: Effects on Infiltration, Erosion, N and P Transport, and Corn Yield[J]. Journal of Environmental Quality, 2017, 46(4): 855.

[9]Wang A, Li F, Yang S. Effect of polyacrylamide application on runoff, erosion, and soil nutrient loss under simulated rainfall[J]. Pedosphere, 2011, 21: 628-638.

[10]Yu J, Lei T, Shainberg I, et al. Infiltration and erosion in soils treated with dry PAM and gypsum[J]. Soil Sci. Soc. Am. J, 2003, 67: 630-636.

[11]刘纪根,张平仓,陈展鹏. 聚丙烯酰胺对扰动红壤可蚀性及临界剪切力的影响[J]. 农业工程学报,2010,26(7):45-49.

Liu Jigen, Zhang Pingcang, Chen Zhanpeng. Effects of polyacrylamide (PAM) on soil erodibility and critical shear stresses for disturbed red soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(7): 45-49. (in Chinese with English abstract)

[12]梁止水,吴智仁,杨才千,等. 基于W-OH的砒砂岩抗蚀促生机理研究[J]. 水利学报,2016,47(9):1160-1166.

Liang Zhishui, Wu Zhiren, Yang Caiqian, et al. Mechanism of erosion resistance and vegetation prom otion by W-OH in Pisha sandstone[J]. Journal of Hydraulic Engineering, 2016, 47(9): 1160-1166. (in Chinese with English abstract)

[13]朱秀迪,丁文峰,张冠华,等. 新型水溶性聚氨酯对紫色土坡面产流产沙的影响[J]. 长江科学院院报,2018,35(1):47-51.

Zhu Xiudi, Ding Wenfeng, Zhang Guanhua, et al. Impact of new water-soluble polyurethane on runoff and sediment yield on purple soil slope[J]. Journal of Yangtze River Scientific Research Institute, 2018, 35(1): 47-51. (in Chinese with English abstract)

[14]单志杰,张兴昌,赵伟霞,等. EN-1固化剂对土壤抗蚀性的影响[J]. 水土保持学报,2010,24(5):6-9.

Shan Zhijie, Zhang Xingchang, Zhao Weixia, et al. Effects of EN-1 soil stabilizer on soil erodibility[J]. Journal of Soil and Water Conservation, 2010, 24(5): 6-9. (in Chinese with English abstract)

[15]雷雯,项伟. EN-1离子土壤固化剂对滑坡滑带土扰动样的改性机理研究[J]. 长江科学院院报,2014,31(1):47-51.

Lei Wen, Xiang Wei. Mechanism of disturbed sliding zone soil improved by EN-1 ionic soil stabilizer[J]. Journal of Yangtze River Scientific Research Institute, 2014, 31(1): 47-51. (in Chinese with English abstract)

[16]郭玉珊,耿玉清,张艳,等. EN-1固化剂对土壤坑崩性的影响[J]. 水土保持通报,2015,35(3):214-218.

Guo Yushan, Geng Yuqing, Zhang Yan, et al. Effects of EN-1 stabilizer on soil anti-collapse ability[J]. Bulletin of soil and water conservation, 2015, 35(3): 214-218. (in Chinese with English abstract)

[17]刘瑾,施斌,姜洪涛,等. STW型高分子土壤稳定剂改良粘性土团聚体水稳性实验研究[J]. 水文地质工程地质,2009,36(2):77-80,94.

Liu Jin, Shi Bin, Jiang Hongtao, et al. Experimental study on the water-stability property of clay aggregates stabilized by STW polymet soil stabilizer[J]. Hydrogeology engineering geology, 2009, 36(2): 77-80, 94. (in Chinese with English abstract)

[18]张利忠,赵英,林海军,等. 基于LY-1离子型抗蚀剂的半干旱区边坡土壤保水性能优化研究[J]. 环境生态学,2019,3(1):74-78.

Zhang Lizhong, Zhao Ying, Lin Haijun, et al. The optimization of slope soil water retention in semi-arid area based on LY-1 ionic soil anti-erosion agent[J]. Environmental Ecology, 2019, 3(1): 74-78.(in Chinese with English abstract)

[19]Liu J E, Wang Z L, Li Y Y. Efficacy of natural polymer derivatives on soil physical properties and erosion on an experimental Loess Hillslope[J]. International Journal of Environmental Research and Public Health. 2018, 15(9): 1-14.

[20]Liu J E, Wang Z L, Ma X M, et al. The impact of natural polymer derivatives on sheet erosion on experimental loess hillslope[J]. Soil & Tillage Research. 2014, 139: 23-27.

[21]李昊,胡甲均,任红玉. SA-01型高分子土壤抗蚀剂改良土壤团聚体水稳性的实验研究[J]. 水土保持通报,2018,38(4):168-173.

Li Hao, Hu Jiajun, Ren Hongyu. Water-stability property of soil aggregates stabilized by SA-01 polymer soil anti-erosion material[J]. Bulletin of Soil and Water Conservation, 2018, 38(4): 168-173. (in Chinese with English abstract)

[22]林庆民. 海藻多糖抗蚀剂对坡面侵蚀产沙过程的影响机理[D]. 武汉:长江科学院,2019.

Lin Qingmin. Effects of Seaweed Polysaccharide Anti-erosion Material on Slope Erosion and Sediment Yield Process[D]. Changjiang River Scientific Research Institute, 2019. (in Chinese with English abstract)

[23]李昊,程冬兵,孙宝洋,等. 海藻多糖抗蚀剂对土壤抗剪与入渗特性影响分析[J]. 农业工程学报,2020,36(22):144-150.

Li Hao, Cheng Dongbing, Sun Baoyang, et al. Effects of seaweed polysaccharide-based materials on shear strength and permeability characteristics of soils[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(22): 144-150. (in Chinese with English abstract)

[24]Dekker L W, Ritsema C J, Louis W, et al. How water moves in a water repellent sandy soil: I. Potential and actual water repellency[J]. Water Resources Research, 1994, 30(9): 2507-2517.

[25]Doerr S H, Dekker L W, Ritsema C J, et al. Water repellency of soils: The influence of ambient relative humidity[J]. Soil Science Society of America Journal, 2002, 66(2): 401-405.

[26]张怡,何丙辉,王仁新,等. 横坡和顺坡耕作对紫色土土壤团聚体稳定性的影响[J]. 中国生态农业学报,2013,2(21):192-198.

Zhang Yi, He Binghui, Wang Renxin, et al. Effects of across- and along-slope ploughs on soil aggregate stability[J]. Chinese Journal of Eco-Agriculture, 2013, 2(21): 192-198. (in Chinese with English abstract)

[27]张迪,姜佰文,梁世鹏,等. 草甸黑土团聚体稳定性对耕作与炭基肥施用的响应[J]. 农业工程学报,2019,35(14):125-132.

Zhang Di, Jiang Baiwen, Liang Shipeng, et al. Meadow black soil aggregate stability of farming and carbon basal fertilizer response[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 125-132. (in Chinese with English abstract)

Effects of seaweed polysaccharide resists on the erosion process of red soil slope

Ding Wenfeng1,2, Lin Qingming3, Li Hao1,2, Kang Jingling1,2, Han Haoyu1,2, Zhang Pingcang1,2※

(1.430010,; 2.,430010,; 3.,430010,)

Soil erosion on sloping farmland has posed a great challenge on land productivity and crop yield, resulting coarse soil and less arable area due to the losing of fine soil particles. Moreover, N and P in soil that migrated with runoff and sediment can also affect the quality of downstream water. Therefore, it is highly demanding to control soil erosion on sloping farmland. Currently, various measures are being taken in the long run, covering from biological, tillage, and engineering. Soil amendments can be used to greatly reduce soil erosion and increase cohesion between surface soil particles, which can maintain surface soil structure to prevent soil crust, resulting the increase in soil infiltration rate, while the decrease in the surface runoff. Therefore, a new material related to soil amendments has drawn much attention. In recent years, the Changjiang River Sciences Research Institute has developed a new seaweed polysaccharide Anti-erosion Material SA-01. This study aims to explore the effect of SA-01 concentration on runoff and sediment yield of red soil, in order to verify the new polysaccharide corrosion inhibitor (SA-01) from the seaweed in controlling soil and water loss on a slope. Taking the typical red soil in southern China as an example, a series of artificial rainfall experiments were carried out, where the rainfall intensity of 90 mm/h, and the slope of 5°, 10°, and 15° under various concentrations of 0, 0.25%, 0.50%, 0.75%, and 1.00%. The mechanism of SA-01 on soil erosion was analyzed in a combination of soil water repellency and aggregate stability experiments. The results show that under the same slope, the runoff yield on the slope with SA-01 was higher than that on the control slope. The runoff yield on the slope decreased first and then increased, while the cumulative runoff on the slope decreased first and then increased with the increase of applied concentration. The increment ratio of surface flow increased as the SA-01 concentration increased, indicating that SA-01 can significantly reduce sediment yield on a slope. In the initial runoff yield stage, SA-01 can significantly reduce the slope sediment yield. In the stage of surface erosion, the slope without SA-01 reached the maximum, then fell rapidly, and eventually became stable. Compared with the control slope, the sediment yield of SA-01 slope fluctuated slightly in the early stage of runoff yield, and the time to reach stable sediment yield was earlier than that of the control slope. With the increase of applied concentration, the sediment yield decreased significantly. SA-01 can significantly increase the runoff while reduce the sediment yield of different slopes, due mainly to the change of soil hydrophilic to water repellency, and the decrease of infiltration rate. Soil water repellency was improved after SA-01 was applied. When the concentration was 0.25%, the sample retained the same hydrophilicity as the original soil. When the concentration was more than 0.25%, the soil began to change from hydrophilicity to repulsion. Due to the soil Ca2+cation chelation with SA-01, the soil particles generated on the surface of a layer with a certain intensity. The presence of preservation layer increased soil water repellency, while reduced the soil aggregate dispersion, and thereby to improve the stability of soil aggregates at different levels. SA-01 can provide a new idea for soil and water conservation of red soil on a slope.

soils; erosion; resist; seaweed polysaccharide; red soil slope

丁文峰,林庆明,李昊,等. 海藻多糖抗蚀剂对红壤坡面侵蚀过程的影响[J]. 农业工程学报,2021,37(1):108-115.doi:10.11975/j.issn.1002-6819.2021.01.014 http://www.tcsae.org

Ding Wenfeng, Lin Qingming, Li Hao, et al. Effects of seaweed polysaccharide resists on the erosion process of red soil slope[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 108-115. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.014 http://www.tcsae.org

2020-09-03

2020-12-17

水利技术示范项目(SF-201905)、长江科学院中央级公益科研院所基本科研业务费(CKSF2019185/TB)资助

丁文峰,博士,教授级高级工程师,主要从事土壤侵蚀与水土保持方面的研究。Email:dingwf@mail.crsri.cn

张平仓,博士,教授级高级工程师,主要从事山洪灾害与水土保持方面的研究。Email:zhangpc@mail.crsri.cn

10.11975/j.issn.1002-6819.2021.01.014

S157.1

A

1002-6819(2021)-01-0108-08

猜你喜欢
坡面水性坡度
模拟降雨条件下林木裸露根系分布方式对坡面土壤侵蚀的影响
深水坡面岩基础施工方法
基于能量的坡面侵蚀性径流及其水沙传递关系
基于有机材料-三维植生毯技术的黄土边坡抗降雨侵蚀试验研究
Aqueducts
基于远程监控的道路坡度提取方法
放缓坡度 因势利导 激发潜能——第二学段自主习作教学的有效尝试
水性与常性
水性环氧乳化沥青应用进展
不同解冻方法对鸡肉保水性的影响