榴辉岩部分熔融过程中的同位素分馏

2021-02-03 08:58刘帅奇张贵宾
岩石学报 2021年1期
关键词:埃达克石榴石源区

刘帅奇 张贵宾

LIU ShuaiQi and ZHANG GuiBin**

北京大学地球与空间科学学院,造山带与地壳演化教育部重点实验室,北京 100871

Key Laboratory of Orogenic Belt and Crustal Evolution, MOE; School of Earth and Space Science, Peking University, Beijing 100871, China

榴辉岩作为典型的高压变质岩石,是研究造山带演化和地球内部动力学的探针(Chopin, 2003; Liouetal., 2009; Rehmanetal., 2017; O’Brien, 2019; Zheng, 2019)。关于榴辉岩的报道最早起源于1822年法国矿物学家René Just Haüy在他的专著《矿物学原理》中用榴辉岩一词来描述多姿多彩的变质岩(Rehmanetal., 2017)。Smith (1984)在挪威西片麻岩地区含白云石榴辉岩中首次发现了柯石英包裹体,证明板片俯冲过程中榴辉岩可被携带至地幔深度并发生超高压变质。目前,榴辉岩被广泛用于探讨俯冲板片折返机制、地球内部元素循环、地幔不均一性等(Dasguptaetal., 2004; El Korhetal., 2017; Xuetal., 2018; Zheng and Zhao, 2020)。榴辉岩的深熔作用是榴辉岩研究的热点问题之一(Rappetal., 2003; Xiong, 2006; Gaoetal., 2012; Miyazakietal., 2016),它对了解早期大陆地壳的形成演化、板片俯冲过程中的物质调整以及板片的流变学性质等具有重要指示意义(Songetal., 2014; Wangetal., 2014a)。

Rappetal. (2003)发现榴辉岩部分熔融产生的熔体成分与太古宙TTG岩石类似,二者均具有低Nb/Ta、高Zr/Sm的地球化学特征。因此,榴辉岩也被认为是太古宙TTG质岩石的源区。Songetal. (2014)基于造山带埃达克岩的研究,指出榴辉岩的深熔作用与现代大陆地壳增生密切相关。俯冲洋壳的熔融残余体被携带至~150km可发生二次熔融,部分熔融产生熔体上升过程中交代地幔橄榄岩,可以改变地幔的化学成分(Rosenthaletal., 2014)。另外,榴辉岩脱水熔融也会强烈影响俯冲板片元素的迁移分配和同位素分馏。部分熔融过程中,一些大离子亲石元素和轻稀土元素会强烈富集在熔体当中,造成源区亏损Rb、Sr、Ba等不相容元素而富集高场强元素和重稀土元素(Dengetal., 2018)。

随着质谱技术的发展,同位素地球化学广泛运用于年代学分析和地质示踪等过程中。由于矿物溶解度和扩散速度的差异,部分熔融会改造原岩的同位素组成。例如在高温条件下Sr和O的扩散速度相当,而Nd在矿物中的扩散速度较慢。因此Sm-Nd体系往往可以保存峰期榴辉岩相的同位素特征,而O和Sr同位素则易受后期部分熔融和退变质的影响而发生重置(Zhengetal., 2003; Wangetal., 2010)。除此以外,榴辉岩部分熔融还可用于解释陆内埃达克质岩石成因(Zhangetal., 2015)、Nb-Ta悖论(Rudnicketal., 2000)、地幔氧逸度变化(Bénardetal., 2018)以及超临界流体的成因机制(Zhengetal., 2011)等。

此外,稳定同位素用于示踪部分熔融源区的基本假设是在深熔作用过程中源区和熔体的同位素比值不发生变化。但目前相关研究指出部分熔融过程中,放射性成因的子体同位素和一些金属稳定同位素可能产生分馏,即熔体和源区的同位素组成会发生解耦(Huangetal., 2009; Xuetal., 2017; Wolfetal., 2019; Yuetal., 2020)。榴辉岩部分熔融产生的熔体一般具有高Sr、低HREE、高La/Yb和Sr/Y的特征(Castillo, 2012),但上述特征还与熔融的源区、岩浆后期分离结晶和岩浆混合等过程有关(Heetal., 2017),因此不能将此作为榴辉岩部分熔融判别的唯一标准。

故此,本文对Sr-Nd-Hf-O和一些金属稳定同位素在示踪部分熔融的源区和岩浆演化进行综述,以期了解榴辉岩深熔作用过程中同位素分馏,并探讨俯冲带同位素行为及其对地幔不均一性的重要影响。

1 榴辉岩部分熔融

目前在全球多个造山带均报道有榴辉岩的部分熔融(表1、图1),其产生的构造环境可以是大洋(陆)俯冲带(Songetal., 2014)或加厚的基性下地壳(Yuetal., 2019b)。榴辉岩部分熔融的机制主要包含以下四种:1)加厚下地壳的高温变质环境导致基性岩发生熔融;2)俯冲板片折返过程发生减压熔融;3) U、Th、K等放射性元素衰变产生的热量;4)俯冲隧道内板片摩擦生热(Yuetal., 2019a)。

图1 全球造山带榴辉岩部分熔融分布图(据Liou et al., 2009; Gilotti, 2013修改)Fig.1 Global distribution of eclogitic partial melting (modified after Liou et al., 2009; Gilotti, 2013)

根据熔体体系中H2O的含量,榴辉岩的深熔作用可分为干熔融、水饱和熔融以及脱水熔融(Liebscheretal., 2007)。其中干熔融的固相线温度最高,水饱合熔融最低,脱水熔融则介于二者之间。一般“干”榴辉岩发生熔融的初始温度>1200℃,只有在某些超高温变质带或与金伯利岩一起产出的高温榴辉岩才能达到此条件(Miyazakietal., 2016)。俯冲热洋壳由于富含流体和含水矿物,榴辉岩部分熔融的温度要远低于干固相线,在水饱和条件下,榴辉岩湿固相线为~700℃ (Liebscheretal., 2007)。大陆俯冲带相比于洋壳俯冲,其H2O的活度低,榴辉岩不易于发生部分熔融;但在板片折返过程中能够发生以含水矿物(角闪石类、帘石类和云母类)和名义上无水矿物(石榴石、单斜辉石)脱水为主导机制的减压熔融,并且常伴随强烈的退变质作用(Caoetal., 2017)。Skjerlie and Douce (2002)基于实验岩石学研究了含黝帘石和含多硅白云母榴辉岩在1.0~3.2GPa的压力条件下发生脱水熔融的固相线温度,实验结果表明,在1.5~2.7GPa之间,榴辉岩的固相线与压力密切相关,从850℃上升至1025℃,而当压力达到3.2GPa时,固相线温度则下降至975℃。Liuetal. (2009)以碧溪岭榴辉岩样品为例,研究了多硅白云母脱水熔融的P-T条件,实验结果显示大别-苏鲁榴辉岩部分熔融的温压条件为1.5~2.0GPa、800~850℃。

榴辉岩部分熔融产生的熔体成分受原岩、温度、压力和H2O含量共同控制(Ryabchikovetal., 1996; Laurie and Stevens, 2012)。含水榴辉岩部分熔融产生熔体的成分为安山质和花岗质,熔体总体富SiO2、Al2O3和Na2O,而贫FeO、MgO和CaO (Ryabchikovetal., 1996; Laurie and Stevens, 2012)。无水榴辉岩在高压条件下部分熔融产生熔体的成分则以英安质为主,并随着熔融程度的增加,向玄武质转化(闻卫军等, 2012)。低压条件下,榴辉岩脱水熔融产生熔体的成分以英云闪长质和奥长花岗质为主,并随压力升高,逐渐过渡为石英闪长质,最后向高压下的花岗质转变(Skjerlie and Douce, 2002)。另外,不同含水矿物脱水熔融产生熔体的成分也存在较大的差别。多硅白云母是俯冲带中常见的含水矿物,其上限压力范围可达6GPa,是榴辉岩在高压-超高压条件保存下来的典型富钾矿物(Caoetal., 2017)。黝帘石富CaO,脱水熔融产生的熔体富Pb、Sr、LREE和MREE等不相容元素(Liebscheretal., 2007)。俯冲带中角闪石稳定的压力范围较低,一般低于2.5GPa,其部分熔融产生的熔体具有高Na/K、Ba/Rb,低Rb/Sr的特点(Caoetal., 2017)。

识别榴辉岩的部分熔融是其研究的基础。宏观尺度上榴辉岩部分熔融产生的熔体呈细脉状、层状、囊状穿插在基质矿物中(Chenetal., 2012),当熔融程度较高时,熔体向外迁移形成埃达克岩。微观层面上,熔融产生的长英质矿物呈针状、楔形、串珠状分布在矿物颗粒边缘或包裹在矿物内(Holnessetal., 2011; Vernon, 2011; Chenetal., 2017),并且在一些转熔矿物或者新生锆石内偶尔可见部分熔融捕获的熔体玻璃或熔体结晶所形成的多相固体包裹体(Chenetal., 2013; Cesareetal., 2015)。

国内目前有关榴辉岩部分熔融的记录主要集中在大别-苏鲁、柴北缘超高压变质带以及喜玛拉雅造山带等地区。Gaoetal. (2012)在大别超高压榴辉岩的石榴石中发现了熔融多相包裹体,包裹体以钾长石、斜长石、石英等长英质矿物为主,指示超高压榴辉岩在折返过程中发生了以多硅白云母脱水为主的减压熔融,初始熔融的P-T条件为2.4GPa、~830℃。Wangetal. (2014a)将苏鲁榴辉岩的深熔作用划分为三个阶段:最初熔融产生的熔体呈串珠状沿着褶皱榴辉岩的页理分布;随着熔融程度升高,熔体串接形成网脉状;最后汇聚成熔体通道。Chenetal. (2012)就柴北缘超高压变质带中与榴辉岩伴生的浅色体进行了详细的地球化学研究,实验结果表明长英质脉体具有高Na/K、高Sr和低Y的特征,为榴辉岩原地熔融的产物。Lietal. (2019)在中喜玛拉雅退变榴辉岩的锆石边部发现了熔体包裹体,相平衡模拟指示榴辉岩变质峰期伴随角闪石的消失,推断其是榴辉岩进变质过程角闪石脱水熔融的产物。陈育晓等(2012)发现北祁连熬油沟地区奥长花岗岩与高硅埃达克岩的地球化学特征相近,锆石年代学指示其可能是榴辉岩折返过程中发生近等温或升温减压熔融形成,但目前仍缺乏北祁连榴辉岩熔融的直接证据。

2 高温同位素分馏

高温条件下元素扩散速度快,熔体和残余体之间易于达到化学平衡,因此,目前的普遍观点认为高温岩浆过程对于稳定同位素的分馏影响很小(Bigeleisen and Mayer, 1947; Urey, 1947),而低温水-岩交换过程则可以产生显著的同位素分馏(Sunetal., 2016; Huangetal., 2020)。板片俯冲前,洋壳与海水或海洋沉积物相互作用可导致同位素分馏,并随俯冲作用进行,板片发生部分熔融,交代上覆地幔,可改变地幔的同位素组成。例如Lietal. (2017a)发现中国东部大陆溢流玄武岩较MORB和OIB具有较低的δ26Mg值(-0.46‰±0.14‰),并且二者具有相近的Nb/U值,证明其未受到壳源物质混染;由于碳酸盐沉积物富集轻镁同位素,低δ26Mg玄武岩的产生可能与太平洋板块俯冲过程中碳酸盐沉积物交代有关。

近些年,随着仪器分析方法和实验地球化学的发展,部分学者提出高温岩浆过程中也可以产生显著的同位素分馏(Huangetal., 2009; Richteretal., 2009; Sunetal., 2016; Wangetal., 2019)。关于稳定同位素分馏的研究目前主要集中在平衡分馏和动力学分馏两方面(Schauble, 2004)。热扩散和化学扩散是影响高温岩浆过程中同位素动力学分馏的主要因素(Huangetal., 2009; Richteretal., 2009)。轻重同位素之间的化学扩散受控于熔体和残余体的成分梯度和同位素间的相对质量差异,一般轻同位素的扩散速度快,重同位素的扩散速度慢。除化学扩散外,因温度梯度而引起的热扩散也可以造成显著的元素分异和同位素分馏(Tengetal., 2006)。例如成分均一的玄武质熔体在同一个温度梯度下进行热扩散,Mg、Al、Ca、Fe等主量元素从低温端扩散至高温端,而Si则相反,富集在低温端。同时,O、Si、Mg、Ca、Fe等稳定同位素均发生显著的动力学分馏,轻同位素从低温端向高温端扩散(Richteretal., 2009)。实验岩石学研究表明,非传统稳定同位素在高温岩浆过程中通过扩散作用可能产生比低温过程更大程度的同位素分馏(Richteretal., 2009)。Huangetal. (2009)利用活塞圆筒装置,以流纹岩粉末为实验材料,从高温(950℃)到低温(350℃)设置了一系列温度梯度,分别测试了高温和低温端的Fe、Mg同位素组成,结果发现高温熔体部分的δ26Mg和δ56Fe明显低于低温区域,与同位素热扩散理论结果相一致。

同位素平衡分馏的大小和方向取决于元素之间的键力常数(Force Constants)。一般低配位数的原子其键长较短、振动频率高,相对应的化学键键强大,因此低配位数的原子更易富集重同位素而高配位数原子则富集轻同位素(Schauble, 2004)。对多价态元素而言,高价态原子键强大,倾向于富集重同位素(Xuetal., 2017)。Huangetal. (2013, 2019a)利用第一性原理计算了不同暗色矿物Mg/Ca同位素的分馏系数,各矿物的Mg同位素分馏系数为普通辉石≈橄榄石>石榴子石,而与Mg同位素相反,石榴石Ca同位素的分馏系数要高于辉石。一般情况下,稳定同位素的分馏系数与温度呈线性关系,而与压力关系不大,因此利用同位素分馏系数与温度之间的关系可以建立矿物对温度计,如绿辉石-石榴石Mg同位素温度计(Lietal., 2011)。而Huangetal. (2013)探讨了压力对于同位素分馏的影响,发现当温度固定在1200K时,单斜辉石与石榴子石Mg同位素分馏系数从0GPa的0.673‰升高至10GPa下的1‰,表明压力对于同位素分馏的影响不可忽略。Chenetal. (2020)又研究了矿物成分对于榴辉岩熔融过程中同位素分馏的影响,理论计算和实验结果表明在地幔温度下,随着石榴石CaO含量升高,ΔCa-OGrt-Cpx逐渐减小,石榴石和辉石之间Ca同位素的分馏系数减小。

3 Sr-Nd-Hf-O同位素

Sr-Nd-Hf-O同位素相比于金属稳定同位素,其应用范围更广,研究更加成熟。放射性成因的Sr-Nd-Hf同位素以及O同位素常用于示踪部分熔融的源区或者识别混合熔融的端元组分。但上述应用的基本假设是在部分熔融过程中熔体和源区之间不存在同位素分馏(Wolfetal., 2019)。Tangetal. (2014)认为只有当源区中各矿物相成比例进入到熔体,并且熔体和源区之间达到了同位素交换平衡,利用同位素示踪源区才是有效的。

近些年,一些研究指出由于部分熔融条件以及热事件持续时间的差异,熔体和残余体难以达到同位素平衡,使得熔体和源区之间的同位素组成发生解耦(Davies and Tommasini, 2000)。部分熔融产生熔体的成分受控于两个因素:一是参与熔融反应的主要造岩矿物(云母、角闪石等);二是熔体中副矿物的溶解度。不同矿物其母子体同位素组成一般不同,云母和长石Rb/Sr比值高、Sm/Nd比值低,其部分熔融产生的熔体具有较高的87Sr/86Sr和较低的143Nd/144Nd (图2a, b)。Wolfetal. (2019)指出部分熔融过程中同位素解耦一般需要满足三个条件:1)原岩中的各矿物具有不同的母子体同位素组成;2)部分熔融产生的熔体从源区快速抽离,同位素未平衡;3)部分熔融后有足够的时间扩大熔体和源区同位素组成的差异。

图2 部分熔融过程同位素解耦(据Wolf et al., 2019)Fig.2 Isotope decoupling during partial melting (after Wolf et al., 2019)

熔体的Sr同位素取决于参与深熔反应矿物的Rb/Sr比值和熔体的结晶年龄。例如黑云母较其它造岩矿物具有较高的Rb/Sr,其部分熔融产生熔体87Sr/86Sr最高。角闪石是榴辉岩中常见的富Sr矿物,其Rb/Sr比值较低,因此角闪石脱水熔融产生的熔体往往具有较低的87Sr/86Sr。Huetal. (2018)研究了喜玛拉雅造山带Mabja淡色花岗岩的Sr-Nd同位素组成,Mabja淡色花岗岩主要由云母脱水熔融形成,其(87Sr/86Sr)i在0.84853~0.85474之间。而位于Mabja以东的Yadoi淡色花岗岩则被认为是变质基性岩中角闪石脱水熔融形成的埃达克岩,其(87Sr/86Sr)i较其它地区的淡色花岗岩明显偏低,在0.71333~0.71934之间(Zengetal., 2011)。Davies and Tommasini (2000)指出深熔作用过程中熔体和残余体Sr-Nd同位素的差异取决于原岩的变质演化,当原岩在进变质过程中各矿物的同位素组成被均一化,则部分熔融产生熔体的Sr-Nd同位素将与原岩保持一致(图3a)。Gaetaetal. (2018)认为同位素组成不均一的源区发生熔融不一定会发生Sr同位素解耦,而当源区经历不同期次的熔体抽离,并且不同批次熔体的Sr同位素存在差异时,熔体与源区的同位素组成将发生偏离。

图3 同位素均一化与同位素脱耦(据Wolf et al., 2019)Fig.3 The relationship between isotope homogenization and decoupling (after Wolf et al., 2019)

与Sr同位素不同,Sm-Nd同位素体系主要受副矿物控制。榴辉岩中常见的副矿物包括锆石、磷灰石、榍石、金红石、褐帘石等,并且各副矿物的稀土配分模式不同,具有不同的Sm/Nd比值。榍石、褐帘石稀土配分模式为右倾型,Sm/Nd较低,锆石为左倾型,磷灰石的稀土配分模式呈“钟”形,MREE较LREE和HREE更为富集(Hammerlietal., 2019)。进变质过程中,矿物之间的变质反应促使岩石体系中各矿物的Nd同位素再分配,初始Sm/Nd比值被均一化,部分熔融产生的熔体和原岩的Nd同位素组成几近一致(图3a)。但变质过程中元素和同位素的均一化温度受变质作用的温压条件、矿物的粒度以及元素扩散速度等多个因素影响。当部分熔融的原岩为细粒沉积岩并且含有较多的自生矿物时,元素均一化的温度较低。而对于某些岩浆岩或高级变质岩,进变质过程很难使其同位素组成完全均一化(图3b; Wolfetal., 2019)。

目前多项研究均指出部分熔融过程中的Nd同位素不平衡现象。Ayres and Harris (1997)和Zengetal. (2005)发现变质沉积岩部分熔融产生熔体的εNd值要明显高于其原岩,并且熔体的P2O5含量和Sm/Nd比值与εNd密切相关,可能与部分熔融过程中磷灰石的溶解有关。Zhouetal. (2020)在苏鲁造山带发现两类在超高压条件形成的花岗质脉体,两类脉体的Sr和O同位素相近,但具有不同的εNd与P2O5含量,意味着深熔过程中Nd同位素未达到平衡。关于深熔过程中Nd同位素不平衡现象,不少学者对此提出了质疑(Hammerlietal., 2014; Wangetal., 2020a)。Hammerlietal. (2014)以变质沉积岩为例,测定了典型副矿物Nd同位素组成,结果发现当温度高于600℃时,控制体系内Nd同位素组成的各副矿物被均一化。但由于文章所分析的样品为变质沉积岩,相比于榴辉岩而言,其Nd同位素组成更易被均一化,因此Hammerlietal. (2014)所得到的结论并不能通用于所有的岩性。

目前有关榴辉岩深熔过程中Nd同位素不平衡的报道仍有限。大别造山带出露的埃达克岩被认为是碰撞后期加厚下地壳在榴辉岩相条件下部分熔融的产物(Heetal., 2011)。大别榴辉岩和埃达克岩具有相似的Sr同位素组成,但榴辉岩的εNd明显高于埃达克岩(图4)。Heetal. (2013)认为大别低εNd埃达克岩的产生可能与太古宙基性下地壳部分熔融有关,而Wangetal. (2007)则认为大别埃达克岩的原岩属性与三叠纪超高压榴辉岩相似。针对大别低εNd埃达克岩,对比喜马拉雅埃达克岩,可以发现大别埃达克岩的εNd值与全岩P2O5和LREE具显著的负相关关系(图5a, c),而喜马拉雅埃达克岩则刚好相反,其εNd值与全岩P2O5呈线性正相关(图5b, d)。由于磷灰石和独居石是变质岩中主要的含磷矿物,并且磷灰石高Sm/Nd的特征对于熔体中εNd值一般表现为正贡献,而独居石则反之(Zengetal., 2005; Zhuetal., 2020)。另外,汤倩等(2007)在CCSD退变榴辉岩发现有大量的独居石,这可能意味着大别埃达克岩和喜马拉雅出露的埃达克岩的Nd同位素可能受到不同的副矿物控制,但其具体影响还值得进一步探讨。

图4 大别造山带榴辉岩及埃达克岩Sr-Nd同位素榴辉岩数据引自Li et al., 1993, 1994, 2000, 2004; Okay et al., 1993; Ames et al., 1996; Chavagnac and Jahn, 1996; Ma et al., 2000; Yang, 2000; 李曙光等, 2000; Zheng et al., 2002; Jahn et al., 2003, 2005; 薛怀民和刘福来, 2007; Zhao et al., 2007; Tang et al., 2008. 埃达克岩数据引自Wang et al., 2007; Xu et al., 2007; 续海金等, 2008; Huang et al., 2008; He et al., 2013Fig.4 Sr-Nd isotopes for eclogite and adakite from Dabie orogenData of Sr-Nd isotopes of eclogite are from Li et al., 1993, 1994, 2000, 2001, 2004; Okay et al., 1993; Ames et al., 1996; Chavagnac and Jahn, 1996; Ma et al., 2000; Yang, 2000; Zheng et al., 2002; Jahn et al., 2003, 2005; Xue and Liu, 2007; Zhao et al., 2007; Tang et al., 2008. Data of adakite are from Wang et al., 2007; Xu et al., 2007, 2008; Huang et al., 2008; He et al., 2013

图5 大别(a、c)和喜马拉雅(b、d)埃达克岩Nd同位素二元关系图解(a、b) εNd(t)-P2O5; (c) εNd(t)-LREE; (d) εNd(t)-MREE. 数据引自边千韬和丁林, 2006;江思宏等, 2006; King et al., 2007; Zeng et al., 2011, 2015;曾令森等, 2012, 2019;高利娥等, 2011; Hou et al., 2012; Liu et al., 2014; Zheng et al., 2016; Li et al., 2017b; Ji et al., 2020; Lin et al., 2020; Tian et al., 2020Fig.5 Binary diagrams of Nd isotope for adakites from Dabie (a, c) and Himalaya (b, d)(a, b) εNd(t) vs. P2O5; (c) εNd(t) vs. LREE; (d) εNd(t) vs. MREE. Data are from Bian and Ding, 2006; Jiang et al., 2006; King et al., 2007; Zeng et al., 2011, 2012, 2015, 2019; Gao et al., 2011; Hou et al., 2012; Liu et al., 2014; Zheng et al., 2016; Li et al., 2017b; Ji et al., 2020; Lin et al., 2020; Tian et al., 2020

Lu-Hf同位素体系与Sm-Nd体系类似,即在地幔演化过程中Nd和Hf较其母体同位素倾向于进入到熔体当中,但Nd的活动性要高于Hf (Yuetal., 2020)。Lu-Hf体系主要受锆石、磷灰石和石榴石等富稀土或富Hf的矿物控制,部分熔融过程中可发生Nd-Hf同位素解耦(White, 2013; Chenetal., 2015)。Kongetal. (2018)在阿尔泰造山带花岗岩侵入体中观察到Nd-Hf-O同位素的解耦,锆石Hf同位素明显偏高,εHf值在-11.17~+13.27之间,其中Hf同位素的变化与非平衡熔融过程中锆石的差异性溶解有关。由于源区中Zr含量较高,导致部分熔融过程中大部分的非放射性成因Hf寄主在残留锆石中而留在源区。Tangetal. (2014)模拟了深熔作用过程中锆石溶解度对熔体Hf同位素的影响,计算结果表明当源区中Zr含量大于100×10-6并且熔体抽离的速度较快时(>10-4yr-1),可能导致熔体Hf同位素不平衡。Huangetal. (2019b)在祁连造山带可可里岩基发现全岩Nd-Hf同位素以及全岩和锆石Hf同位素的解耦,但与锆石的溶解度无关,熔体εHf值还受到含Ti矿物(角闪石、钛铁矿)影响,由于含Ti矿物可容纳一部分的Hf,早期含Ti矿物记录了与锆石不同的Hf同位素组成。另外,由于石榴石具有较高的Lu/Hf比,部分熔融过程中石榴石残余会使熔体的εHf(t)降低,导致Nd-Hf同位素解耦(Tangetal., 2014; Huangetal., 2017)。Liuetal. (2015)研究了苏鲁榴辉岩的Nd-Hf同位素组成,在εNd(t)-εHf(t)图解中,苏鲁榴辉岩均位于Nd-Hf同位素演化线之上。Huangetal. (2017)同样在北祁连花岗岩中发现Nd-Hf同位素解耦,但与Huangetal. (2019b)所得到的结论不同,北祁连后碰撞环境形成的金佛寺岩基是富石榴石的残余体二次熔融的产物,熔体的εHf(t)值与源区石榴石含量有关。太古宙TTG质岩石被认为是富石榴石的源区部分熔融的产物,由于源区残余石榴石,导致TTG的εHf(t)值趋向于分布在Nd-Hf同位素演化线的下方(图6; Huangetal., 2017)。综上,部分熔融过程中锆石效应、含钛矿物以及石榴石等控制了熔体的Hf同位素组成,同理上述观点也适用于榴辉岩及其熔融产物。

图6 Nd-Hf同位素解耦图解数据引自Huang et al., 2017, 2019b; Kong et al., 2018; Liu et al., 2015; Yang et al., 2008; Shan et al., 2015. Nd-Hf同位素演化线引自Huang et al., 2017Fig.6 Nd-Hf isotopes decoupling diagramData from Huang et al., 2017, 2019b; Kong et al., 2018; Liu et al., 2015; Yang et al., 2008; Shan et al., 2015. Nd-Hf mantle array is modified after Huang et al., 2017

氧同位素是研究水岩作用、岩浆分异以及变质重结晶等过程的重要手段(Zheng, 1997; Sobolevetal., 2011; Wangetal., 2014b; Korolevetal., 2018; Bruandetal., 2019)。一般沉积岩的δ18O最高(17‰~35‰),岩浆岩最低(4‰~12‰),变质岩介于二者之间(Viswanathan and Mahabaleswar, 2014)。地幔的δ18O的平均值为5.5‰±0.4‰,后期受海水、大气水的交代其氧同位素组成易发生改变(Matteyetal., 1994; Korolevetal., 2018)。目前关于部分熔融过程中O同位素分馏的研究相对较少,大多数观点认为在部分熔融过程中O同位素不易产生分馏(Bindemanetal., 2012)。Williamsetal. (2009)分析了Kaalvallei金伯利岩筒中榴辉岩捕掳体的Fe、O同位素组成,榴辉岩捕掳体的δ18O和δ57Fe呈明显的线性相关关系(图7a),并且全岩和石榴石的δ18O与Cr、Sc等相容元素具负相关(图7b),推测其是由板块俯冲过程中,榴辉岩发生非平衡熔融,熔体迅速抽离,造成熔体富集18O和57Fe。该项报道也是目前为数不多的关于榴辉岩部分熔融过程中O同位素分馏的研究,但关于O同位素的分馏机理并没有做过多的阐释。综上所述,榴辉岩部分熔融过程中可能发生Sr-Nd-Hf-O同位素的解耦,但由于目前报道的榴辉岩部分熔融实例相对较少,有关其深熔作用过程中Sr-Nd-Hf-O同位素分馏机制仍然受限。

图7 δ18O-δ57Fe (a) and δ18O-Sc (b)图解(据Williams et al., 2009)Fig.7 Diagrams of δ18O vs. δ57Fe (a) and δ18O vs. Sc (b) (after Williams et al., 2009)

4 Ca-Mg-Fe-Li同位素

随着MC-ICP-MS分析技术的发展,有关金属稳定同位素的研究也逐渐受到地球科学家们的关注。目前有关金属稳定同位素的研究主要集中在以下三个方面:一是分析方法的建立(Schilleretal., 2012; Zhangetal., 2019);二是地质过程中各金属稳定同位素的分馏机理,如扩散、熔融、风化、吸附等(Richteretal., 2009; Youngetal., 2015; Valdesetal., 2019; Antonelli and Simon, 2020; Huangetal., 2020);三是金属稳定同位素在地球科学中的应用(Lietal., 2017a; Wangetal., 2018; Dengetal., 2019, 2021; Gerritsetal., 2019; Jinetal., 2020)。关于部分熔融过程中金属稳定同位素分馏,目前有观点认为岩浆过程金属稳定同位素分馏并不明显(Sunetal., 2016; Wangetal., 2019)。但近二、三年,部分学者通过研究榴辉岩及其深熔产物的金属同位素特征,发现榴辉岩熔融过程中由于石榴石效应,熔体和源区可以产生显著的金属稳定同位素分馏(Lietal., 2011; Wangetal., 2020b)。

4.1 Ca同位素

Ca有六种稳定同位素(40Ca、42Ca、43Ca、44Ca、46Ca、48Ca),其相对质量差Δm/m最高可达20%,仅次于H和He,因此在各种地质过程中Ca同位素可产生显著的分馏效应(Kangetal., 2016; Griffith and Fantle, 2020; Zhuetal., 2020)。部分熔融过程中Ca同位素平衡分馏与含钙矿物的键长和配位数有关(Valdesetal., 2019)。Kangetal. (2017)研究了地幔熔融过程中Ca同位素的变化,结果表明随熔融程度升高,熔体中的Ca同位素愈加亏损,而熔融残余体则富集重钙同位素(图8a)。Zhuetal. (2018, 2020)以MORB和BABB为例,分析了其Ca同位素组成,与上地幔(δ44/40Ca=1.05‰±0.04‰)和硅酸盐地球(δ44/40Ca=0.94‰±0.05‰)相比,二者具有偏低的δ44/40Ca值。Amsellemetal. (2019)发现高配位钙钛矿的分离结晶,会导致科马提岩岩浆富集重钙同位素。Valdesetal. (2019)认为地幔熔融和含钙矿物的分离结晶均可改变地幔的Ca同位素组成,橄榄石和斜方辉石的分离结晶会降低熔体的δ44/40Ca,而斜长石则反之。目前有关地壳深熔过程中Ca同位素分馏的研究相对较少,Liuetal. (2017)分析了典型中酸性岩石标样(AGV、JA-2等)的Ca同位素组成,其δ44/40Ca在0.13‰~1.17‰之间,可能与岩浆演化过程中Ca同位素分馏有关。

榴辉岩的含钙矿物以石榴石、辉石为主,还含有少量的角闪石。石榴石、辉石以及角闪石中的Ca均为八次配位,但具有不同Ca-O键长(Magnaetal., 2015)。石榴石的Ca-O键长在2.27~2.43Å之间,辉石为2.45~2.50Å,角闪石的Ca-O键长为2.474Å。理论上榴辉岩不同含钙矿物δ44/40Ca的富集顺序为:石榴石>辉石≈角闪石(图8a; Wangetal., 2019)。另外,部分熔融过程中辉石更易进入到熔体当中,石榴石则残留在源区。因此,与地幔熔融类似,榴辉岩部分熔融过程中Ca同位素也可产生分馏(Huangetal., 2010)。Kangetal. (2019)分析了西伯利亚克拉通Udachnaya金伯利岩筒中榴辉岩捕掳体的Ca同位素组成,其中单斜辉石的δ44/40Ca要低于石榴石(Δ44/40CaGrt-Cpx=~0.3‰)。Wangetal. (2019)针对大别低镁埃达克岩和I型花岗岩,测试了其Ca同位素组成,其中I型花岗岩Ca同位素组成较为均一,δ44/42Ca的平均值为0.37‰±0.03‰;低镁埃达克质岩δ44/42Ca在0.24±0.02‰~0.38±0.02‰之间,并且当辉石中的硬玉组分一定时,低镁埃达克质岩的δ44/42Ca与源区残余石榴石含量呈负相关(图9a),表明榴辉岩部分熔融过程中源区残留石榴石控制了熔体的Ca同位素组成。

4.2 Mg同位素

Mg作为主量元素,在地球各个圈层均可广泛存在(Teng, 2017)。Mg有三种同位素(24Mg、25Mg、26Mg),其中幔源捕掳体和MORB、OIB具有均一的Mg同位素组成(δ26Mg≈-0.25‰),表明地幔熔融以及玄武岩岩浆结晶分异过程中不涉及Mg同位素分馏或分馏很小(Wangetal., 2012; Huangetal., 2016; Teng, 2017)。造山带榴辉岩的δ26Mg在-0.44±0.08‰~-0.137±0.06‰之间(图8b; Teng, 2017),平均值为-0.226‰±0.04‰,与MORB和OIB的Mg同位素组成相近,并且递进变质过程中Mg同位素不产生分馏(Lietal., 2011; Wangetal., 2014c)。与造山带榴辉岩不同,克拉通内部产出的高温榴辉岩其δ26Mg变化范围较大(δ26Mg=-0.798± 0.08‰~-0.164±0.06‰)(图8b),可能与开放体系中熔体抽离、扩散、熔/流体交代和源区不均一等过程有关(Wangetal., 2012)。Teng (2017)认为地幔榴辉岩的前身是俯冲的蚀变洋壳,后通过地幔柱返回地表,由于地幔柱上升速度快,上升过程中熔体交代作用不太可能改变榴辉岩的Mg同位素组成,其Mg同位素主要受源区控制。

图8 榴辉岩及组成矿物的Ca-Mg-Fe-Li同位素组成Ec-造山带榴辉岩;Ec(M)-克拉通内榴辉岩. Ca同位素数据引自Dai et al., 2020; Kang et al., 2019; Lu et al., 2020; Wang et al., 2019. Mg同位素数据引自Huang et al., 2016; Li et al., 2011; Wang et al., 2012, 2014c. Fe同位素数据引自Beard and Johnson, 2004; El Korh et al., 2017; Li et al., 2016; Williams et al., 2009. Li同位素数据引自Zack et al., 2003; Marschall et al., 2007; Sun et al., 2016; Liu et al., 2019. Ca-Mg-Fe-Li同位素地幔参考值引自Kang et al., 2017; Teng, 2017; Dauphas et al., 2017; Penniston-Dorland et al., 2017. 矿物代号引自Whitney and Evans, 2010Fig.8 The Ca-Mg-Fe-Li isotopes of eclogite and eclogitic mineralsEc-orogenic eclogite;Ec(M)-cratonic eclogite. Ca isotopes from Dai et al., 2020; Kang et al., 2019; Lu et al., 2020; Wang et al., 2019. Mg isotopes from Huang et al., 2016; Li et al., 2011; Wang et al., 2012, 2014c. Fe isotopes from Beard and Johnson, 2004; El Korh et al., 2017; Li et al., 2016; Williams et al., 2009. Li isotopes from Zack et al., 2003; Marschall et al., 2007; Sun et al., 2016; Liu et al., 2019. Mantle reference values from Kang et al., 2017; Teng, 2017; Dauphas et al., 2017; Penniston-Dorland et al., 2017. Mineral abbreviations after Whitney and Evans, 2010

目前大多数研究认为低温风化和生物过程中Mg同位素可以产生显著的分馏(Blacketal., 2006, 2007, 2008),而部分熔融过程中Mg同位素不易发生变化(Zhongetal., 2017)。矿物之间的Mg同位素分馏受控于矿物晶格中Mg2+所处的配位环境,石榴石中Mg为八次配位,辉石、角闪石以及云母中Mg为六次配位,不同含镁矿物26Mg的富集顺序依次为云母>角闪石≈单斜辉石>斜方辉石>石榴石(图8b; Teng, 2017)。由于石榴石具有较低的δ26Mg,非平衡熔融过程中石榴石残余会导致熔体的δ26Mg升高。多硅白云母是榴辉岩中常见的含水矿物,具有较高的δ26Mg,其脱水熔融会加剧Mg同位素分馏。Wangetal. (2015)分析了黑云母脱水熔融过程中Mg同位素的变化,结果表明随变质程度的升高,全岩的δ26Mg保持不变,而石榴石和黑云母的δ26Mg逐渐增大,部分熔融过程中黑云母参与深熔反应进入到熔体当中,石榴石残留在源区,使得熔体和残余体之间Mg同位素解耦。Wangetal. (2020b)为了探讨石榴石对于金属同位素分馏的控制作用,紧接着分析了大别低镁埃达克质岩石的Mg同位素组成,与Ca同位素不同,低镁埃达克质岩石的Mg同位素组成较为均一,δ26Mg与全岩的(Dy/Yb)N关系不明显(图9b)。但计算模拟得到榴辉岩部分熔融产生熔体的δ26Mg与源区中石榴石的含量呈正相关关系。由于源区的矿物组成以绿辉石为主,并且绿辉石与熔体之间Mg同位素分馏系数较小,导致石榴石与熔体Mg同位素的分馏效应被稀释。另外,部分熔融过程中尖晶石残留也会造成金属同位素分馏,但与石榴石相反,尖晶石中的Mg为四配位,部分熔融将导致熔体富集轻镁同位素,残余体则富集重镁(Teng, 2017; Wangetal., 2017; Williamsetal., 2004)。由于榴辉岩中尖晶石中的量很低,部分熔融过程中其对于金属同位素分馏的影响很小,因此在本文中并不考虑。

图9 大别低镁埃达克岩和榴辉岩钙、铁、镁同位素图解(a) δ44/42Ca-(Dy/Yb)N; (b) δ56Fe-(Dy/Yb)N; (c) δ26Mg-(Dy/Yb)N. 数据引自He et al., 2017; Li et al., 2016; Lu et al., 2020; Wang et al., 2014c, 2019, 2020bFig.9 Diagrams of δ44/42Ca vs. (Dy/Yb)N (a), δ56Fe vs. (Dy/Yb)N (b) and δ26Mg vs. (Dy/Yb)N (c) for low-Mg adakites and eclogites from the Dabie OrogenData from He et al., 2017; Li et al., 2016; Lu et al., 2020; Wang et al., 2014b, 2019, 2020b

4.3 Fe同位素

Fe和Mg的离子半径相似,一般Fe可替代Mg进入到矿物晶格,理论上Fe和Mg的分馏效应是一致的。但由于Fe具有多个价态(Fe0、Fe2+和Fe3+),Fe同位素分馏还受体系氧逸度控制(Williamsetal., 2005; Wangetal., 2012; Dauphasetal., 2014)。Fe3+的化学键较强,倾向于富集重同位素,并且Fe3+较Fe2+的不相容性更高,部分熔融过程中Fe3+更易进入熔体当中(Williamsetal., 2005; Dauphasetal., 2014)。目前大量研究指出地幔熔融、分离结晶以及熔体交代等过程均会造成显著的Fe同位素分馏(Williamsetal., 2004, 2005; Weyer and Ionov, 2007; Tengetal., 2013)。地幔橄榄岩的Fe同位素组成与球粒陨石接近,其熔融产物MORB (0.07‰~0.14‰)和OIB (0.05‰~0.18‰)相对富集重铁同位素,并且OIB较MORB其Fe同位素变化范围更大,这可能与熔体迁移过程中橄榄石和辉石的分离结晶以及源区不均一性有关(Tengetal., 2013)。一般当富Fe2+的硅酸盐矿物或氧化物发生分离结晶时,会造成熔体中的δ56Fe升高,而磁铁矿分离结晶则会使熔体的δ56Fe偏低(Xuetal., 2017)。

俯冲带Fe同位素体系直接影响地幔和岛弧的Fe同位素组成。俯冲板片脱水释放氧化性质的含水流体,流体向上迁移交代地幔楔,降低其固相线并发生熔融,导致岛弧岩浆富集56Fe,而氧化的弧下地幔则富集54Fe (Williamsetal., 2005; El Korhetal., 2017)。Tengetal. (2013)分析了夏威夷岛链Koolau和Kilauea洋岛玄武岩的Fe同位素组成,Koolau洋岛玄武岩Fe同位素较Kilauea要轻,并且Koolau洋岛玄武岩SiO2含量与Nd-Hf-O同位素呈现良好的线性关系,指示岩浆混合成因,其中一个端元是以Kilauea洋岛玄武岩为代表的苦橄质岩浆,另一端元为榴辉岩低程度部分熔融(10%~20%)形成的英安质岩浆或榴辉岩熔融产生的高硅熔体与橄榄岩反应生成的石榴辉石岩二次熔融的产物。两种混合模型均符合分离结晶过程中Fe同位素的变化规律,但由于目前关于榴辉岩部分熔融的Fe同位素的研究相对较少,还难以对具体的模型加以限制。

Lietal. (2016)和El Korhetal. (2017)通过测定榴辉岩的Fe同位素组成,发现变质过程中Fe同位素不易产生分馏,而矿物之间的Fe同位素分馏如Δ56FeOmp-Grt则随着Fe3+/ΣFe的升高而升高。与Mg同位素不同,榴辉岩部分熔融过程中的Fe同位素分馏受体系的氧逸度和矿物晶体结构共同控制。Williamsetal. (2009)发现Kaalvallei地幔榴辉岩捕掳体Fe同位素在很大范围内变化(δ56Fe=-0.38±0.42‰~+0.26±0.20‰),且全岩δ56Fe与δ18O呈正相关关系,推测非平衡熔融是导致地幔榴辉岩Fe同位素分馏的主要原因。Heetal. (2017)在大别造山带采集了一系列埃达克质岩石样品,分别测定了其Fe同位素组成,在排除氧逸度对Fe同位素分馏的影响外,实验测试和理论计算结果均表明埃达克岩δ56Fe与全岩的(Dy/Yb)N呈显著的正相关关系(图9c),表明榴辉岩熔融过程中的Fe同位素分馏除了受体系氧逸度影响外,还与源区残留石榴石有关。榴辉岩各矿物Fe和Mg的配位一致,即石榴石富集轻铁,而辉石、角闪石和多硅白云母则相对富集重铁同位素(图8c; Teng, 2017)。Xuetal. (2017)认为地壳深熔作用过程中Fe同位素分馏不仅受Fe的价态影响,还与熔体中Fe-O键的键强有关,花岗质熔体的Fe-O键的键力常数要高于硅酸盐矿物(Dauphasetal., 2014),导致浅色体与暗色体之间Fe同位素分馏。目前关于部分熔融过程中Fe同位素的分馏机理还有待完善,但毋庸置疑的是部分熔融过程中Fe同位素可以产生显著的分馏效应。另外,研究榴辉岩部分熔融过程中Fe同位素的行为对于探讨俯冲带氧逸度变化具有重要意义(El Korhetal., 2017; Gerritsetal., 2019)。

4.4 Li同位素

Li有两种同位素(6Li、7Li),其相对质量差可达16.7%,在各种地质作用过程(风化、海水蚀变等)中Li同位素均可以产生显著的分馏(Elliottetal., 2006; Penniston-Dorlandetal., 2017)。榴辉岩Li同位素变化范围很大,δ7Li在-21.9‰~+8.2‰之间(图8d)。Zacketal. (2003)和Liuetal. (2019)认为进变质脱水和后期水化过程是导致榴辉岩轻Li同位素的主要原因,由于Li可替代Mg进入硅酸盐矿物中,硅酸盐矿物中的Li多占据八面体位置,而流体中的Li则分布在四面体中心,配位数的差异导致脱水过程中流体优先富集7Li。Marschalletal. (2007)在Zacketal. (2003)的基础上模拟了俯冲带脱水过程中Li同位素的分馏行为,结果显示矿物脱水并不足以解释榴辉岩轻Li同位素特征,由于6Li比7Li的扩散速度快,Marschalletal. (2007)认为扩散作用是影响榴辉岩Li同位素分馏的主要机制。

部分熔融过程中源区的矿物组成及相对含量控制了Li同位素分馏,榴辉岩常见矿物7Li的富集顺序一般为石英>云母≥辉石>石榴石(图8d; Penniston-Dorlandetal., 2017)。部分熔融过程中富7Li的多硅白云母和角闪石易进入熔体中,而残余石榴石则相对富集6Li,导致榴辉岩部分熔融过程Li同位素分馏。由于Li的活动性强,易受扩散作用影响,目前关于榴辉岩部分熔融过程中Li同位素分馏的研究仍比较受限,但相关报道已证实石榴石可以控制熔体的Li同位素。Sunetal. (2016)分析了华北克拉通含石榴石基性包裹体及熔融浅色体的Li同位素组成,其中基性包裹体Li含量较高,δ7Li较低;而其部分熔融产生的淡色花岗岩则具有较高的δ7Li。Wolfetal. (2019)对Iberian地块的混合岩及其熔融的浅色体进行了Li同位素研究,其结果与Sunetal. (2016)一致,均认为部分熔融过程中Li同位素分馏与源区石榴石密切相关。除此以外,Lietal. (2020)测试了榴辉岩中常见矿物的Si同位素组成,发现石榴石较其他变质矿物其δ30Si最低,这意味着榴辉岩部分熔融过程中也可能发生Si同位素分馏。

综上所述,由于矿物晶体结构的差异及部分熔融中各矿物对熔体的贡献比例不同,造成榴辉岩部分熔融过程中金属同位素分馏。另外,动力学扩散也是造成同位素分馏的一个主导机制,但这一般要求熔体和源区或矿物颗粒间存在成分梯度或热梯度,实际研究应针对具体情况具体分析。

5 结论

(1)榴辉岩部分熔融与地壳增生、俯冲折返、元素循环等密切相关,研究榴辉岩部分熔融过程中同位素分馏行为对于探讨俯冲带氧逸度变化以及地幔不均一性等具有重要意义。

(2)榴辉岩部分熔融过程中Sr-Nd-Hf-O同位素可以产生分馏,其中熔体的Sr同位素受参与深熔反应的主要造岩矿物控制,而Nd同位素则取决于副矿物的溶解度;部分熔融过程中Nd-Hf同位素解耦与源区Zr的含量、非锆石Hf同位素以及残余石榴石等有关。

(3)榴辉岩部分熔融过程中,由于“石榴石效应”,会造成金属稳定同位素分馏,因此在利用金属稳定同位素示踪熔体的源区时,需要引起注意。

谨以此文献给著名的变质岩石学、前寒武纪地质学家沈其韩院士百岁华诞!

猜你喜欢
埃达克石榴石源区
受焦化影响的下风向城区臭氧污染特征及潜在源区分析
冬小麦蒸散源区代表性分析
Sn掺杂石榴石型Li7La3Zr2O12固态电解质的制备
空位缺陷对钇铝石榴石在高压下光学性质的影响
兴安落叶松林通量观测足迹与源区分布
渭河源区径流量变化特征及趋势分析
石榴石
如何正确的鉴别石榴石
试论埃达克岩与斑岩铜矿的成矿关系
埃达克岩成因研究进展概述