高效液相色谱-荧光检测法检测烤肉制品中5种硝基多环芳烃

2021-03-26 00:05白雪惠腾王振宇曹云刚张德权
中国农业科学 2021年5期
关键词:北京烤鸭硝基正己烷

白雪,惠腾,王振宇,曹云刚,张德权

高效液相色谱-荧光检测法检测烤肉制品中5种硝基多环芳烃

1陕西科技大学食品与生物工程学院,西安 710021;2中国农业科学院农产品加工研究所/农业农村部农产品加工重点实验室,北京 100193

【】明确烤肉制品中硝基多环芳烃(NPAHs)的含量水平,建立固相萃取柱结合高效液相色谱-荧光检测器测定烤肉制品中5种NPAHs(1-硝基萘、2-硝基芴、3-硝基荧蒽、1-硝基芘和6-硝基苯并[]芘)的方法。称取1 g真空冷冻干燥的烤肉样品,加入二氯甲烷超声提取并过滤收集滤液,重复提取3次。将滤液氮吹至近干,加入3 mL正己烷溶解。依次用二氯甲烷和正己烷活化多环芳烃固相萃取柱,上样后用正己烷荡洗样品管然后继续上柱;用正己烷淋洗,二氯甲烷洗脱;将洗脱液氮吹至近干,用乙腈溶解得到NPAHs待测液。向待测液中加入酸化甲醇和铁粉,磁力搅拌水浴加热40 min,离心并过滤膜后通过高效液相色谱-荧光检测器检测,其中色谱柱为Agilent ZORBAX Eclipse PAH柱,设置柱温40℃,进样量20 μL,流动相选用水和乙腈,采用梯度洗脱模式。5种NPAHs在相应质量浓度范围内线性关系良好,相关系数大于0.9940,检出限为0.12—2.17 μg·kg-1,定量限为0.38—7.23 μg·kg-1,平均回收率为53.16%—129.64%,精密度为1.91%—30.73%。利用该方法对我国5类典型的烤肉样品进行检测,测得5种NPAHs总含量为50.19—82.36 μg·kg-1,其中6-硝基苯并[]芘含量最高,约为31.01—35.89 μg·kg-1,其次是3-硝基荧蒽,约为9.99—23.06 μg·kg-1。固相萃取柱结合高效液相色谱-荧光检测法适用于烤肉制品中NPAHs的分析;我国烤肉制品中普遍存在NPAHs。

硝基多环芳烃;烤肉制品;高效液相色谱-荧光检测;固相萃取

0 引言

【研究意义】硝基多环芳烃(nitropolycyclic aromatic hydrocarbons,NPAHs)是多环芳烃(polycyclic aromatic hydrocarbons,PAHs)的硝基化衍生物,含有两个或两个以上苯环结构和至少一个硝基基团。毒理学研究表明,PAHs类物质具有“三致”(致癌、致畸和致突变)等危害[1-3],且NPAHs与母体PAHs相比,其致突变性和致癌性更强[4]。Durant等[5]通过毒理学试验证实了NPAHs的致癌性是其母体PAHs的10余倍,致突变性更是其母体PAHs的10万余倍,具有直接毒性,对人体健康危害更大。通常情况下,人们通过吸入受污染空气、食用受污染食物或皮肤接触等途径暴露于PAHs类物质[6]。食品中NPAHs的来源包括环境污染物迁移到食物中[7-9]以及食品的高温加热过程生成[10-11]。现有研究表明通过食物摄取是人们接触PAHs类物质的主要途径[12-14],其中肉制品(尤其是烤肉制品)是成人从食物中摄取NPAHs的主要来源,在所有暴露途径中的占比最高可达71.00%[14-15]。肉制品在烤制过程中,由于木炭的不完全燃烧[16-17],肉中的脂肪、蛋白质和碳水化合物等PAHs前体物在高温下发生热解氧化[18-19]等,都是烤肉制品中PAHs(包括NPAHs)的形成原因。目前PAHs类物质在烤肉制品中的具体形成路径尚不明确[20],NPAHs可能是在肉制品烤制过程中直接生成或由PAHs与含氮活性物质反应形成[21-22]。因此,建立烤肉制品中NPAHs的检测方法,分析烤肉制品中NPAHs的含量水平,对于明晰NPAHs的形成机制及探究NPAHs的减控措施具有十分重要的意义。【前人研究进展】现有研究证实肉和肉制品中存在NPAHs[23-25],其中1-硝基萘(1-Nitronaphthalene,1-NN)、2-硝基芴(2-Nitrofluorene,2-NF)和1-硝基芘(1-Nitropyrene,1-NP)的含量较为丰富。SCHLEMITZ等[26]发现烤猪肉中1-NN、2-NF和1-NP的含量分别为1.5、1.0和0.5 μg∙kg-1,熏肉中这3种NPAHs的含量分别为7.2、2.0和2.2 μg∙kg-1。DENG等[25]检测到我国香港地区猪肉中1-NN含量为2.8 μg∙kg-1,鸡肉中的1-NP含量为18.5 μg∙kg-1,香肠中2-NF最高可达到241.7 μg∙kg-1。【本研究切入点】目前关于肉制品中NPAHs的检测方法较少,且现有检测方法前处理操作复杂或同时检测NPAHs的种类较少,因此亟待建立一种相对简便快捷,并能同时检测多种NPAHs的方法。此外,当前肉制品中NPAHs的相关研究非常有限,尤其是我国大陆地区肉制品中NPAHs的含量水平尚未见报道。大陆地区是我国肉制品消费的主要地区,传统烧烤类肉制品消费量巨大,这些烤肉制品在高温加工时容易形成NPAHs,危害消费者健康,因此有必要了解我国烤肉制品中NPAHs的含量水平。【拟解决的关键问题】本研究将对烤肉制品中NPAHs的提取、净化、衍生化和检测等关键程序进行研究,建立一种基于高效液相色谱串联荧光检测器检测烤肉制品中NPAHs的方法;利用该方法对我国烤肉制品中5种NPAHs进行检测,初步揭示我国烤肉制品中NPAHs的含量水平,为我国居民的健康消费提供参考,也为后续烤肉制品中NPAHs的具体形成途径及减控研究奠定基础。

1 材料与方法

试验于2019年10月至2020年5月在中国农业科学院农产品加工研究所农业农村部农产品加工重点实验室进行。

1.1 材料与试剂

小尾寒羊与蒙古羊杂交的二寒羊公羊羊后腿(购自内蒙古巴彦淖尔草原宏宝食品有限公司,二寒羊公羊来自于集中饲养,屠宰平均月龄5个月,体重约30 kg),于(6.0±2.0)℃、湿度(95±5)%排酸24 h,至羊后腿肉半膜肌pH为5.7±0.2,4℃条件下立即将上述羊后腿去皮去骨,修掉可见的结缔组织,收集肌肉组织储存于-20℃备用。

烤肉制品包括北京烤鸭、烤羊腿、烤猪肉片(均购自北京市海淀区幸福荣耀超市),烤鸡翅(购自北京市海淀区幸福荣耀超市和北京市海淀区烤肉店)和烤羊肉串(购自北京市海淀区烤肉店)5类。从烤肉店购买的烤鸡翅和烤羊肉串均采用炭烤方式烤制,烤制过程中采用多通路温度巡检仪检测到炭火温度为500—600℃,肉块表面温度为80—90℃。

主要试剂:二氯甲烷(分析纯)、正己烷(分析纯)、铁粉、1-硝基萘(1-Nitronaphthalene,1-NN)、2-硝基芴(2-Nitrofluorene,2-NF)、1-硝基芘(1- Nitropyrene,1-NP),上海阿拉丁生化科技股份有限公司;3-硝基荧蒽(3-Nitrofluoranthene,3-NF)、6-硝基苯并[]芘(6-Nitrobenzo[]pyrene,6-NBAP),德国Dr.Ehrenstorfer GmbH公司;甲醇、乙腈(均为色谱纯),美国赛默飞世尔科技公司;乙酸(分析纯),国药集团化学试剂有限公司。

1.2 主要仪器与设备

Agilent Infinity ІІ 1260高效液相色谱系统(配有荧光检测器和二极管阵列检测器)、Agilent ZORBAX Eclipse PAH柱(4.6 mm×250 mm,5-Micron),美国Agilent公司;ML204电子天平,上海梅特勒-托利多仪器有限公司;LGJ-10真空冷冻干燥机,北京四环科学仪器厂有限公司;涡旋振荡器,美国Scientific Industries公司;3737025匀浆机,德国IKA公司;TTL-DC ІІ氮吹仪,青岛明博环保科技有限公司;MIP-PAHs固相萃取柱,德国CNW公司;D-37520离心机,德国Sigma公司;FCR1000-UF-E超纯水机,青岛富勒姆科技有限公司。

1.3 试验方法

1.3.1 样品烤制 将羊后腿从-20℃转移至4℃冰箱,解冻12 h后剔除脂肪和结缔组织,取羊后腿肉切块,规格为2.0 cm×2.0 cm×2.0 cm。将切好的肉块用铁钎串好,每根铁钎串3块肉块,肉块之间间隔1 cm,然后采用双匠SJD-305-16无烟电烧烤炉进行烤制,设置火力档位为70,烤制10 min(每分钟翻转一次)。火力设置为70时检测到热源温度为500—600℃,烤制结束时,肉块中心温度约为72℃。烤制过程中均不额外添加任何物质,烤制结束后自然冷却至室温。

1.3.2 样品前处理 参考DENG等[25]的方法并进行优化改进。烤肉样品用料理机绞碎,称重(湿基质量,记为M0),平铺于一次性培养皿中,在-60℃下真空冷冻干燥24 h至完全干燥,称重(干基质量,记为M1)。用高速粉碎机将冻干后的样品磨粉并准确称取1.00 g于50 mL离心管中,加入20 mL二氯甲烷并混匀,超声提取30 min,超声结束后将悬浊液过定量滤纸,收集提取液(滤液)。重复上述操作3次,将同一样品的3次提取液合并在一起,在室温下用氮气缓慢吹至近干,加入3 mL正己烷,涡旋混匀,待净化。

1.3.3 样品净化 依次用5 mL二氯甲烷和5 mL正己烷活化固相萃取柱。加入1.3.2中得到的3 mL正己烷与样品的混合液,再用2 mL正己烷洗涤离心管后继续加入固相萃取柱,取6 mL正己烷分两次淋洗,每次3 mL。用10 mL二氯甲烷洗脱NPAHs并收集洗脱液,室温下用氮气缓慢吹至近干后用1 mL乙腈溶解。

1.3.4 样品衍生化 由于NPAHs不具有荧光特性,使用HPLC-FLD法检测NPAHs前需要对其进行衍生化处理,将NPAHs还原为具有荧光特性的氨基多环芳烃[26-27]。参考DENG等[25]的方法并进行优化改进。吸取1.3.3中得到的溶于乙腈的提取物100 μL,加入900 μL酸化甲醇(15%乙酸,v/v)和10 mg铁粉,涡旋振荡混匀。在60℃下用磁力搅拌水浴锅水浴加热40 min,转速设置为500 r/min,加热结束后取出冷却至室温,13 800 r/min离心10 min,吸取上清液过0.22 μm聚四氟乙烯滤膜,待检测。

1.3.5 色谱分析条件 采用Agilent ZORBAX Eclipse PAH柱(4.6 mm×250 mm,5-Micron)进行色谱分析,流动相为水和乙腈。设置柱温为40℃,进样量20 μL,恒定流速1 mL∙min-1,梯度洗脱程序见表1。

表1 HPLC梯度洗脱程序

1.3.6 方法学验证 称取1.00 g冻干粉碎后的粉末状烤肉样品,分别进行20、60和100 ng∙g-13个加标水平的空白基质加标回收率试验,按照上述方法进行前处理、净化、衍生化和HPLC-FLD分析测定,计算回收率和精密度。

1.3.7 烤肉制品中NPAHs检测分析 利用上述HPLC-FLD分析方法对我国典型的北京烤鸭、烤羊腿、烤猪肉片、烤鸡翅、烤羊肉串进行NPAHs检测分析(样品编号1和2分别代表同一种类但不同品牌的两种样品)。

1.4 统计分析

本试验采用Origin 2018作图,采用IBM SPSS Statistics 22软件进行统计分析,通过Duncan多重比较法进行差异显著性分析(<0.05),结果以“平均值±标准差”表示。

2 结果

2.1 荧光检测波长条件的确定

对1-NN、2-NF、3-NF、1-NP和6-NBAP的单标溶液分别进行检测,确定各NPAHs在表1洗脱梯度下的保留时间;通过荧光分光光度计对5种NPAHs进行荧光检测,确定其最佳荧光检测波长。最终确定的荧光检测程序见表2。对浓度为50 ng∙mL-1的混标溶液进行检测,得到的液相色谱检测图谱如图1所示,其中1-NN、2-NF和1-NP对荧光检测器的响应度相对较高,而3-NF和6-NBAP的响应度相对较低,可能与这两种物质的理化性质有关。

表2 荧光检测器检测程序

a:1-NN;b:2-NF;c:3-NF;d:1-NP;e:6-NBAP

2.2 标准曲线和方法检出限

配制浓度为1、5、10、20、50和100 ng∙mL-1的NPAHs混标溶液,检测并建立线性方程。由表3可知,5种NPAHs的质量浓度与峰面积之间的线性关系良好,相关系数均大于0.9940,方法检出限为0.12—2.12 μg∙kg-1,定量限为0.38—7.23 μg∙kg-1。

表3 5种NPAHs的线性方程、相关系数、检出限和定量限

2.3 方法的回收率和精密度

在20、60和100 ng∙g-1这3个加标水平下,5种NPAHs的平均回收率在53.16%—129.64%,1-NN、2-NF和1-NP这3种NPAHs的精密度均小于8%(表4),但3-NF和6-NBAP的精密度较大,可能是由于这两种物质对荧光检测器的响应度较低,相应的,其精密度也较大。

表4 方法的回收率和精密度

2.4 烤肉制品中NPAHs含量检测

采用本研究优化的方法,对北京烤鸭、烤羊腿、烤猪肉片、烤鸡翅和烤羊肉串这5类烤肉制品(共16个检测样品)中NPAHs含量进行检测,结果表明,在所有检测样品中,总NPAHs含量在50.19—82.36 μg∙kg-1(表5)。从NPAHs种类来看,6-NBAP的含量普遍较高,其次是3-NF、1-NP、2-NF和1-NN;从样品种类来看,北京烤鸭样品中总NPAHs含量为55.90—82.36 μg∙kg-1,烤羊腿中总NPAHs含量为64.00—70.32 μg∙kg-1,烤猪肉片为67.73—68.55 μg∙kg-1,烤鸡翅为58.63—66.84 μg∙kg-1,烤羊肉串为50.19—55.56 μg∙kg-1。从总NPAHs含量来看,添加了NaNO2的北京烤鸭胸皮、北京烤鸭腿肉、北京烤鸭腿皮和烤羊腿、烤猪肉片样品中的总NPAHs含量略高于不含NaNO2的样品,但添加NaNO2的北京烤鸭胸肉和烤鸡翅样品中的总NPAHs含量略低于不含NaNO2的样品。分别对不同检测样品中各种NPAHs含量和总NPAHs含量进行差异显著性分析,发现烤羊腿2中1-NN含量显著高于烤羊腿1和其他样品(<0.05),这表明添加NaNO2对烤羊腿1中1-NN的形成无显著影响;北京烤鸭1-胸肉和北京烤鸭2-胸肉中2-NF含量显著高于烤羊肉串1和2(<0.05),可能是因为北京烤鸭胸肉比烤羊肉串更易形成2-NF;北京烤鸭2-胸皮、北京烤鸭2-腿肉和北京烤鸭2-腿皮中均未检测到3-NF,而添加了NaNO2的北京烤鸭1中这3个部位均检测到3-NF,说明NaNO2可能对3-NF的形成具有一定的促进作用;北京烤鸭1-胸皮中6-NBAP含量显著高于北京烤鸭2-胸皮(<0.05),可能是NaNO2促进了北京烤鸭胸皮中6-NBAP的形成。由上可知,影响烤肉制品中NPAHs形成的因素很多,NaNO2与烤肉制品NPAHs含量之间的关系有待进一步深入研究。

3 讨论

本研究为获得较好的提取效果,对加标量为60 ng∙g-1的样品进行了超声和摇床提取两种不同提取方式的回收率对比试验,结果表明两种提取方式之间无显著性差异。由于摇床振荡提取可能存在漏液风险,且超声提取技术可以在样品与提取液之间产生强烈的振动效应、空化效应及扩散作用,具有快速高效的优点[28],因此,后续研究采用超声辅助提取。

衍生化效率以衍生前后混标溶液的高效液相色谱—二极管阵列(HPLC-DAD)检测图谱中各物质峰面积的差与衍生前的峰面积之比计算。参考DENG等[25]的方法在加热过程中对衍生化试剂和样品的混合液进行定时摇匀,计算发现5种NPAHs的衍生化效率在52.72%—82.92%,衍生化效率较低。于是对加热方法进行改进,用磁力搅拌水浴加热代替普通水浴加热过程,设置转速为500 r/min,加热时间40 min。在磁力搅拌水浴加热过程中,样品中待衍生的物质与衍生化试剂之间的接触和反应更加充分,可将衍生化效率提高至87.40%—96.92%。

表5 烤肉制品中NPAHs检测结果

ND表示未检出;μg∙kg-1指每kg干基样品中的NPAHs含量。同列不同小写字母表示差异显著(<0.05)

ND means not detected; μg∙kg-1refers to the content of NPAHs in each kilogram dry sample. Different small letters in the same column indicate significantly different at<0.05

应用已建立的分析方法检测到北京烤鸭中含有NPAHs,尚未见烤鸭类产品中NPAHs含量的报道。DENG等[25]检测到烟熏鸭胸肉中1-NN为2.60 μg∙kg-1。两种烤鸡翅中均检测到1-NN、2-NF和1-NP,但DENG等[25]在烤鸡中未检测到以上3种NPAHs,SCHLEMITZ等[26]发现烤火鸡中含有0.30—0.50 μg∙kg-1的2-NF。SCHLEMITZ等[24,26]分别通过GC-MS和HPLC-FLD检测到烤猪肉中2-NF含量为2.00 μg∙kg-1和0.50 μg∙kg-1,1-NP含量为1.00 μg∙kg-1和0.30 μg∙kg-1,两种方法均未检出1-NN。烤羊肉中NPAHs含量在前人研究中也无报道。本研究通过超声提取、固相萃取和高效液相色谱串联荧光检测法在烤鸡翅、烤猪肉片和烤羊肉串等烤肉制品中均检测到1-NN等NPAHs。

影响肉制品中PAHs类物质含量的因素很多,首先与畜禽种类、产地及饲养方式有关[29];其次,在加工过程中,不同的加工方式、加热温度、加热时间在很大程度上决定了肉制品中PAHs类物质的含量[30-32];最后,不同前处理方法对样品中目标物的提取效果不同,不同检测仪器的灵敏度不同等因素均是影响检测结果的重要原因。但现有研究及本研究的检测结果均表明烤肉制品中普遍存在NPAHs,考虑到NPAHs对人体健康的危害,今后应加大烤肉制品加工过程中NPAHs形成规律及减控措施研究。

4 结论

采用超声辅助溶剂萃取法提取烤肉制品中的NPAHs,通过固相萃取柱对提取液进行净化,在酸性条件下将NPAHs还原为氨基多环芳烃,实现了HPLC- FLD法对1-NN、2-NF、3-NF、1-NP和6-NBAP这5种NPAHs的检测。本方法前处理操作简便、提取效果好,回收率较高,适用于烤肉制品中NPAHs的检测,利用该方法进行检测分析后发现我国烤肉制品中普遍存在NPAHs。

[1] KIM K H, JAHAN S A, KABIR E, BROWN R J C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environment International, 2013, 60: 71-80.

[2] RAMESH A, WALKER S A, HOOD D B, GUILLÉN M D, SCHNEIDER K, WEYAND E H. Bioavailability and risk assessment of orally ingested polycyclic aromatic hydrocarbons. International Journal of Toxicology, 2004, 23(5): 301-333.

[3] POURSAFA P, MOOSAZADEH M, ABEDINI E, HAJIZADEH Y, MANSOURIAN M, POURZAMANI H, AMIN M M. A systematic review on the effects of polycyclic aromatic hydrocarbons on cardiometabolic impairment. International Journal of Preventive Medicine, 2017, 8(1): 19-24.

[4] WU Y L, DAI L P, CHENG J, GUO F, LI J K. Application of DLLME based on the solidification of floating organic droplets for the determination of dinitrobenzenes in aqueous samples. Chromatographia, 2010, 72(7/8): 695-699.

[5] DURANT J L, BUSBY W F, LAFLEUR A L, PENMAN B W, CRESPI C L. Human cell mutagenicity of oxygenated, nitrated and unsubstituted polycyclic aromatic hydrocarbons associated with urban aerosols. Mutation Research/Genetic Toxicology, 1996, 371(3/4): 123-157.

[6] CHEN Y C, SHEN G F, SU S, SHEN H Z, HUANG Y, LI T C, LI W, ZHANG Y Y, LU Y, CHEN H, YANG C L, LIN N, ZHU Y, FU X F, LIU W X, WANG X L, TAO S. Contamination and distribution of parent, nitrated, and oxygenated polycyclic aromatic hydrocarbons in smoked meat. Environmental Science and Pollution Research International, 2014, 21(19): 11521-11530.

[7] WANG L, LI C M, JIAO B N, LI Q W, SU H, WANG J, JIN F. Halogenated and parent polycyclic aromatic hydrocarbons in vegetables: Levels, dietary intakes, and health risk assessments. Science of the Total Environment, 2018, 616/617: 288-295.

[8] DA SILVA S A, DA SILVA TORRES E A F, DE ALMEIDA A P, SAMPAIO G R. Polycyclic aromatic hydrocarbons content and fatty acids profile in coconut, safflower, evening primrose and linseed oils. Food Chemistry, 2018, 245: 798-805.

[9] HONG W J, JIA H L, LI Y F, SUN Y Q, LIU X J, WANG L. Polycyclic aromatic hydrocarbons (PAHs) and alkylated PAHs in the coastal seawater, surface sediment and oyster from Dalian, Northeast China. Ecotoxicology and Environmental Safety, 2016, 128: 11-20.

[10] SINGH L, VARSHNEY J G, AGARWAL T. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food. Food Chemistry, 2016, 199: 768-781.

[11] BERTINETTI I A, FERREIRA C D, MONKS J L F, FILHO P J S, ELIAS M C. Accumulation of polycyclic aromatic hydrocarbons (PAHs) in rice subjected to drying with different fuels plus temperature, industrial processes and cooking. Journal of Food Composition and Analysis, 2018, 66: 109-115.

[12] LIOY P L, WALDMAN J M, GREENBERG A, HARKOV R, PIETARINEN C. The Total Human Environmental Exposure Study (THEES) to benzo (a) pyrene: Comparison of the inhalation and food pathways. Archives of Environmental Health, 1988, 43(4): 304-312.

[13] PHILLIPS D H. Polycyclic aromatic hydrocarbons in the diet. Mutation Research, 1999, 443(1/2): 139-147.

[14] PARIS A, LEDAUPHIN J, POINOT P, GAILLARD J L. Polycyclic aromatic hydrocarbons in fruits and vegetables: Origin, analysis, and occurrence. Environmental Pollution, 2018, 234: 96-106.

[15] MARTORELL I, PERELLÓ G, MARTÍ-CID R, CASTELL V, LIOBET J M, DOMINGO J L. Polycyclic aromatic hydrocarbons (PAH) in foods and estimated PAH intake by the population of Catalonia, Spain: Temporal trend. Environment International, 2010, 36(5): 424-432.

[16] LEE J G, KIM S Y, MOON J S, KIM S H, KANG D H, YOON H J. Effects of grilling procedures on levels of polycyclic aromatic hydrocarbons in grilled meats. Food Chemistry, 2016, 199: 632-638.

[17] 赵冰, 任琳, 李家鹏, 陈文华, 赵燕. 传统肉制品中多环芳烃来源和检测方法研究进展. 肉类研究, 2012, 26(6): 50-53.

ZHAO B, REN L, LI J P, CHEN W H, ZHAO Y. Research progress in sources and determination methods for polycyclic aromatic hydrocarbons in traditional meat products. Meat Research, 2012, 26(6): 50-53. (in Chinese)

[18] SUN Y Q, WU S M, GONG G Y. Trends of research on polycyclic aromatic hydrocarbons in food: A 20-year perspective from 1997 to 2017. Trends in Food Science and Technology, 2019, 83: 86-98.

[19] 聂文, 屠泽慧, 占剑峰, 蔡克周, 姜绍通, 陈从贵. 食品加工过程中多环芳烃生成机理的研究进展. 食品科学, 2018, 39(15): 269-274.

NIE W, TU Z H, ZHAN J F, CAI K Z, JIANG S T, CHEN C G. Mechanism of polycyclic aromatic hydrocarbon formation in food processing: A review. Food Science, 2018, 39(15): 269-274. (in Chinese)

[20] MIN S, PATRA J K, SHIN H S. Factors influencing inhibition of eight polycyclic aromatic hydrocarbons in heated meat model system. Food Chemistry, 2018, 239: 993-1000.

[21] PITTS J N. Nitration of gaseous polycyclic aromatic hydrocarbons in simulated and ambient urban atmospheres: A source of mutagenic nitroarenes. Atmospheric Environment, 1987, 21(12): 2531-2547.

[22] HAYAKAWA K. Environmental behaviors and toxicities of polycyclic aromatic hydrocarbons and nitropolycyclic aromatic hydrocarbons. Chemical and Pharmaceutical Bulletin, 2016, 64(2): 83-94.

[23] DENNIS M J, MASSEY R C, MCWEENY D J, KNOWLES M E. Estimation of nitropolycyclic aromatic hydrocarbons in foods. Food Additives and Contaminants, 1984, 1(1): 29-37.

[24] SCHLEMITZ S, PFANNHAUSER W. Monitoring of nitropolycyclic aromatic hydrocarbons in food using gas chromatography. Zeitschrift für Lebensmittel-Untersuchung und Forschung, 1996, 203(1): 61-64.

[25] DENG K L, WONG T Y, WANG Y N, LEUNG E M K, CHAN W. Combination of precolumn nitro-reduction and ultraperformance liquid chromatography with fluorescence detection for the sensitive quantification of 1-nitronaphthalene, 2-nitrofluorene, and 1-nitropyrene in meat products. Journal of Agricultural and Food Chemistry, 2015, 63(12): 3161-3167.

[26] SCHLEMITZ S, PFANNHAUSER W. Analysis of nitro-PAHs in food matrices by on-line reduction and high performance liquid chromatography. Food Additives and Contaminants, 1996, 13(8): 969-977.

[27] SCHAUER C, NIESSNER R, PÖSCHL U. Analysis of nitrated polycyclic aromatic hydrocarbons by liquid chromatography with fluorescence and mass spectrometry detection: Air particulate matter, soot, and reaction product studies. Analytical and Bioanalytical Chemistry, 2004, 378(3): 725-736.

[28] 郭青, 林文强, 牟定荣, 毛多斌. 超声波萃取技术在烟草成分分离中的应用研究综述. 郑州轻工业学院学报(自然科学版), 2011, 26(5): 96-99.

GUO Q, LIN W Q, MOU D R, MAO D B. Research review of the application of ultrasonic extraction in tobacco component separation. Journal of Zhengzhou University of Light Industry (Natural Science Edition), 2011, 26(5): 96-99. (in Chinese)

[29] ONYANGO A A, LALAH J O, WANDIGA S O. The effect of local cooking methods on polycyclic aromatic hydrocarbons (PAHs) contents in beef, goat meat, and pork as potential sources of human exposure in Kisumu city, Kenya. Polycyclic Aromatic Compounds, 2012, 32(5): 656-668.

[30] SINGH L, VARSHNEY J G, AGARWAL T. Polycyclic aromatic hydrocarbons' formation and occurrence in processed food. Food Chemistry, 2016, 199: 768-781.

[31] 冯云, 彭增起, 崔国梅. 烘烤对肉制品中多环芳烃和杂环胺含量的影响. 肉类工业, 2009(8): 27-30.

FENG Y, PENG Z Q, CUI G M. Influences of grilling on content of polycyclic aromatic hydrocarbons and heterocyclic amine in meat product. Meat Industry, 2009(8): 27-30. (in Chinese)

[32] 屠泽慧, 聂文, 王尚英, 蔡克周, 姜绍通, 陈从贵. 烧烤及烟熏肉制品中多环芳烃的迁移、转化与控制研究进展. 肉类研究, 2017, 31(8): 49-54.

TU Z H, NIE W, WANG S Y, CAI K Z, JIANG S T, CHEN C G. Migration, transformation and control of polycyclic aromatic hydrocarbons in grilled and smoked meat products: A review. Meat Research, 2017, 31(8): 49-54. (in Chinese)

Determination of 5 Nitropolycyclic Aromatic Hydrocarbons in Roasted Meat Products by High Performance Liquid Chromatography-Fluorescence Detection

1School of Food and Biological Engineering, Shaanxi University of Science & Technology, Xi’an 710021;2Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences/Key Laboratory of Agro-Products Processing, Ministry of Agriculture and Rural Affairs, Beijing 100193

【】 This study was aimed to establish an approach to determine the content of five NPAHs (including 1-nitronaphthalene, 2-nitrofluorene, 3-nitrofluoranthene, 1-nitropyrene and 6-nitrobenzo[]pyrene) in roasted meat based on solid-phase extraction (SPE) column and high performance liquid chromatography with fluorescence detection (HPLC-FLD).【】 1 g vacuum freeze-dried roasted meat sample was extracted by dichloromethane for ultrasonic extraction, and the filtrate was collected. Both the extraction and filtration processes were repeated three times. Then, the filtrate was dried by nitrogen and dissolved in 3 mL n-hexane. After that, the extract was loaded onto PAHs SPE column which was previously activated by dichloromethane and n-hexane. After loading, the sample tube was rinsed by n-hexane and loaded as well. The SPE column was washed by n-hexane and eluted by dichloromethane. The eluent was dried by nitrogen, and the residue was dissolved in acetonitrile to obtain NPAHs solution. Acidified methanol and iron powder were added to the NPAHs solution and heated in water bath with magnetic stirring for 40 min. After centrifugation and filtration, 20 μL sample was tested by HPLC-FLD at 40℃ by using Agilent ZORBAX Eclipse PAH analysis column. In the gradient elution system, water and acetonitrile were used as the mobile phases.【】 The result showed that five NPAHs were linear with correlation coefficients greater than 0.9940. Specifically, the detection limits (LOD) were within 0.12-2.17 μg∙kg-1, and the quantification limits (LOQ) were within 0.38-7.23 μg∙kg-1. The average recoveries and the precision were within 53.16%-129.64% and 1.91%-30.73%, respectively. Furthermore, five kinds of typical Chinese roasted meat products were tested by this method, and the content of five NPAHs in all roasted meat samples were between 50.19-82.36 μg∙kg-1. Among them, the content of 6-nitrobenzo[]pyrene was the highest, about 31.01-35.89 μg∙kg-1, followed by 3-nitrofluoranthene, and the content was within the range of 9.99-23.06 μg∙kg-1. 【】 SPE column combined with HPLC-FLD was a suitable method to analyze NPAHs in roasted meat products; and NPAHs were widely contained in Chinese roasted meat products.

nitropolycyclic aromatic hydrocarbon; roasted meat products; high performance liquid chromatography-fluorescence detection; solid-phase extraction

10.3864/j.issn.0578-1752.2021.05.016

2020-06-29;

2020-09-15

国家重点研发计划(2019YFC1606200)、国家自然科学基金青年基金(31801480,31901718)

白雪,E-mail:xuebai0527@163.com。通信作者曹云刚,E-mail:caoyungang@sust.edu.cn。通信作者张德权,E-mail:dequan_zhang0118@126.com

(责任编辑 赵伶俐)

猜你喜欢
北京烤鸭硝基正己烷
多种硝基有机物降解试验分析
瘤胃微生物对硝基化合物的代谢转化与脱毒机制研究进展
北京烤鸭,香飘世界
北京烤鸭
I Love My Motherland
含四(3,5-二硝基-1,2,4-三唑基)硼酸肼推进剂的能量特性计算
基于传感器的正己烷检测与风险评估系统的设计
哨点监测对预防LED行业中正己烷中毒的作用
下游需求启动 硝基氯苯市场量价齐升
气相色谱法同时测定工作场所空气中正己烷、三氯乙烯、四氯乙烯