三峡水库消落带土壤胶体释放与迁移特征

2021-04-01 01:56孙虹蕾唐翔宇
农业工程学报 2021年1期
关键词:胶体颗粒浓度

张 维,孙虹蕾,唐翔宇

三峡水库消落带土壤胶体释放与迁移特征

张 维1,孙虹蕾2,3,唐翔宇4※

(1. 重庆工商大学公共管理学院,重庆 400067;2. 云南合续环境科技有限公司,绵阳 621002;3. 西南交通大学地球科学与环境工程学院,成都 611756; 4. 中国科学院水利部成都山地灾害与环境研究所,山地表生过程与生态调控重点实验室,成都 610041)

三峡水库消落带是库区陆源污染物进入水库的最后屏障。高强度、周期性的干湿交替对消落带土壤理化性质、结构和可蚀性产生潜在影响,进而影响胶体颗粒的释放和迁移特征。探究消落带土壤胶体的释放与迁移行为是衡量胶体促进污染物迁移入库的重要前提。该研究对比消落带与非消落带土壤,通过原状土柱淋洗试验,研究饱和流中土壤胶体释放及迁移特征。结果表明,消落带原状土柱饱和淋洗液中胶体颗粒浓度先总体快速降低(184.58~28.04 mg/L)再缓慢增加(21.18~97.58 mg/L),存在较大的时间变化(变异系数为0.46)。胶体颗粒累计释放量为714.43 mg,比非消落带土柱高34.4%,而淋洗液的峰值粒径(13.25~19.90m)和中值粒径(14.98~22.90m)均远远小于非消落带土柱的相应值,表明反复淹水-排干作用导致消落带土壤中胶体及细颗粒的释放和迁移潜力增大。溶解性有机碳(DOC,Dissolved Organic Carbon)是影响消落带饱和土壤中胶体释放的关键因子,对胶体浓度动态变化的解释率高达42.3%,而水化学因素(EC、Ca2+及Mg2+)对非消落带土壤中胶体颗粒的释放影响相对更大。在消落带管理中,应注意减控DOC的流失,以减少消落带土壤胶体颗粒的释放,同时建议加强消落带土壤DOC来源及其与胶体偶合并促进污染物如农化物质迁移进入库区水体的研究。

胶体;迁移;径流;土壤侵蚀;消落带;三峡库区

0 引 言

三峡水库是因三峡大坝的修建而形成的河流型水库。水库季节性、功能性地调度导致库区水位145~175 m间形成了长660 km,面积近349 km2的水库消落带(WLFZ,Water Level Fluctuation Zone)[1]。土壤侵蚀一直是三峡水库消落带重要的生态问题[2]。三峡水库长江干流消落带多年平均土壤侵蚀模数为54 050 t/(km2·a),支流消落带多年平均土壤侵蚀模数为9 191 t/(km2·a),分别为库区平均土壤侵蚀模数16倍和3倍[3]。高强度的土壤侵蚀过程中,土壤细颗粒(<10m),尤其是胶体颗粒(<2m)因其更强的迁移能力和污染物结合能力,成为农化物质如氮、磷、农药以及重金属等污染物迁移进入水体的主要载体[4-6]。这也是近年来库区水体农业面源污染的重要原因[7]。

多孔介质中胶体颗粒迁移的研究表明,稳态流条件下,流体的水化学条件变化是自然胶体颗粒原位释放及迁移的重要影响因素[8]。同时,土壤胶体的释放与迁移还与土壤的结构异质性有关。自然土壤中所含的大孔隙、缝隙、层理面等优先流通道有助于胶体颗粒向深层介质中迁移,但其迁移潜力与优先流通道的发育程度和连通性密切相关[9]。目前,室内尺度胶体迁移的研究以填装土柱为主,难以反映高度异质性土壤中胶体释放特征及通量,而消落带土壤胶体颗粒释放与迁移的研究还鲜有报道。

三峡水库消落带是连接库区陆地生态系统和水库水生态系统的生态屏障带。其周期性、高强度的淹水-排干交替作用造成消落带土壤理化性质、结构和孔隙性质产生变化[10]。这些潜在变化将影响消落带土壤胶体库的容量、胶体迁移路径和释放通量,进而影响颗粒结合态污染物进入库区水体的通量。本文通过非扰动土柱淋洗试验,研究饱和流中消落带土壤胶体释放及迁移过程和通量。以期在当前长江大保护战略背景下,为三峡库区消落带生态环境管理和库区水体面源污染防治提供重要依据。

1 材料与方法

1.1 研究区概况

研究区处于三峡水库腹地重庆市开州区白鹤村(31°14'25.332"N,108°25'45.612"E),属澎溪河流域消落带,是库区面积最大的消落带(约占库区消落带总面积的13.2%)。该地区为亚热带湿润性季风气候,多年平均气温和降水量分别为14.3 ˚C和1 149.3 mm。澎溪河消落带每年9月初水位逐渐上升,11月中下旬达到最高水位175 m,并维持到次年3月份,而后水位逐渐降低到145 m,5-8月间消落带水位基本维持在145~150 m的低水位。澎溪河消落带自然植被以草本植物为主,消落带上部分布有少量灌木和乔木幼苗。目前白鹤村消落带为典型的农业消落带,主要土地利用方式有旱地、水田、草地、林地等,土壤以紫色土为主。消落带出露期(5-9月)正值区域内降雨集中且暴雨频率较高时期,土壤侵蚀发生的频率最高且侵蚀强度最大。

1.2 样品采集与处理

土壤样品于2016年8月消落带完全出露时采集。选择消落带中部160 m高程台地,随机选取5个采样点,采样点间至少间隔2 m,采集散土样品和环刀样品。散土样品采集深度为0~10和10~20 cm,小环刀样品(直径5 cm,高度5 cm)采集深度为2.5~7.5和12.5~17.5 cm。另外,在中间采样点附近用定制的不锈钢大环刀(直径15 cm,高度20 cm)采集原状土柱。消落带外部高程177 m(从未淹水)处的非消落带与消落带采样点具有相同地形地貌和土地利用方式,选择此处非消落带并以相同采样方法采集土壤样品。

散土样品于实验室自然风干、剔除植物残体和砾石、研磨过筛(2和0.15 mm)后用于土壤基本理化性质的测定,方法同文献[10]。小环刀样品用烘干法测定土壤容重。土壤基本理化性质如表1所示。基于非消落带和消落带浅层土壤(0~20 cm)的平均孔隙度(分别为43.87%和53.07%),计算得到非消落带和消落带土柱的孔隙体积(PV,Pore Volume)分别为1 164.7和1 404.7 cm3。

表1 土壤样本基本理化性质

注:砂粒、粉粒及黏粒均为质量分数。WLFZ为消落带。

Note: Mass fractions of sand, silt and clay were presented in the table. WLFZ respresents water level fluctuation zone.

1.3 土柱试验

1.3.1 土柱饱和及装柱

将原状土柱底部用尼龙纱布包裹,垂直放入洗净的塑料桶。向桶内缓慢加去离子水至不锈钢柱2/3高度,依靠毛细管作用使土柱逐渐饱和,期间不断补充桶内水分维持初始高度。静置24 h后,土柱上表面土壤在光照下泛白光时视作土柱饱和。饱和土柱底部纱布取下后安装不锈钢滤网,置于定制的三脚架形有机玻璃漏斗上。土柱上端盖子内部通过固定均匀开孔的软管作为模拟降雨器,试验前需不断调整软管布置模式以保证布水均匀。软管另一端连接蠕动泵和背景液或进样液。土柱下端有机玻璃漏斗通过出流软管与部分收集器连接。

1.3.2 淋洗试验

淋洗试验分稳定、进样、冲洗3个阶段。稳定阶段目的是输入背景溶液稳定土柱流场,背景溶液为pH=7的去离子水。稳定阶段同时确定最大进样速率max和降雨强度max(保证土柱表面不积水),通过预试验确定max=12 mL/min,max=39.7 mm/h。待土柱出流速率不变时,稳定阶段结束。进样溶液为去离子水配制的KBr(Br-浓度为100 mg/L)溶液(pH值调整为7)。进样阶段以max=12 mL/min输入进样溶液持续淋洗土柱并立即通过部分收集器收集出流液,非消落带和消落带土柱进样量分别为3494.2和4214.0 mL(均为3 PV,即3个孔隙体积)。进样结束后立即切换至背景溶液,以相同流速持续冲洗Br-。冲洗阶段背景溶液淋洗量与进样阶段一致并以相同方式收集出流液。

1.3.3 样品分析

土柱出流液的pH值和电导率(EC,Electronic Conductivity)分别用pH计(Senslon+MM150,Hach,USA)和电导率仪(DDS-307,INESA,China)测定。胶体颗粒浓度用紫外-可见分光光度计(Tu-1810,PERSEE,China)测定,波长为400 nm[11]。出流液原液中颗粒的粒径分布(PSD,Particle Size Distribution)特征通过激光粒度仪(LA950,Horiba,Japan)分析测定。为了解出流液中颗粒絮凝情况,原液经水浴超声(KQ-3000VDE,Huqin,China)振荡处理(2 min,100 W),一定程度上破坏颗粒絮凝体结构之后,再次通过激光粒度仪测定PSD。此外,出流液样品经过滤(0.45m)后分别测定Ca2+、Mg2+(电感耦合等离子体发射光谱仪,Optima 8300,PerkinElmer,USA)、溶解性有机碳(DOC,Dissolved Organic Carbon)和Br-(流动分析仪,Auto Analyzer 3,SEAL Analytical,Germany)。

1.4 数据统计分析

通过Pearson相关和多元线性回归(变量进入方法为stepwise,SPSS 19.0)分析胶体颗粒浓度动态与水化学参数间的关联。此外,在R语言中,通过“rdacca”包,利用层次分割理论定量分解每个水化学参数对胶体动态的解释率[12]。

2 结果与分析

2.1 土柱产流及水化学特征

进样开始,非消落带与消落带土柱出流液中Br-相对浓度(实时浓度与背景液浓度0的比值)均维持在较低水平(/0<0.02)(图1)。淋洗体积为860 mL时(0.74 PV),非消落带土柱淋洗液中Br-相对浓度快速增长,累计淋洗体积为1 671 mL时(1.43 PV),Br-相对浓度达到峰值0.84(图1a)。而对于消落带土柱,淋洗体积为1 109 mL时(0.79 PV),非消落带土柱淋洗液中Br-相对浓度快速增长,累计淋洗体积为1885 mL时(1.34 PV),Br-相对浓度达到峰值0.91(图1b)。但2个土柱中Br-均并未完全穿透(/0<1)。冲洗阶段,2个土柱中Br-浓度均呈现快速降低和长拖尾的特征。非消落带与消落带土柱出流液中Br-的回收率分别为67.9%和76.3%。消落带土壤总孔隙度相对更高(表1)可能是其中Br-回收率更高的主要原因。

非消落带土柱出流液中性偏酸(图1a),而消落带土柱出流液中性偏碱(图1b),与各自土壤自身酸碱性相符(表1),且两者pH值均无明显变化趋势,变异相对最低(变异系数分别为0.02和0.01)。非消落带土柱出流液EC均值为 (108.8±48.2)S/cm,在进样阶段缓慢增加后维持平稳,冲洗阶段较快降低后缓慢降低。消落带土柱出流液EC均值为 (138.4±55.1)S/cm,进样阶段平稳增加而在冲洗阶段快速降低。2个土柱出流液中Ca2+和Mg2+的变化规律几乎一致且与EC的变化动态相似。但消落带土柱出流液中二价阳离子浓度均显著高于(<0.01)非消落带土柱出流液。非消落带出流液DOC浓度呈现先增加后逐渐降低再总体快速增加的变化趋势。相比之下,消落带土柱出流液中DOC浓度没有明显变化趋势,但进样阶段DOC浓度稍稍高于冲洗阶段DOC浓度,且2个阶段DOC浓度均存在更频繁的波动。

2.2 饱和土壤中胶体颗粒释放与迁移特征

进样阶段,非消落带土柱出流液中胶体颗粒初始浓度为88.0 mg/L。淋洗体积为152 mL(0.13 PV)时胶体颗粒浓度增加至峰值147.89 mg/L,此后胶体颗粒浓度迅速降低,淋洗体积达582 mL(0.5 PV)后胶体颗粒浓度呈现持续缓慢减少的变化趋势(图1a)。而在冲洗阶段,淋洗体积达3 899 mL(3.4 PV)时,胶体颗粒浓度先较快增长至峰值83.9 mg/L,后呈现总体缓慢降低的变化趋势。总的来说,非消落带土柱出流液胶体颗粒浓度均值为72.86 mg/L且变异较小(变异系数为0.21)。相比之下,消落带土柱出流液中胶体颗粒浓度在进样阶段总体降低(184.58~28.04 mg/L),而在冲洗阶段,胶体颗粒浓度总体逐渐增加(21.18~97.58 mg/L),但不同阶段胶体颗粒浓度均呈现较大波动(图1b)。消落带土柱出流液中胶体颗粒浓度均值为84.77 mg/L且变异较大(变异系数为0.46)。非消落带土柱胶体累计释放量为531.65 mg,且进样阶段和冲洗阶段胶体释放量接近(表2)。而消落带土柱胶体累计释放量为714.43 mg,比非消落带土柱高34.4%,且进样阶段胶体释放量占62.6%。

表2 非消落带和消落带土柱胶体释放量

非消落带土柱出流液中胶体颗粒浓度与EC、Ca2+和Mg2+浓度极显著负相关(<0.01),同时与DOC浓度显著正相关(<0.05)(表3)。多元线性回归分析的结果同样证实了EC和Ca2+对胶体颗粒释放及迁移动态的重要性(表3)。不同的是,消落带土柱出流液胶体颗粒浓度与EC、Ca2+和Mg2+相关性均不显著,但与DOC浓度极显著正相关(=0.677,<0.01),多元回归分析也证实DOC是消落带饱和土柱中胶体颗粒释放及迁移的决定性因子。

表3 胶体颗粒浓度与水化学性质参数相关及多元回归分析结果

注:**和*分别表示在0.01和0.05显著性水平上相关(双尾检验)。

Note: ** and * indicate the correlation is significant at the 0.01 and 0.05 level (2-tailed), respectively.

此外,层次分割结果表明,EC对非消落带土柱出流液中胶体颗粒动态变化的解释率最高(16.0%,表4)且Ca2+和Mg2+也具有不可忽视的贡献(分别为6.7%和5.7%)。而DOC对消落带土柱出流液中胶体颗粒动态变化的解释率高达42.3%,远远高于其他水化学参数的解释度(<5%)(表4)。因此,对于非消落带和消落带土柱来说,层次分割定量分析的结果与相关及多元回归定性分析的结果是一致的。

表4 基于层次分割理论的水化学指标对胶体动态的解释率

2.3 颗粒粒径分布特征

悬浮颗粒粒径分布是表征水体受颗粒结合态污染物潜在风险的重要指标[7]。由图2a可知,非消落带土柱不同时刻出流液中PSD曲线以单峰型为主,峰值粒径(频率分布曲线峰值对应的粒径,d)和中值粒径(累计频率50%时对应的粒径,50)分别为26.11~34.25和22.48~27.71m。但冲洗阶段累计淋洗体积为4 077 mL(3.5 PV)和5 241 mL(4.5 PV)时,PSD分别在344及517m处出现了较弱的次锋。PSD曲线随淋洗时间的变化没有明显变化趋势,不同于文献中非扰动沙壤土柱淋洗液PSD随淋洗时间逐渐减小的报道[13],可能与本研究中土壤结构异质性更高导致的颗粒释放及迁移的随机性更强有关。总的来说,淋洗液中胶体(<2m)体积占比<1%,悬浮泥沙(<10m)占比相对较高(7.28%~14.28%),表明非消落带土壤淋洗液以粗颗粒为主,但泥沙颗粒结合态污染物有一定迁移潜力。经超声振荡后,PSD曲线均变成单峰型且向细颗粒方向产生微弱偏移,50降低4.8%~27.6%。

相比之下,消落带出流液双峰型PSD主要出现在进样阶段(图2b)。d(13.25~19.90m)和50(14.98~22.90m)均远远小于非消落带土柱出流液的相应值,且胶体和悬浮泥沙PSD的平均占比分别比非消落带土柱出流液胶体和悬浮泥沙的相应值高39.5%和11.4%。因此,在降雨入渗过程中,消落带土壤相对非消落带土壤具有更大的颗粒结合态污染物释放及迁移输出潜力,这可能也是造成库区水体面源污染的重要原因。图2b可以看出,超声振荡后,PSD曲线均变成单峰型且向细颗粒方向有较大程度偏移,50降低20.0%~52.7%,表明消落带土柱出流液中颗粒的絮凝作用显著。

3 讨 论

本研究中消落带和非消落带饱和土柱胶体释放浓度均远远高于干湿交替作用下原状饱和土柱胶体释放浓度(<40 mg/L)[14]以及地块尺度近饱和条件下紫色土壤中流和裂隙潜流中胶体颗粒原位释放浓度[15],与填装土柱(农田土壤和黄土)中胶体释放浓度与释放量具有可比性[16]。这个结果表明,三峡库区紫色土具有较大的水分散性和可侵蚀性以及较高的胶体结合态污染物迁移潜力。

胶体颗粒的释放及迁移动态受水力学和水化学性质的双重影响。本研究中饱和条件流速稳定,水力剪切及裹挟作用对胶体颗粒迁移动态的影响是相对不变的,而水化学性质指标较多且变化较大。胶体颗粒浓度与水化学因素的相关分析、多元回归分析以及层次分割结果从定性和定量角度揭示了EC、Ca2+和Mg2+对非消落带土壤中胶体颗粒释放及迁移动态负向影响以及DOC对消落带和非消落带土壤中胶体颗粒释放及迁移动态的正向影响。非消落带土柱淋洗液的EC低于坡耕地紫色土地下径流的EC,交换性阳离子尤其是Ca2+的平均浓度为(13.45±6.06)mg/L,远低于紫色土胶体颗粒的临界絮凝浓度(CCC,Critical Coagulation Concentration,CCC=24 mg/L Ca2+)[15]。根据DLVO理论[17],这种水化学条件有利于胶体颗粒的扩散双电层向外扩张,从而导致胶体与土壤基质界面间的负电荷排斥能阻增强,层间距增大,土壤表面对胶体颗粒的吸持作用减弱,进而促进胶体颗粒的释放。其他柱试验研究也报道了类似的结果[18-19]。而地块尺度原位观测结果也证实,土壤孔隙水与雨水混合后EC的降低能促进多孔介质中胶体颗粒的释放与迁移[11]。因此,非消落带土壤在降雨入渗时,可能因雨水对土壤溶液的稀释作用大大降低EC或Ca2+和Mg2+浓度,从而促进土壤胶体的释放。上述水化学条件在促进胶体颗粒分散的同时,也能有效减少胶体颗粒的絮凝,这也是非消落带土柱淋洗液超声振荡后PSD几乎无明显变化的主要原因。

与非消落带土柱相反,消落带土柱淋洗液的EC更高,Ca2+浓度平均值为(43.69±11.93)mg/L,是紫色土胶体颗粒CCC的1.8倍[15]。因而,消落带土柱中胶体颗粒的扩散双电层被压缩,从而减小胶体颗粒与土壤基质间的负电荷能阻,不利于胶体颗粒从土壤基质表面释放及迁移输出。但消落带土柱中胶体颗粒释放量比非消落带土柱高34.4%(表2),造成这个差异的原因主要与消落带土壤DOC特性有关(表4)。本研究中消落带为农田生态系统消落带,土壤微生物群落丰富,消落带长期淹水-落干交替作用造成微生物和植物(包括根系)残体来源的溶解性有机质(DOM,Dissolved Organic Matter)的缓慢分解和消落带土壤中有机质的相对富集(表1)。研究证实,消落带土壤DOM腐殖化程度较低[20],因而具有较高的DOC溶出潜力。溶液中DOC浓度增加,DOC分子容易吸附于土壤或胶体颗粒表面。一方面,胶体颗粒表面吸附的有机质分子对胶体表面基团的电荷修饰导致负电性增强[21],从而增加胶体与土壤表面的排斥性能阻,促进胶体颗粒释放进入溶液中。另一方面,土壤表面吸附点位的减少可以减少土壤对已释放胶体颗粒的再吸附[22]。此外,紫色土中有机质-无机矿物复合度较高,在高DOM含量的土壤中极易形成有机-无机复合胶体[11]。文献中也报道了环境介质中DOM能提高胶体颗粒的稳定性(减少胶体与胶体的絮凝或被固相介质吸附的可能)和长距离迁移性能[23-24]。因此,消落带土壤中DOC的溶出可能促进有机-无机复合胶体的释放。今后在三峡库区消落带土壤管理过程中,应该注重消落带土壤DOC的来源及其与土壤胶体偶合并辅助污染物迁移的可能性,同时通过减控土壤DOC的流失,可能有助于减少消落带土壤中胶体颗粒的释放和迁移通量。已有研究表明,三峡库区非消落带紫色土坡耕地是消落带土壤DOC的重要陆源来源,而优化施肥配施秸秆能显著减少紫色土坡耕地DOC的径流损失[25],地埂植物篱的设置也能有效就地吸纳、截留坡地养分,减少进入消落带的DOC通量[26]。此外,在消落带生态恢复过程中,强化人工恢复,170 m以下消落带以多年生草本植被恢复为主,170~175 m消落带合理配置乔灌木,也可能提高消落带植被对土壤碳的固持能力[27-28]。

除DOC的影响外,消落带经历周期性的干湿交替后,土壤孔隙结构的变化也可能影响土壤胶体的迁移通量。消落带土壤总孔隙度更高,土柱淋洗液中Br-出峰时间更早且回收率更高,表明相对于非消落带土壤,周期性淹水-排干作用导致消落带土壤中非排水性微孔比例有所减少。相应地,土壤有效孔隙如大孔隙(Macropore)、介孔(Mesopore)、排水性微孔(Drainable Micropores)等比例有所增加,或孔隙的连通性增强,从而可能提供产流或物质如胶体及胶体结合态污染物优先迁移的通道。其他原状土柱研究结果也证实了优先流发育程度对胶体颗粒释放的促进作用[29-30]。本研究中消落带土壤细颗粒(粉粒+黏粒)平均质量分数>75%,在空间异质性更强的原位尺度上,细颗粒在降雨淋溶过程中可能堵塞部分土壤大孔隙或减小孔隙的连通性,从而减小胶体颗粒或胶体结合态污染物迁移的潜力。因此,关于消落带土壤大孔隙优先流对产流及胶体迁移的贡献还需进一步开展定量研究或拓展研究尺度。

4 结 论

1)消落带原状饱和土柱中胶体颗粒呈现先快速释放,再缓慢平稳释放的特征,淋洗液中胶体颗粒浓度范围为21.18~184.58 mg/L,且存在较大的时间变化(变异系数为0.46)。胶体颗粒累计释放量为714.43 mg,比非消落带土柱高34.4%。

2)消落带土柱淋洗液中峰值粒径为13.25~19.90m,胶体和悬浮泥沙的平均占比分别比非消落带土柱淋洗液高39.5%和11.4%。消落带土柱淋洗液中颗粒絮凝程度高,经超声振荡后,淋洗液PSD曲线向细颗粒方向产生较大偏移。

3)EC、Ca2+和Mg2+浓度是影响非消落带土柱饱和出流液中胶体颗粒释放的主要水化学因素,而DOC浓度是消落带饱和土柱中胶体颗粒释放的主要影响因素(=0.677,<0.01),对胶体颗粒动态变化的解释度高达42.3%。建议加强减控消落带土壤DOC流失,进而有效降低消落带土壤胶体颗粒促进面源污染物如农化物质迁移进入库区水体的通量。

[1] Bao Y, Gao P, He X. The water-level fluctuation zone of Three Gorges Reservoir-A unique geomorphological unit[J]. Earth-Science Reviews, 2015, 150: 14-24.

[2] 钟荣华,贺秀斌,鲍玉海,等. 狗牙根和牛鞭草的消浪减蚀作用[J]. 农业工程学报,2015,31(2):133-140.

Zhong Ronghua, He Xiubin, Bao Yuhai, et al. Role ofLandin wave attenuation and erosion control[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(2): 133-140. (in Chinese with English abstract)

[3] 贺秀斌,鲍玉海. 三峡水库消落带土壤侵蚀与生态重建研究进展[J]. 中国水土保持科学,2019,17(4):160-168.

He Xiubin, Bao Yuhai. Research advances on soil erosion and ecological restoration in the riparian zone of the Three Gorges Reservoir[J]. Science of Soil and Water Conservation, 2019, 17(4): 160-168. (in Chinese with English abstract)

[4] Missong A, Holzmann S, Bol R, et al. Leaching of natural colloids from forest topsoils and their relevance for phosphorus mobility[J]. Science of the Total Environment, 2018, 634: 305-315.

[5] Srilert C, Niruch K. Facilitated transport of cadmium with montmorillonite KSF colloids under different pH conditions in water-saturated sand columns: Experiment and transport modeling[J]. Water Research, 2018, 146: 216-231.

[6] Zhang Q, Yu G, Zhou Q, et al. Eco-friendly interpenetrating network hydrogels integrated with natural soil colloid as a green and sustainable modifier for slow release of agrochemicals[J/OL]. Journal of Cleaner Production, [2020-07-15]. https://doi.org/10.1016/j.jclepro.2020.122060

[7] 陈太丽,史忠林,王永艳,等. 三峡水库典型支流消落带泥沙颗粒态磷复合指纹示踪研究[J]. 农业工程学报,2019,35(20):118-124.

Chen Taili, Shi Zhonglin, Wang Yongyan, et al. Fingerprinting particulate phosphorus absorbed by sediments for riparian zone deposits in tributary of Three Gorges Reservoir[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(20): 118-124. (in Chinese with English abstract)

[8] Jahan S, Alias Y, Bin A B, et al. Transport and retention behavior of carbonaceous colloids in natural aqueous medium: Impact of water chemistry[J]. Chemosphere, 2018, 217: 213-222.

[9] 鲜青松,唐翔宇. 薄层紫色土坡耕地胶体颗粒随地表径流及裂隙潜流迁移规律[J]. 农业工程学报,2017,33(13):143-150.

Xian Qingsong, Tang Xiangyu. Transportation regularity of colloid particle with surface runoff andfracture flow from sloping farmland in thin purple soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(13): 143-150. (in Chinese with English abstract)

[10] Cui J, Tang X, Zhang W, et al. The effects of timing of inundation on soil physical quality in the water-level fluctuation zone of the Three Gorges Reservoir Region, China[J]/OL. Vadose Zone Journal, [2020-07-15]. https://doi.org/10.2136/vzj2018.03.0043

[11] Zhang W, Chen J, Xian Q, et al. Dynamics and sources of colloids in shallow groundwater in lowland wells and fracture flow in sloping farmland[J]. Water Research, 2019, 156: 252-263.

[12] Chevan A, Sutherland M. Hierarchical partitioning[J]. American Statian, 1991, 45(2): 90-96.

[13] Jacobsen O, Moldrup P, Larsen C, et al. Particle transport in macropores of undisturbed soil columns[J]. Journal of Hydrology, 1997, 196(1-4): 185-203.

[14] Mohanty S, Saiers J, Ryan J. Colloid mobilization in a fractured soil during dry-wet cycles: Role of drying duration and flow path permeability[J]. Environmental Science & Technology, 2015, 49: 9100-9106.

[15] Zhang W, Tang X, Xian Q, et al. A field study of colloid transport in surface and subsurface flows[J]. Journal of Hydrology, 2016, 542: 101-114.

[16] 商书波. 降雨对土壤胶体释放与迁移的影响研究[J]. 水土保持学报,2009,23(6):199-202.

Shang Shubo. Study on the release and migration of soil colloids with rainfall[J]. Journal of Soil and Water Conservation, 2009, 23(6):199-202. (in Chinese with English abstract)

[17] Sun Y, Pan D, Wei X, et al. Insight into the stability and correlated transport of kaolinite colloid: Effect of pH, electrolytes and humic substances[J]/OL. Environmental Pollution, [2020-07-15]. https://doi.org/10.1016/j.envpol.2020.115189

[18] Masciopinto C, Visino F. Strong release of viruses in fracture flow in response to a perturbation in ionic strength: Filtration/retention tests and modeling[J]. Water Research, 2017, 126: 240-251.

[19] Albarran N, Degueldre C, Missana T, et al. Size distribution analysis of colloid generated from compacted bentonite in low ionic strength aqueous solutions[J]. Applied Clay Science, 2014, 95: 284-293.

[20] 高洁,江韬,李璐璐,等. 三峡库区消落带土壤中溶解性有机质(DOM)吸收及荧光光谱特征[J]. 环境科学,2015,36(1):151-162.

Gao Jie, Jiang Tao, Li Lulu, et al. Ultraviolet-Visible (UV-Vis) and fluorescence spectral characteristics of dissolved organic matter (DOM) in soils of water-level fluctuation zones of the Three Gorges Reservoir region[J]. Environmental Science, 2015, 36(1): 151-162. (in Chinese with English abstract)

[21] Xu H, Xu M, Li Y, et al. Characterization, origin and aggregation behavior of colloids in eutrophic shallow lake[J]. Water Research, 2018, 142: 176-186.

[22] Yang X, Zhang Y, Chen F, et al. Interplay of natural organic matter with flow rate and particle size on colloid transport: Experimentation, visualization, and modeling[J]. Environmental Science & Technology, 2015, 49(22): 13385-13393.

[23] Kida M, Myangan O, Oyuntsetseg B, et al. Dissolved organic matter distribution and its association with colloidal aluminum and iron in the Selenga River Basin from Ulaanbaatar to Lake Baikal[J]. Environmental Science and Pollution Research, 2018, 25(12): 11948-11957.

[24] Zhou Y, Cheng T. Influence of natural organic matter in porous media on fine particle transport[J]. Science of the Total Environment, 2018, 627: 176-188.

[25] 熊子怡,郑杰炳,王丹,等. 不同施肥条件下紫色土旱坡地可溶性有机碳流失特征[J/OL]. 环境科学,[2020-07-15]. https://doi.org/10.13227/j.hjkx.202007139

Xiong Ziyi, Zheng Jiebing, Wang Dan, et al. Characteristics of dissolved organic carbon loss in purple soil sloping field with different fertilization treatment[J/OL]. Environmental Science, [2020-07-15]. https://doi.org/10.13227/j.hjkx.202007139 (in Chinese with English abstract)

[26] 吕文星. 三峡库区坡耕地“地埂+植物篱”结构及营建模式[D]. 北京:北京林业大学,2011.

Lv Wenxing. Structure and Construct Mode of Terrace and Hedgerow in Sloping Farmland in the Three Gorges Reservoir Area[D]. Beijing: Beijing Forestry University, 2011. (in Chinese with English abstract)

[27] Hussain M, Robertson G, Basso B, et al. Leaching losses of dissolved organic carbon and nitrogen from agricultural soils in the upper US Midwest[J/OL]. Science of the Total Environment, 2020-07-15. https://doi.org/10.1016/j.scitotenv.2020.139379

[28] 王娅儆,陈芳清,张淼,等. 不同植被恢复模式下三峡库区万州段消落带土壤养分及其空间分布特征[J]. 农业资源与环境学报,2016,33(2):127-133.

Wang Yajing, Chen Fangqing, Zhang Miao, et al. Characteristics of soil nurtrient and spatial distribution on riparian zone restored by different vegatation restoration methods at Wanzhou section in the Three Gorges Reservoir area, China[J]. Journal of Agricultural Resources and Environment, 2016, 33(2): 127-133. (in Chinese with English abstract)

[29] Norgaard T, Paradelo M, Moldrup P, et al. Particle leaching rates from a loamy soil are controlled by the mineral fines content and the degree of preferential flow[J]. Journal of Environmental Quality, 2018, 47(6): 1538-1545.

[30] Mohanty S, Saiers J, Ryan J. Colloid mobilization in a fractured soil: Effect of pore-water exchange between preferential flow paths and soil matrix[J]. Environmental Science & Technology, 2016, 50(5):2310-2317.

Soil colloid release and transport in the water level fluctuation zone of the Three Gorges Reservoir

Zhang Wei1, Sun Honglei2,3, Tang Xiangyu4※

(1.,,400067,; 2..,.,621002,; 3.,,611756,; 4.,,,610041,)

Soil colloids are generally defined as fine particleswith diameters ranging between the nanoscale (down to 10 nm) and microscale (2m). As colloids are characterized by large surface areas and active functional groups, they exhibit strong affinities to hydrophobic contaminants such as phosphors, heavy metals and pharmaceuticals. In addition, natural colloids in the vadose zone are negatively charged, which potentially decreases the possibilities of colloid straining and/or retention by soil matrix. As such, a great potential of environmental risk from natural colloids is posed to the shallow groundwater. In the Three Gorges Reservoir (TGR), the Water-Level Fluctuation Zone (WLFZ) actsas the final barrier before the entrance of terrestrial contaminants into the reservoir water. High intensity and periodic wet-dry cycles in the WLFZ potentially affect soil physicochemical properties, internal structure and erodibility, which further influences the release and transport of soil colloids. However, the systematic investigation is still lacking regarding the release dynamics and transport potentials of soil colloids from the WLFZ or the riparian soil subject to periodic wet-dry cycles. The investigation of colloid release and transport is also highly demanding for the evaluation of colloid-facilitated contaminant transport into the reservoir water. In this study, the release and transport dynamics of soil colloids were explored in the intact soil columns from the WLFZ at an altitude of 160 m and the non-WLFZ at an altitude of 177 m within the TGR. Column-scale leaching experiments were carried out in the saturated flows, where the conservative tracer (Br-) was used as an indicator of the degree of preferential flow in the columns. Correlation and regression analysis, as well as hierarchical partitioning were applied to identify the effects of critical factors of water chemistries on the release and transport dynamics of soil colloids. The results showed that colloid concentration of the leachate from the WLFZ generally showed a rapid decrease from 184.58 to 28.04 mg/L within 0-3 pore volumes of injection, followed by a slow increase from 21.18 to 97.58 mg/L within 3-6 pore volumes. A large temporal variation of colloid release from the WLFZ was observed with a variation coefficient of 0.46. The accumulated amount of colloid release from the WLFZ column was 714.43 mg within 6 pore volumes of leaching, which was 34.4% higher than the released colloid from the non-WLFZ column. The peak and median size of the leached particles from the WLFZ column were 13.25-19.90m and 14.98-22.90m, respectively, both of which were much smaller than those from the non-WLFZ column. These results indicated that the periodic alternations of impoundment and exposure could contribute to the release and transport potential of colloid and fine particles from the soil in the WLFZ. Dissolved Organic Carbon (DOC) was identified to be the critical influential factor for the release of soil colloid from the WLFZ, showing a high explanation rate of 42.3% to the dynamic of colloid concentration. In contrast, water chemistries including EC, Ca2+and Mg2+, showed a stronger effect on colloid release and transport in the soil of the non-WLFZ. The reduction of DOC loss from the WLFZ soil can be prioritized to alleviate the released and transport potential of soil colloid from the WLFZ. A strong suggestion was proposed to explore the potential sources of DOC in the soil of the WLFZ, as well as the potential transport of various contaminants such as agricultural wastes facilitated by DOC-colloid associates into the reservoir water in the future.

colloid; transport; runoff; soil erosion; water level fluctuation zone; Three Gorges Reservoir

张维,孙虹蕾,唐翔宇. 三峡水库消落带土壤胶体释放与迁移特征[J]. 农业工程学报,2021,37(1):188-194.doi:10.11975/j.issn.1002-6819.2021.01.023 http://www.tcsae.org

Zhang Wei, Sun Honglei, Tang Xiangyu. Soil colloid release and transport in the water level fluctuation zone of the Three Gorges Reservoir[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2021, 37(1): 188-194. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2021.01.023 http://www.tcsae.org

2020-09-24

2020-12-30

国家自然科学基金项目(41601539);重庆市教委科学技术研究项目(KJ1600615)

张维,博士,副教授,主要从事农业资源环境的研究。Email:weizhang@ctbu.edu.cn

唐翔宇,博士,研究员,主要从事农业资源环境的研究。Email:xytang@imde.ac.cn

10.11975/j.issn.1002-6819.2021.01.023

S15

A

1002-6819(2021)-01-0188-07

猜你喜欢
胶体颗粒浓度
管式太阳能集热器的颗粒换热模拟
表示混合物组成的量的标准名称
共沉淀法制备YOF:Yb3+,Er3+造影颗粒的发光性能及正交优化
The Dunhuang murals are helping to revive travel on the old Silk Road
黄河水是胶体吗
物质的量浓度计算策略
『物质的分类』第2课时教学设计
浅谈胶体
镇咳宁颗粒的质量标准研究
Huber集团的新型颗粒捕集器再生系统