黄淮海区主推夏播玉米品种籽粒脱水特性研究

2021-03-08 03:32徐田军吕天放赵久然王荣焕邢锦丰张勇蔡万涛刘月娥刘秀芝陈传永王元东刘春阁
中国农业科学 2021年4期
关键词:黄淮海收获期农科

徐田军,吕天放,赵久然,王荣焕,邢锦丰,张勇,蔡万涛,刘月娥,刘秀芝,陈传永,王元东,刘春阁

黄淮海区主推夏播玉米品种籽粒脱水特性研究

徐田军,吕天放,赵久然,王荣焕,邢锦丰,张勇,蔡万涛,刘月娥,刘秀芝,陈传永,王元东,刘春阁

北京市农林科学院玉米研究中心/玉米DNA指纹及分子育种北京市重点实验室,北京 100097

【】籽粒机收是现代玉米生产发展的趋势和方向。生理成熟期籽粒含水率及生理成熟后籽粒物理脱水速率是决定玉米能否机收籽粒的关键因素,明确不同玉米品种籽粒脱水特性差异及其影响因素,可为机收籽粒玉米品种选育和推广提供理论依据。2017—2018年,以京农科728等18个黄淮海区主推夏播玉米品种为研究材料,测定籽粒含水率的动态变化,分析不同玉米品种籽粒脱水特性的差异及其影响因素。生理成熟期和收获期籽粒含水率在品种间存在显著差异,平均为30.67%(CV=2.58%)和23.66%(CV=9.10%)。生理成熟前籽粒生理降水速率和生理成熟后籽粒物理脱水速率在品种间存在显著差异,平均为0.69 %·d-1和0.48 %·d-1。3种熟期类型品种,中早熟品种生理成熟后籽粒物理脱水速率平均为0.55 %·d-1,分别较中熟品种和中晚熟品种高14.58%和44.74%。参试品种产量平均为10 205.90 kg·hm-2,变幅为8 809.13—11 053.73 kg·hm-2;3种熟期类型品种中,中熟品种产量(10 484.25 kg·hm-2)>中晚熟品种(10 096.08 kg·hm-2)>中早熟品种(9 522.81 kg·hm-2),中早熟品种和中熟品种以京农科728和NK815产量最高,分别为10 569.00和11 053.50 kg·hm-2。相关分析表明,籽粒脱水速率与叶片、苞叶、穗轴、穗柄、全株和茎秆脱水速率及风速呈极显著正相关;与大气温度呈显著正相关;与大气湿度呈显著负相关。以籽粒脱水速率和产量建立散点图,采用双向平均法将参试品种划分为4种类型,其中,以早熟脱水快的玉米骨干自交系京2416及其改良系京2418为父本组配的耐密抗倒国审品种京农科728、MC812、MC121和京农科729属于籽粒脱水快、产量高的品种(生育期平均为108.88 d;生理成熟后籽粒物理脱水速率平均为0.57 %·d-1,收获时籽粒含水率为21.81%;产量平均为10 811.33 kg·hm-2)。综合分析参试玉米品种的熟期、籽粒脱水特性及产量表现,在黄淮海夏播玉米区选择种植京农科728、MC812、MC121和京农科729等中早熟及中熟、脱水快、产量高的玉米品种,可实现收获期较低籽粒含水率和较高产量水平。

黄淮海区;夏玉米;京农科728;籽粒;脱水特性

0 引言

【研究意义】玉米是我国第一大粮食作物,对保障国家粮食安全和满足市场需求发挥着主力军作用[1]。近年来,我国玉米生产机械化水平迅速提高,机械化播种率已达90%左右,但机械化收获率仍处于较低水平,且主要以摘穗为主,而机收籽粒比例不足10%,主要分布在新疆、黑龙江农垦等玉米产区[2-3]。黄淮海地区通常选择种植中晚熟或晚熟品种来获得较高产量,但同时也带来收获期籽粒含水率偏高等问题,导致机收时籽粒破碎率高,籽粒霉变风险大,严重制约了玉米机收籽粒技术的推广[4-5]。前人研究表明,玉米收获期的籽粒含水率与生理成熟后的脱水速率密切相关[6],收获时籽粒含水率和脱水速率在品种间存在显著差异[7-8]。明确黄淮海区主推夏播玉米品种的籽粒脱水特性,对筛选机收籽粒玉米品种和实现籽粒机收具有重要指导意义。【前人研究进展】收获期玉米籽粒含水率主要由生理成熟期籽粒含水率和生理成熟后的籽粒物理脱水速率决定。MAIORANO等[9]将玉米籽粒水分变化过程划分为迟滞期、灌浆期脱水和生理成熟后脱水3个阶段。Cross等[10]认为,玉米籽粒脱水过程可分为生理成熟前的生理脱水和生理成熟后的自然脱水阶段。收获期玉米籽粒含水率受生理成熟后自然脱水速率影响,该性状为数量性状,受基因加性作用,可遗传[11]。玉米籽粒脱水进程除受品种特性影响外,还与环境因子密切相关[12-14],且生理成熟前、后的主导环境因子存在差异。生理成熟前玉米籽粒生理降水主要受温度影响;成熟后的籽粒物理脱水速率与温度、风速、日辐射空气湿度、降雨、环境水分的饱和亏缺等有关[15]。【本研究切入点】黄淮海区的主要种植制度是冬小麦夏玉米一年两熟制。光温资源紧张、耕种时间短是该地区农业生产的主要矛盾,玉米收获时因未达到生理成熟,导致籽粒含水率偏高是该区玉米机械粒收技术应用的重要制约因素。【拟解决的关键问题】本研究以18个黄淮海区主推夏播玉米品种为试验材料,通过研究其籽粒脱水特性差异及其影响因素,为机收籽粒玉米品种选择提供依据。

1 材料与方法

1.1 试验材料

供试材料为黄淮海区18个生产主栽夏播玉米品种(表1)。

1.2 试验设计

于2017和2018年在北京市农林科学院通州试验基地开展试验。试验田耕层土壤养分含量为有机质11.1 g·kg-1、碱解氮109 mg·kg-1、有效氮21.1 mg·kg-1、有效磷24.2 mg·kg-1、速效钾158 mg·kg-1。试验小区采用随机区组排列,重复3次,小区面积72 m2,12行区、行长10 m、行距0.60 m。2017和2018年均于6月10日播种,生理成熟后14 d收获。留苗密度均为67 500株/hm2。其他管理同当地大田生产,参试品种生育期内气象条件如图1所示。

1.3 籽粒脱水速率测定

吐丝前,各品种选择生长一致、无病虫害的代表性植株进行统一套袋授粉,以确保取样果穗授粉日期一致。自授粉后15 d开始,各小区每次取样3株,称取果穗中部籽粒(100粒)、茎、叶、穗柄、苞叶、穗轴鲜重,在105℃烘箱中杀青30 min后,80℃烘干至恒量,测定参试品种籽粒及各器官的干物重,并计算其含水率。每7 d取样一次,直至各品种达到生理成熟期(玉米籽粒基部黑层出现,乳线消失),之后每5 d取样一次。测定时如遇降水天气,则取样顺延1 d。

各器官(籽粒、茎、叶、穗轴、穗柄、苞叶)含水率(%)=(各器官鲜重-各器官干重)/各器官鲜重×100

籽粒总脱水速率(%·d-1)=(吐丝后36 d籽粒含水率-收获期籽粒含水率)/间隔天数

生理成熟前籽粒生理降水速率(%·d-1)=(吐丝后36 d籽粒含水率-生理成熟期籽粒含水率)/间隔天数

生理成熟后籽粒物理脱水速率(%·d-1)=(生理成熟期籽粒含水率-收获期籽粒含水率)/间隔天数

各器官(茎、叶、穗轴、穗柄、苞叶)脱水速率(%·d-1)=(吐丝后36 d各器官含水率-收获期各器官含水率)/间隔天数

1.4 产量

收获期,剔除边行植株,各小区人工收获中间4行,然后自然风干,考种后脱粒并计算产量(按14%标准含水量折算)。

1.5 数据处理

采用SAS软件对数据进行方差分析,其中处理间差异显著性采用LSD法进行检验(α=0.05)。采用Microsoft Excel 2017 和Sigma Plot 10.0进行数据计算和作图。

2 结果

2.1 参试玉米品种的生育期及其分类

参试玉米品种生育期平均为111.6 d,变幅为103.5—118.5 d。其中,郑单958、伟科702和裕丰303生育期平均分别为118.5、118.5和118.0 d;华美1号、SK567、DK517、京农科728生育期均为110 d以下,其余品种生育期居中(表1)。

对参试玉米品种生育期进行系统聚类分析(图2)。当阈值等于10时,可将参试玉米品种熟期类型分为3类。京农科728、华美1号、SK567和迪卡517为中早熟品种;京农科729、MC812、农华101、MC703、MC121、MC278、NK815、联创808、先玉335、蠡玉35和登海605为中熟品种;伟科702、裕丰303和郑单958为中晚熟品种。

2.2 产量及其构成要素

参试玉米品种平均产量为10 205.90 kg·hm-2,变幅为8 809.75—11 053.50 kg·hm-2(表2)。不同熟期类型间,中熟品种产量(10 484.25 kg·hm-2)>中晚熟品种(10 096.08 kg·hm-2)>中早熟品种(9 522.81 kg·hm-2)。不同品种间,产量水平≥10 500 kg·hm-2的品种有京农科728、京农科729、MC812、NK815、MC121、登海605、先玉335、MC703;9 750—10 500 kg·hm-2的品种有MC278、伟科702和裕丰303;9 000—9 750 kg·hm-2的品种有农华101、SK567、华美1号和蠡玉35。NK815的产量最高,平均为11 053.5 kg·hm-2,较郑单958(10 138.0 kg·hm-2)高9.03%。京农科728(10 569.0 kg·hm-2)、京农科729(10 822.5 kg·hm-2)、MC812(10 863.1 kg·hm-2)和MC121(10 990.8 kg·hm-2)的平均产量为10 811.3 kg·hm-2,显著高于郑单958(10 138 .0 kg·hm-2),平均增幅为6.6%。穗粒数平均为489粒,变幅为430(迪卡517)—541粒(MC812);百粒重平均为33.8 g,变幅为29.1(华美1号)—37.1 g(农华101)。相关分析表明,产量与生育期呈显著正相关(0.34*),与穗粒数和百粒重呈极显著正相关(0.83**和0.49**)(表3)。

表2 参试品种产量及产量构成要素

同一列数字后不同小写字母表示不同处理间差异达0.05显著水平。**表示在<0.01 水平差异显著,*表示在<0.05 水平差异显著,NS 表示差异不显著。下同

Values within a column followed by different small letters are significantly different at 0.05 probability level among different treatments. **, significantly different at< 0.01; *, significantly different at< 0.05; NS, the difference was not significant. The same as below

表3 产量与生育期、穗粒数和百粒重的相关性分析

x1:生育期;x2:穗粒数;x3:百粒重;x4:产量

x1: Growth period; x2: Grains number per ear; x3: 100-grain weight; x4: Yield

图2 参试玉米品种生育期的系统聚类图

2.3 参试玉米品种的籽粒含水率及脱水速率

参试玉米品种籽粒含水率在生理成熟期(平均为30.67%,变幅为29.40%—32.17%)和收获期(平均为23.66%,变幅为20.15%—27.92%)存在显著差异(表4)。其中,伟科702生理成熟期和收获期的籽粒含水率最高,平均分别为32.17%和27.92%。生理成熟前籽粒生理降水速率、生理成熟后籽粒物理脱水速率及总脱水速率在品种间存在显著差异。参试品种生理成熟前籽粒生理降水速率平均为0.69 %·d-1,变幅为0.56—0.87 %·d-1。3种熟期类型品种,中早熟品种生理成熟前籽粒生理降水速率平均为0.55 %·d-1,分别较中熟品种和中晚熟品种高14.58%和44.74%。不同品种间,降水速率≥0.70 %·d-1的品种有京农科728、华美1号、农华101、MC703和MC278,≤0.6 %·d-1的品种有联创808和裕丰303,其余品种介于两者之间。

参试品种生理成熟后籽粒物理脱水速率平均为0.48 %·d-1,变幅为0.30—0.59 %·d-1。生理成熟后籽粒物理脱水速率>0.50 %·d-1的品种有京农科729(0.59 %·d-1)、京农科728和MC812(0.57 %·d-1)、迪卡517(0.56 %·d-1)、MC121和华美1号(0.54 %·d-1)以及SK567(0.52 %·d-1),均显著高于郑单958(0.36 %·d-1)和先玉335(0.50 %·d-1)。京农科728和京农科729生理成熟后籽粒物理脱水速率较郑单958分别高58.33%和63.89%,较先玉335分别高14.00%和18.00%。生理成熟后籽粒物理脱水速率<0.40 %·d-1的品种有登海605、郑单958和伟科702,其余品种介于0.04—0.50 %·d-1。参试品种总脱水速率平均为0.58 %·d-1,变幅为0.49 %·d-1(伟科702)—0.73 %·d-1(京农科728)。其中,京农科728和华美1号总脱水速率达0.70 %·d-1以上,郑单958和伟科702则低于0.50 %·d-1。

2.4 参试玉米品种的叶片、苞叶、穗轴、穗柄、茎秆及整株脱水速率

参试玉米品种叶片、苞叶、穗轴、穗柄、茎秆和整株的含水率随授粉天数呈降低趋势,并在授粉后36 d后下降速率加快。苞叶含水率在授粉后36 d之前差异不大,授粉后36—64 d急剧下降,之后趋于平缓(图3)。由表5可知,参试品种叶片、苞叶、穗轴、穗柄、茎秆和整株脱水速率平均分别为1.30、1.27、0.38、0.25、0.27和0.47 %·d-1,变幅分别为0.91—1.50、0.63—1.46、0.18—0.60、0.15—0.49、0.16—0.42和0.21—0.71 %·d-1。京农科728和华美1号的叶片、苞叶、穗轴、茎秆和整株脱水速率相对较高,而郑单958和伟科702则相对较低。

表4 参试品种籽粒含水率和脱水速率

表5 参试品种叶片、苞叶、穗轴、穗柄、茎秆及整株脱水速率

图3 参试品种叶片、苞叶、穗轴、穗柄、茎秆及整株含水率的变化

2.5 参试品种籽粒脱水速率与叶片、苞叶、穗轴、穗柄、茎秆、整株脱水速率及气象因素的相关性分析

通过对参试玉米品种籽粒脱水速率与整株、各器官的脱水速率、气象因素进行相关分析(表6),结果表明籽粒脱水速率与叶片脱水速率(0.89**)、苞叶脱水速率(0.76**)、穗轴脱水速率(0.94**)、穗柄脱水速率(0.96**)、茎秆脱水速率(0.92**)、整株脱水速率(0.95**)、风速(0.63**)呈极显著正相关,与大气温度(0.53*)呈显著正相关,与大气湿度(-0.56*)呈显著负相关。

表6 参试品种籽粒脱水速率与叶片、苞叶、穗轴、穗柄、茎秆、整株脱水速率及气象因素的相关性分析

x1:叶片脱水速率;x2:苞叶脱水速率;x3:穗轴脱水速率;x4:穗柄脱水速率;x5:茎秆脱水速率;x6:整株脱水速率;x7:大气湿度;x8:大气温度;x9:风速;x10:籽粒脱水速率

x1: leaf dehydration rate; x2: bract dehydration rate; x3: cob dehydration rate; x4: ear stalk dehydration rate; x5: stalk dehydration rate; x6: whole plant dehydration rate; x7: atmospheric humidity; x8: atmospheric temperature; x9: wind speed; x10: grain dehydration rate

2.6 基于生理成熟后籽粒物理脱水速率和产量的玉米品种分类

采用双向平均法,以参试玉米品种生理成熟后的籽粒物理脱水速率和产量建立散点图,可将参试品种划分为4种类型(图4)。其中,以玉米骨干自交系京2416及其改良系京2418为父本组配选育的早熟耐密国审品种京农科728、京农科729、MC812和MC121,以及先玉335、MC703和MC278属于籽粒脱水快、高产型品种;NK815、登海605、郑单958、伟科702和裕丰303为籽粒脱水慢、高产型品种;农华101、联创808、蠡玉35为籽粒脱水慢、中产型品种;华美1号、迪卡517和SK567为籽粒脱水快、低产型品种。

3 讨论

玉米籽粒机收已成为我国玉米生产发展的趋势和方向[16],目前籽粒机收技术主要在西北、东北早熟区应用较为广泛,而在黄淮海地区特别是黄淮海北部地区应用程度较低[17]。近年来,玉米生产中往往通过种植晚熟品种来获得较高产量,但同时也带来收获期籽粒含水率偏高等问题,导致籽粒破损率高、烘干成本增加,影响了玉米籽粒机收质量,严重制约了玉米籽粒机收技术的推广与应用[18-19]。在黄淮海区小麦-玉米一年两熟的耕作制度下,玉米生育期仅有100—110 d,因此要实现籽粒机械收获且产量不降,必须要充分协调品种熟期与收获期籽粒含水率的关系。已有研究表明,不同玉米品种间籽粒含水率存在显著性差异[20]。Daynard等[21]研究表明,春玉米品种黑层完全形成时籽粒含水率变幅为30.0%—37.0%;杨国航等[22]研究表明,夏玉米品种黑层形成时籽粒含水率为30.4%—36.4%。本研究表明,不同玉米品种生理成熟期籽粒含水率差异显著,参试品种生理成熟期籽粒含水率平均为30.67%,变幅为29.40%—32.17%,这与前人研究结果一致[21-22]。已有研究表明,玉米产量随生育期的延长而增加,主要是通过延长光能利用持续期进而获得较高的产量[23]。但本研究发现生育期110 d左右的中熟和中早熟品种京农科729、京农科728、MC812和MC121,产量平均为10 811.33 kg·hm-2;生育期120 d左右的中晚熟品种郑单958、伟科702和裕丰303平均产量为10 096.08 kg·hm-2。由此可见,在黄淮海区特别是黄淮海北部地区,熟期相对较早的京农科729、京农科728、MC812、MC121比郑单958等晚熟玉米品种更具有产量优势。

图4 参试玉米品种产量和脱水速率的关系

刘武仁等[24]研究认为,可通过选择熟期适宜的高产玉米品种来降低籽粒含水量。籽粒的脱水速率直接决定了品种收获期的籽粒含水率[25]。选择熟期适宜、品质好、脱水快的玉米品种是实现玉米机收籽粒的重要前提。本研究表明,参试品种生理成熟前的籽粒生理降水速率、生理成熟后的籽粒物理脱水速率在品种间存在显著性差异,分别平均为0.69和0.48 %·d-1。京农科729(0.59 %·d-1)、京农科728和MC812(0.57 %·d-1)、迪卡517(0.56 %·d-1)、MC121(0.54 %·d-1)、华美1号(0.54 %·d-1)、SK567(0.52 %·d-1)生理成熟后籽粒物理脱水相对较快,均在0.50 %·d-1以上,而郑单958(0.36 %·d-1)脱水较慢,在0.40%·d-1以下。李凤海等[26]研究表明,生理成熟后籽粒脱水速率在杂交种父本间差异极显著,母本间无差异。本研究中,京农科728、MC812、MC121和京农科729是以京2416及其改良系京2418为父本组配选育而成,京2416及其改良系京2418具有脱水快的优良特性是其组配选育杂交种脱水快的主要原因。从影响收获期籽粒含水率的因素来看,主要受脱水速率和生育后期环境条件的共同影响[27]。本研究表明,籽粒脱水速率与叶片、苞叶、穗轴、穗柄、茎秆及全株的脱水速率和风速呈极显著正相关,与大气温度呈显著正相关,与大气湿度呈显著负相关。这与闫淑琴等[28]研究基本一致。因此,在选育脱水快、适宜机收籽粒玉米品种时应着重考虑对苞叶、穗轴等器官脱水性状的选择。

4 结论

黄淮海夏播玉米生产中,机收籽粒品种选择需综合考虑熟期、产量和收获期籽粒含水率的要求。综合分析参试玉米品种的熟期、籽粒脱水特性及产量表现,在黄淮海夏播玉米区选择种植中熟及中早熟、脱水快、产量高的玉米品种京农科728、MC812、京农科729和MC121(生育期平均为108.9 d;生理成熟后籽粒物理脱水速率平均为0.57 %·d-1,收获时籽粒含水率为21.81%;产量平均为10 811.33kg·hm-2),可实现收获期较低籽粒含水率和较高产量水平。

[1] 赵久然, 王荣焕. 中国玉米生产发展历程、存在问题及对策. 中国农业科技导报, 2013, 15(3): 1-6.

ZHAO J R, WANG R H. Development process, problem and countermeasure of maize production in China. Journal of Agricultural Science and Technology, 2013, 15(3): 1-6. (in Chinese)

[2] 王成雨, 舒忠泽, 程备久, 江海洋, 李晓玉. 中国玉米机械化收获发展现状及展望. 安徽农业大学学报, 2018, 45(3): 551-555.

WANG C Y, SHU Z Z, CHENG B J, JIANG H Y, LI X Y. Advances and perspectives in maize mechanized harvesting in China. Journal of Anhui Agricultural University, 2018, 45(3): 551-555. (in Chinese)

[3] 李少昆. 我国玉米机械粒收质量影响因素及粒收技术的发展方向. 石河子大学学报(自然科学版), 2017, 35(3): 265-272.

LI S K. Factors affecting the quality of maize grain mechanical harvest and the development trend of grain harvest technology. Journal of Shihezi University (Natural Science), 2017, 35(3): 265-272. (in Chinese)

[4] 姜艳喜, 王振华, 金益, 张林, 鄂文弟. 玉米收获期子粒含水量相关性状的遗传及育种策略. 玉米科学, 2004, 12(1): 21-25.

JIANG Y X, WANG Z H, JIN Y, ZHANG L, E W D. Genetics on water content at harvesting and correlative traits and breeding strategy. Journal of Maize Sciences, 2004, 12(1): 21-25. (in Chinese)

[5] 王克如, 李少昆. 玉米籽粒脱水速率影响因素分析. 中国农业科学, 2017, 50(11): 2027-2035.

WANG K R, LI S K. Analysis of influencing factors on kernel dehydration rate of maize hybrids. Scientia Agricultura Sinica, 2017, 50(11): 2027-2035. (in Chinese)

[6] PURDY J D, CRANE P L. Inheritance of drying rate in mature corn (L.). Crop Science, 1967, 7(4): 294-297.

[7] 冯鹏, 申晓慧, 郑海燕, 张华, 李增杰, 杨海宽, 李明顺. 种植密度对玉米籽粒灌浆及脱水特性的影响. 中国农学通报, 2014, 30(6): 92-100.

FENG P, SHEN X H, ZHENG H Y, ZHANG H, LI Z J, YANG H K, LI M S. Effects of planting density on kernel filling and dehydration characteristics for maize hybrids. Chinese Agricultural Science Bulletin, 2014, 30(6): 92-100. (in Chinese)

[8] 万泽花, 任佰朝, 赵斌, 刘鹏, 董树亭, 张吉旺. 不同熟期夏玉米品种籽粒灌浆与脱水特性及其密度效应. 作物学报, 2018, 44(10): 1517-1526.

WAN Z H, REN B Z, ZHAO B, LIU P, DONG S T, ZHANG J W. Grain filling and dehydration characteristics of summer maize. Acta Agonomica Sinica, 2018, 44(10): 1517-1526. (in Chinese)

[9] MAIORANO A, FANCHINI D, DONATELLI M. MIMYCS. Moisture, a process-based model of moisture content in developing maize kernels. European Journal of Agronomy, 2014, 59: 86-95.

[10] Cross H Z. A selection procedure for ear drying-rates in maize. Euphytica, 1985, 34(2): 409-418.

[11] 刘显君, 王振华, 王霞, 李庭锋, 张林. 玉米籽粒生理成熟后自然脱水速率QTL的初步定位. 作物学报, 2010, 36(1): 47-52.

LIU X J, WANG Z H, WANG X, LI T F, ZHANG L. Primary mapping of QTL for dehydration rate of maize kernel after physiological maturing. Acta Agonomica Sinica, 2010, 36(1): 47-52. (in Chinese)

[12] 雷蕾, 王威振, 方伟, 张子学, 刘正, 李文阳. 影响夏玉米生理成熟后子粒脱水的相关因素分析. 玉米科学, 2016, 24(3): 103-109.

LEI L, WANG W Z, FANG W, ZHANG Z X, LIU Z, LI W Y. Analysis of factors affecting the kernel dehydrating after physiological mature in summer maize. Journal of Maize Sciences, 2016, 24(3): 103-109. (in Chinese)

[13] 金益, 王振华, 张永林, 王殊华, 王云生. 玉米杂交种蜡熟后籽粒自然脱水速率差异分析. 东北农业大学学报, 1997, 28(1): 29-32.

JIN Y, WANG Z H, ZHANG Y L, WANG S H, WANG Y S. Difference analysis on the natural dry rate of kernel after wax ripening maize hybrids. Journal of Northeast Agricultural University, 1997, 28(1): 29-32. (in Chinese)

[14] BROOKING I R. Maize ear moisture during grain-filling, and its relation to physiological maturity and grain-drying. Field Crops Research, 1990, 23: 55-68.

[15] 高尚, 明博, 李璐璐, 谢瑞芝, 薛军, 侯鹏, 王克如, 李少昆. 黄淮海夏玉米籽粒脱水与气象因子的关系. 作物学报, 2018, 44(12): 1755-1763.

GAO S, MING B, LI L L, XIE R Z, XUE J, HOU P, WANG K R, LI S K. Relationship between grain dehydration and meteorological factors in the Yellow-Huai-Hai Rivers summer maize. Acta Agonomica Sinica, 2018, 44(12): 1755-1763. (in Chinese)

[16] 李璐璐. 黄淮海夏玉米籽粒脱水特征研究[D]. 北京: 中国农业科学院, 2017.

LI L L. Study on grain dehydration characteristics of summer maize in Huanghuaihai plain[d]. Beijing: Chinese Academy of Agricultural Sciences, 2017. (in Chinese)

[17] 雷晓鹏. 黄淮海地区玉米机械收获籽粒可行性研究[D]. 保定: 河北农业大学, 2015.

LEI X P. Studies on the feasibility of maize mechanically harvesting grain in Huanghuaihai regions[D]. Baoding: Hebei Agricultural University, 2015. (in Chinese)

[18] 李树岩, 任丽伟, 刘天学, 张亿博, 张明珠. 黄淮海夏玉米籽粒机收适宜光温指标研究. 中国生态农业学报, 2018, 26(8): 1149-1158.

LI S Y, REN L W, LIU T X, ZHANG Y B, ZHANG M Z. Suitable sunshine and temperature for mechanical grain harvesting of summer maize in the Huang-Huai-Hai plain. Chinese Journal of Eco- Agriculture, 2018, 26(8): 1149-1158. (in Chinese)

[19] 柳枫贺, 王克如, 李健, 王喜梅, 孙亚玲, 陈永生, 王玉华, 韩冬生, 李少昆. 影响玉米机械收粒质量因素的分析. 作物杂志, 2013(4): 116-119.

LIU F H, WANG K R, LI J, WANG X M, SUN Y L, CHEN Y S, WANG Y H, HAN D S, LI S K. Factors affecting corn mechanically harvesting grain quality. Crops, 2013(4): 116-119. (in Chinese)

[20] 张林, 王振华, 金益, 于天江. 玉米收获期含水量的配合力分析. 西南农业学报, 2005, 18(5): 32-35.

ZHANG L, WANG Z H, JIN Y, YU T J. Combining ability analysis of water content in harvest stage in corn. Southwest China Journal of Agricultural Sciences, 2005, 18(5): 32-35. (in Chinese)

[21] DAYNARD T B, KANNENBERG L W. Relationships between length of the actual and effective grain filling periods and grain yield of corn. Canada Journal Plant Science, 1976, 56(2): 237-242.

[22] 杨国航, 张春原, 孙世贤, 刘春阁, 王卫红, 赵久然. 夏玉米子粒收获期判定方法研究. 作物杂志, 2006(5): 11-13.

YANG G H, ZHANG C Y, SUN S X, LIU C G, WANG W H, ZHAO J R. Study on the method to determine the harvest time of summer corn. Crops, 2006(5): 11-13. (in Chinese)

[23] 吕丽华, 董志强, 曹洁璇, 梁双波, 贾秀领, 张丽华, 姚艳荣. 播期、收获期对玉米物质生产及光能利用的调控效应. 华北农学报, 2013, 28(S1): 177-183.

Lü L H, DONG Z Q, CAO J X, LIANG S B, JIA X L, ZHANG L H, YAO Y R. Effects of planting and harvest date on matter production of summer maize and its utilization of solar and heat resource. Acta Agriculturae Boreali-Sinica, 2013, 28(S1): 177-183. (in Chinese)

[24] 刘武仁, 郑金玉, 罗洋, 郑洪兵, 李伟堂. 影响玉米子粒含水量的因素及低水分玉米生产技术. 吉林农业科学, 2009, 34(1): 1-2, 33.

LIU W R, ZHENG J Y, LUO Y, ZHENG H B, LI W T. Factors affecting water content of maize and cultural practice for low water content maize. Journal of Jilin Agricultural Science, 2009, 34(1): 1-2, 33. (in Chinese)

[25] 栗建枝, 李齐霞, 李中青, 祁丽婷, 王敏, 王瑞, 孙万荣. 不同玉米品种籽粒脱水特性. 山西农业科学, 2014, 42(5): 438-442.

LI J Z,LI Q X,LI Z Q,QI L T,WANG M,WANG R,SUN W R. Kernel dehydration characteristics of maize varieties. Journal of Shanxi Agricultural Sciences, 2014, 42(5): 438-442. (in Chinese)

[26] 李凤海, 郭佳丽, 于涛, 史振声. 不同熟期玉米杂交种及其亲本子粒脱水速率的比较研究. 玉米科学, 2012, 20(6): 17-20, 24.

LI F H, GUO J L, YU T, SHI Z S. Comparative study on dehydration rate of kernel among maize hybrids and parents with different maturity periods. Journal of Maize Sciences, 2012, 20(6): 17-20, 24. (in Chinese)

[27] HALLAUER A R, RUSSELL W A. Effects of selected weather factors on grain moisture reduction from silking to physiologic maturity in corn. Agronomy Journal, 1961, 53: 225-229.

[28] 闫淑琴. 玉米籽粒灌浆、脱水速率的配合力和相关分析[D]. 北京: 中国农业科学院, 2006.

YAN S Q. Combine ability and correlation of kernel dry-down and grain filling rate in maize[D]. Beijing: Chinese Academy of Agricultural Sciences, 2006. (in Chinese)

The grain dehydration characteristics of the main summer maize varieties in Huang-Huai-Hai region

XU TianJun, LÜ TianFang, ZHAO JiuRan, WANG RongHuan, XING JinFeng, ZHANG Yong, CAI WanTao, LIU YueE, LIU XiuZhi, CHEN ChuanYong, WANG YuanDong, LIU ChunGe

Maize Research Center, Beijing Academy of Agriculture & Forestry Sciences/Beijing Key Laboratory of Maize DNA Fingerprinting and Molecular Breeding, Beijing 100097

【】Grain mechanical harvesting is the developing direction of modern maize production in China. The moisture content at physiological maturity (PM) and grain dehydration rate after PM are the key factors for realizing maize grain mechanical harvesting. The aim of this study was to clarify the differences and influencing factors for the dehydration characteristics of different maize varieties, so as to provide a theoretical instruction for the breeding and extending of grain mechanical harvesting varieties.【】Taking18 main maize varieties in Huang-Huai-Hai region as research materials, the field experiment was conducted in 2017-2018, and the dynamics of maize grain moisture content were tested to study and clarify the differences and influencing factors for the dehydration characteristics.【】The moisture content of different maize varieties at PM and harvesting differed significantly, with an average of 30.67% (CV=2.58%) and 23.66% (CV=9.10%). There were significant differences between grain dehydration rate before and after PM of the tested varieties, with an average of 0.69%·d-1and 0.48%·d-1, respectively. The average physical dehydration rate after PM of middle early maturing varieties was 0.55%·d-1, which was 14.58% and 44.74% higher than that of middle maturing and middle late maturing varieties, respectively. The average yield of the tested varieties was 10 205.90 kg·hm-2, with the range of 8 809.13-11 053.73 kg·hm-2. the yield of middle maturity variety (10 484.25 kg·hm-2) > middle late maturing variety (10 096.08 kg·hm-2) > middle early maturing variety (9 522.81 kg·hm-2), and Jingnongke728 and NK815 had the highest yield of 10 569.00 and 11 053.50 kg·hm-2, respectively. Correlation analysis showed that the dehydration rate of grain was significantly positively correlated with the dehydration rate of leaves, bracts, rachis, stalk, whole plant and stem and wind speed. There was significantly positively correlated with atmospheric temperature and negatively correlated with atmospheric humidity. The varieties were divided into 4 types according to the grain dehydrate rate and yield by two-way average method. JNK728, JNK729, MC812 and MC121 were selected by using maize core inbred Jing2416 and its improved inbred Jing2418, which were characterized by early maturity and fast dehydrating rate as the male parent belongs to the fast dehydration rate and high yield type (the average growth period was 108.9 d; the average grain dehydration rate after physiological maturity was 0.57 %·d-1; the moisture content of grain at harvest was 21.81%; the average yield was 10 811.33 kg·hm-2).【】According to the growth period, grain dehydration rat and yield level, the maize varieties of JNK728, MC812, JNK729 and MC121 were characterized by medium-early and medium maturity, fast dehydration rate and high yield, and could realize lower grain moisture content and higher yield level in Huang-Huai-Hai region.

Huang-Huai-Hai region; summer maize; Jingnongke728; grain; dehydration characteristics

10.3864/j.issn.0578-1752.2021.04.004

2020-04-27;

2020-07-29

国家重点研发计划(2017YFD0101202)、现代农业产业技术体系专项(CARS-02-11)、北京市农林科学院科技创新能力建设专项(KJCX20180423)、北京市农林科学院院级科技创新团队建设项目(JNKYT201603)

徐田军,E-mail:xtjxtjbb@163.com。吕天放,E-mail:314565358@qq.com。徐田军和吕天放为同等贡献作者。通信作者赵久然,E-mail:maizezhao@126.com。通信作者王荣焕,E-mail:ronghuanwang@126.com

(责任编辑 杨鑫浩)

猜你喜欢
黄淮海收获期农科
黄淮海北部地区夏玉米稳产高产的播期优选
农科城如何为乡村提供“振兴样板”
包头地区紫花苜蓿最适收获期研究
公费农科生培养试点工作实施
农科问答
农科110专家,你们辛苦啦! 省总工会与省科协联合举办农科110专家送清凉慰问活动
黄淮海地区现代生态农业园区发展与实践探究
黄淮海夏玉米南方锈病研究综述
播种量和收获期对饲料油菜产量和品质的影响
不同播期与收获期对夏玉米产量的影响