基于透射光谱技术的温州蜜柑含水率检测

2021-02-02 05:44余怀鑫潘新星朱旭叶子凡祝志慧刘继红
关键词:蜜柑柑橘温州

余怀鑫, 潘新星,朱旭, 叶子凡,祝志慧,刘继红

1.华中农业大学工学院,武汉430070;2.浠水县长福水稻专业合作社,浠水 438200;3.华中农业大学园艺林学学院,武汉 430070

含水率是衡量柑橘品质的重要指标之一,水分丰富的柑橘更受市场青睐。温州蜜柑是我国柑橘栽培的重要鲜食品种,至今已有2 400多年的栽培历史,果肉及果汁具有解热生津、开胃、利尿、祛痰止咳的功效,橘皮及络可做中药,具有很大的经济价值。目前对温州蜜柑等水果的外部品质检测方法主要有光电分选法,通常用于外部品质的分级,通过分析水果外部的特征以大小、颜色、缺陷等作为分选的依据。而内部品质的检测方法还不成熟,主要有人工试吃和通过化学实验进行分析两种,前者存在很强的主观性,后者检测时间长、成本高且为有损检测[1],无法满足温州蜜柑含水率无损检测和实现品质的快速评定分级的需求,给消费者带来了极大的不便。因此,对温州蜜柑含水率进行快速无损检测具有重要意义。

近些年来,光谱技术的出现为无损检测提供了良好的手段,可以进行定量和定性检测[2-3]。许多学者利用可见/近红外光谱对柑橘品质进行了无损检测,主要的研究指标为柑橘的可溶性固形物、糖度、酸度以及维生素C含量等[4-8],对柑橘水分研究甚少。但也有学者通过高光谱/近红外光谱对梨[9]、黑宝石李[10]和南疆红枣[11]等进行了水分无损检测,均取得了较好的效果。光谱技术作为一种新兴的无损检测技术,具有效率高、成本低且易于实现自动化生产的特点[12]。本研究利用光谱技术对温州蜜柑的含水率进行研究,旨在考察基于光谱技术检测温州蜜柑含水率的可行性。

1 材料与方法

1.1 试验材料

2019年11月份从湖北省武汉市农业科学院林业果树研究所采摘的新鲜温州蜜柑样本40个,样本的最大横向直径45~60 mm、质量为60~120 g/个。将样本用抹布清理掉表面污渍,置于常温下、通风处储存,让其自然风干。每2 d采集1次透射光谱,并用精度为1 mg的电子天平称质量,共采集10次,最后用苏珀电热恒温鼓风干燥箱进行脱水,根据GB 5009.3―2016方法测定40个样本在试验过程中的含水率,共得到400组数据。测量过程如下:用精度为1 mg的电子天平对试验当天的样本称质量并记录,待到19 d试验结束后,将全部样本放入烘干箱中以105 ℃烘干72 h,再记录烘干后样本的质量。含水率=(初始质量-烘干后质量)/初始质量×100%。

1.2 光谱采集

采用如图1所示的光谱采集暗箱,暗箱上端1处安装光谱采集探头,与电脑相连,下部中间位置安装光源,由于需要采集透射光谱,而柑橘果皮厚度不一,故要选用穿透性强、能量强度高的光源。本次光源选用的是MR16卤素灯,卤素灯与水平面垂直朝向中央采集窗口。由于MR16卤素灯功率大、温度高,导致暗箱内部散热差,易使设备老化,故在暗箱下端两侧安装散热风扇进行散热。光谱仪采用的是海洋光学的Maya2000pro光谱仪,光谱仪参数设置:扫描范围为200~1 100 nm,平滑次数为5,积分时间为100 ms,得到的每条光谱含有2 068个变量。

1.光纤探头 Optical fiber probe; 2.取物口 Sampling port; 3.样本放置口 Sample placing port; 4.散热风扇 Cooling fan; 5.光源 Light source; 6.电脑 Computer.

1.3 原始光谱特性分析

图2为使用Maya2000pro光谱仪采集同一个样本的果肉和完整果实的透射光谱。由图2可知,果肉的透过率比完整果实透过率高,是因为果皮的存在导致的。果肉和完整果实光谱图在680、720、780 nm处均出现峰值,光谱相似度较高。随着柑橘的逐渐成熟,叶绿素会逐渐转化为类胡萝卜素与类黄酮,这也是柑橘表皮颜色出现变化的原因,在400~700 nm这一部分主要是受到叶绿素的影响,而在700~800 nm之间出现高吸收峰则是由类胡萝卜素造成的,这也是完整果实的透射光谱吸收强度远比果肉大的原因。由于需要进行无损检测,因此相比其果肉,选择完整果实的透射光谱进行建模是可行的。

图2 样本完整果实和果肉的透射光谱图

1.4 水分变化情况分析

在未进行试验前,温州蜜柑的含水率无法得知,由于是同一批采摘的蜜柑,其含水率差异不大,为了扩大试验样本的含水率范围,采用常温保存让其自动失水的方法。每隔2 d测量温州蜜柑的质量,得到其含水率均值变化趋势(图3)。由图3可知,随着时间的变化,温州蜜柑的水分含量不断减少,且40个样本的含水率变化趋势大致相同,表明在该试验条件下该批柑橘的变化趋势一致。当进行第10次采集时,即试验进行至第19天时,柑橘表皮已经出现了明显的硬化,表明柑橘在试验期间散失了一定水分,从试验结果来看,水分平均散失了4~5个百分点,水分梯度也进一步扩大,表明通过常温储存的方法扩大含水率梯度是可行的。在蜜柑贮存过程中存在呼吸作用等影响内部变化的因素,会造成蜜柑质量的变化,但对质量影响最大的还是水分,其他物质如糖、酸、类黄酮等含量变化较小,因此不考虑其对含水率测量结果的影响。

图3 温州蜜柑水分随时间变化

1.5 光谱处理

1)光谱预处理。由于仪器对于外界环境的变化比较敏感,采集到的光谱中会含有部分的噪声信息,采用合适的预处理方法能够有效地消除噪声及特定物理因素的干扰,确保光谱信息的准确性[13]。因此,将无预处理和SD、MSC/SNV、SG平滑、标准化5种预处理方法根据不同预处理的作用按照表1进行排列组合(其中0表示不进行预处理),共得到2×3×2×2=24种预处理方式,用数字1~24对所有组合进行编号,最后根据预处理后建立的PLS模型的建模效果,得到较优的预处理方法。

表1 预处理方法 Table 1 Pretreatment methods

2)光谱特征波长选择。采集的光谱波段为200~1 100 nm,光谱范围较宽、波段数目较多(2 068维),部分波段存在较强的相关性,原始光谱除了包含反映内部成分差异的信息外还含有大量冗余信息,分类时可能会产生“维数灾难”现象[14],且会影响分类的精度。因此降维就显得十分必要,本研究采用CARS来筛选特征波长以达到降维目的。竞争性自适应重加权采样算法(CARS)采用“适者生存”法则,利用蒙特卡罗采样(MCS)法采样N次,对比每次产生的PLS回归模型的交互验证均方差值(root mean square error of cross validation,RMSECV),RMSECV值最小的那个模型所对应的变量子集被选为最优变量子集[15]。

1.6 模型的建立及评价指标

PLS分析是一种新型的多元数据分析方法,通过投影将预测变量和观测变量投影到一个新的空间之中以寻找一个线性回归的模型,集主成分分析、典型相关分析以及多元线性回归于一身,因此被广泛应用于多种分析统计领域。BP神经网络主要由输入层、隐含层和输出层组成,输入层的每个节点对应一个自变量,输出层的每个节点对应1个应变量,而各层的节点数则代表了该模型的训练效果。当节点越多,得到的信息会越全面,但训练时间也会随之延长。LSSVM采用最小二乘线性系统作为损失函数,替代传统的支持向量机所用的二次规划方法,简化了计算的复杂性,是一种可以同时处理线性和非线性信息的建模方法[16]。

本研究将柑橘的含水率测量值作为因变量,光谱的波长值作为自变量,建立PLS、BP以及LSSVM模型。建立模型的好坏由训练集相关系数(Rc)、训练集均方根误差(RMSEC)、测试集相关系数(Rp)以及测试集均方根误差(RMSEP)决定,其中相关系数越接近1,均方根误差越小,模型的效果就越好,上述计算均由MATLAB 2014a完成。

2 结果与分析

2.1 光谱预处理

将试验得到的400个温州蜜柑样本的初始可见/近红外光谱通过马氏距离法剔除异常样本,如图4所示,位于绿色实线上方的样本被当做异常样本剔除,共23个。为了将差异性大的样本划入训练集中,保证训练集的样本具有较强的代表性,采用Kennard-Stone算法[17]以3∶1划分校正集和验证集,并将24种排列组合预处理后的光谱建立基于含水率的PLS模型,得到的建模结果如图5所示。

图4 马氏距离法剔除异常样本

从图5可知,当采用FD(编号13~24)后,训练集相关系数较高,测试集相关系数较低,出现了过拟合现象。通过对比相关系数(越大越好)和均方根误差(越小越好)可以发现,相较于第1组(无预处理),2~12组建模结果均有所提升,表明有效的预处理可以去除外界干扰信息,提高建模效果,其中建模效果最好的是第5组,采用的预处理方式为SNV。

图5 24种不同预处理组合方式下的PLS建模结果

2.2 特征波长提取

本研究采用的特征波长的提取方法为CARS,采样次数设定为50次,交叉验证设定为5次,以建立LSSVM为例,特征波长提取的过程如图6所示,其中横坐标均为采样次数。从图6A可以看出,选用的变量数先急剧减少后趋于稳定,这是指数衰减函数造成的;图6B表示RMSECV值的变化情况,在采样第7次时为最小值,表明采样第7次时剔除后剩余的波长点与温州蜜柑含水率相关性较大;图6C中各线是随着采样次数的增加回归系数的变化,图6中的“*”线为RMSECV最小值处,与图6B相对应,利用CARS算法进行多次筛选后最终确定第7次筛选出的359个特征波长变量作为最终入选的特征值。经过CARS处理后可以极大地减少参与建模的波数,提高建模效率。

图6 CARS筛选特征波长过程

2.3 建模与验证

将经过SNV预处理后的光谱利用CARS算法提取特征波长,分别建立PLS模型、BP神经网络模型以及LSSVM模型。BP神经网络模型选用LM函数作为训练函数,并确定隐含层节点个数为10;LSSVM模型中选用径向基函数(RBF)作为核函数,因其能够实现非线性映射,且相比于多项式核函数它所需参数较少,模型复杂程度较低,计算速度较快。核函数参数为100,惩罚因子为30,3个模型的建模结果如表2所示。

表2 基于CARS的不同模型建模结果 Table 2 Modeling results of different models based on CARS

由表2可知,效果最佳的是经过CARS提取特征波长后建立的LSSVM模型,经过CARS筛选后参与建模的波数由2 068个减少为359个,仅占原始波数的17.36%,提高了模型的运算效率,该模型的校正集相关系数和均方根误差分别为0.937 5和0.008 6,验证集相关系数和均方根误差分别为0.831 6和0.012 0。图7是LSSVM含水率预测模型效果图,表明利用SNV+CARS+LSSVM检测温州蜜柑水分是可行的。

图7 LSSVM含水率预测模型

3 讨 论

水分作为柑橘品质的一项重要指标,对采收后柑橘的贮存和加工具有重要的意义。前人对柑橘品质检测的研究重点集中在糖度、酸度、维生素C等营养物质方面,对水分的研究大都集中在柑橘种植期的水分供给方面。本试验对温州蜜柑进行了水分检测,得到的测试集相关系数为0.831 6,与文献[18]预测砂糖橘水分结果相近,但相比其0.82~0.87的水分梯度[18],本试验通过自然贮存的方式将含水率梯度扩大到了0.73~0.85,提高了模型的适应性,且能够满足蜜柑水分的检测要求,为便携式仪器的开发提供了理论基础。后续研究可以将不同品种、种植区域的蜜柑进行试验,并比较不同成熟期蜜柑的水分差异性,实现对不同成熟期柑橘的预测,探究通过控制烘干时长来进一步扩大含水率范围,并改进光谱特征提取方法以及建模方法来进一步提高模型的准确性和适应性。同时可以探究不同贮藏期水分含量的变化趋势,便于根据水分信息合理安排柑橘的贮藏条件与时间,有利于提高整体经济效益。

猜你喜欢
蜜柑柑橘温州
温州瑞奥工贸有限公司
温州瑞奥工贸有限公司
日本:紫外线机用于防止蜜柑腐烂
温州,诗意的黄昏
吃柑橘何来黄疸——认识橘黄病
特早熟温州蜜柑稻叶的特征特性和高产栽培技术
难忘九二温州行
柑橘大实蝇综合治理
“五及时”柑橘冻害恢复技术
温州蜜柑提升品质的试验效果与途径