张万锋,杨树青,刘 鹏,娄 帅,孙多强
·农业水土工程·
秸秆覆盖方式和施氮量对河套灌区夏玉米氮利用及产量影响
张万锋,杨树青※,刘 鹏,娄 帅,孙多强
(内蒙古农业大学水利与土木建筑工程学院,呼和浩特 010018)
为探究夏玉米氮素转运利用规律、产量及土壤NO3--N含量分布对秸秆覆盖方式和施氮量的响应,在河套灌区开展2 a不同秸秆覆盖方式(秸秆表覆B处理、秸秆深埋S处理)和不同施氮水平(不施氮N0、低氮N1、中氮N2、高氮N3)的田间试验,以传统耕作模式为对照(CK处理)。结果表明:在0~100 cm土层,各处理NO3--N含量随施氮量增加而增大,成熟期B和CK处理随土层加深呈先减后增趋势,而S处理呈先增后减趋势;B处理提高0~20 cm土层NO3--N含量,而S处理提高20~40 cm土层NO3--N含量(<0.05);秸秆覆盖可减少0~100 cm土层NO3--N累积损失量,且显著提高氮肥利用率及夏玉米氮素转运量对籽粒产量的贡献率,SN2处理效果较佳。相比CK处理,成熟期的SN2处理2 a平均NO3--N累积损失量降低39.6%,氮肥利用率较提高28.5%,夏玉米氮素转运量对籽粒产量的贡献率提高32.1%,增产9.3%。综合分析,秸秆深埋配施中氮效果较佳,可实现河套灌区夏玉米提效增产的目标,并减少深层土壤NO3--N累积损失量,为优化河套灌区夏玉米耕作施氮模式和缓解农业面源污染提供参考。
秸秆;覆盖;氮;转运;夏玉米;面源污染
河套灌区是中国重要粮食生产基地之一,灌区作物秸秆量逐年增加,利用率低,且因焚烧引起环境污染等问题日益严重。推进作物秸秆资源化利用,对灌区农业可持续发展具有重要现实意义,且秸秆还田已被证实是一项有效的耕作措施[1]。有关研究表明,秸秆还田有效缓解过量施肥造成的土壤退化[2],配施适量氮肥可改善土壤养分,提高土壤保水性,显著降低土壤无机氮含量[3-4];同时,有效缓解土壤氮素淋溶,降低地下水氮素污染风险,特别是有机肥与无机肥配施缓解地下水污染效果更显著[5],但其他相关研究表明,长期施用有机肥会导致大量NO3--N淋溶损失[6];长期秸秆还田带入的氮素,使得土壤氮素盈余显著增加[7],从而增加了土壤氮素淋失风险。
氮素是作物生长发育的重要营养元素之一。农业生产中为提高作物产量盲目大量施氮,不仅对作物增产无益,降低氮肥利用效率,且会导致氮素在土壤中累积[8-9],盈余氮素易淋失到地下水[10],成为地下水潜在的污染源[11]。另外,过量施氮不利于氮素向籽粒转移,还会对农田环境造成污染[12]。赵允格等[13]通过成垄压实施肥法压实形成阻水层减少了施肥区的入渗水流,防止了生育后期NO3--N向深层土壤淋溶;春玉米覆地膜种植,并适当降低施氮量可促进春玉米对氮素吸收利用,实现产量和氮肥利用率协同提高[14]。在河套灌区,当施氮量小于180 kg/hm2时,土壤深层氮素淋失量可有效减少[15];分次施肥且在灌浆期适量施氮可显著增产和提高氮素利用率[16];当施氮量减少20%时,小麦可实现稳产,且能够显著降低土壤NO3--N淋溶风险[17]。
前人关于秸秆还田和施氮的研究多集中在单一的秸秆覆盖或不同施氮水平对土壤氮素分布、氮素转运利用及氮肥利用效率等方面的影响,而关于不同秸秆覆盖方式与施氮量互作时,土壤剖面NO3--N含量分布及作物对氮素转运利用缺少系统的研究。本研究以不同秸秆覆盖方式与不同施氮水平互作的田间试验为基础,分析了夏玉米产量性状、氮肥转运利用率和土壤剖面NO3--N含量分布的规律,旨在为河套灌区秸秆覆盖与施氮互作下秸秆资源化利用、缓解农田环境氮污染和优化耕作模式提供技术参考,并丰富秸秆还田的理论。
试验区位于内蒙河套灌区九庄农业试验示范区(40°42′N、107°24′E,海拔1 040 m),试验区属于半干旱大陆性气候,降雨少蒸发大,年均降水量仅为138 mm,多集中在夏秋两季,年均蒸发量高达2 332 mm,导致春冬地表返盐较为严重。试验于2017年5月—2018年9月在示范区开展,采用黄河水灌溉。按照土壤质地三角图划分,试验区供试土壤类型为粉砂壤土(砂粒、粉粒和黏粒质量比为8:15:2),平均容重1.51 g/cm3,平均田间水量22.57%,有机质12.69 g/kg、全氮0.71 g/kg、全磷0.34 g/kg、速效磷9.99 mg/kg和速效钾214.92 mg/kg。2 a夏玉米生育期内试验区日降雨量和气温变化如图1所示。
图1 夏玉米生育期气温和降雨量变化
试验设计考虑2个影响因子(表1):1)秸秆覆盖方式(秸秆表覆B处理和秸秆深埋S处理);2)施氮量,共设4个施氮水平,分别为不施氮(N0)、低施氮量135 kg/hm2(N1)、中施氮量180 kg/hm2(N2)、高施氮量225 kg/hm2(N3),各处理施氮量均按纯N计算,均施尿素,氮质量分数为46%,施用时需换算成尿素的质量;以当地耕作模式(即:上一年秋收后机械翻耕约35 cm、秋浇,第2年机械浅耙,辊磨压实,机械覆膜播种,不再进行其他田间操作,无秸秆,施氮量225 kg/hm2)为对照(CK处理),共9个处理,各3次重复,随机区组排列。供试夏玉米品种为钧凯918,机械覆膜种植(即:各处理覆膜均采用白膜,膜厚0.01 mm,宽幅80 cm),株距0.35 m,行距0.45 m,种植密度约6万株/hm2,5月初播种,9月末收获。试验用秸秆来源于当地夏玉米收获后粉碎的秸秆,表覆或深埋秸秆量为1.5 kg/m2,厚5 cm,每个试验小区面积为72 m2,小区间有宽3 m的土堰埂保护带,四周用埋深1.2 m聚乙烯塑料膜隔开,顶部留30 cm,防止水肥互窜,整个小区外围设置保护行,试验小区田间管理按照当地生产措施进行,具体试验处理如表1所示。夏玉米生育期采用黄河水灌溉,畦灌方式,灌溉水矿化度为0.608 g/L;全生育期灌水3次,单次灌水定额采用示范区优化的灌水定额90 mm,用汽油泵从水渠中定量抽取。磷肥为磷酸二铵,施磷量按当地水平150 kg/hm2(以P2O5计);钾肥为氯化钾,施钾量按当地水平45 kg/hm2(以K2O计),磷肥、钾肥与50%氮肥作为基肥一次性施入,剩余氮肥在拔节期施入。
表1 试验处理
1)作物指标 夏玉米收获期随机选取5株代表性植株,进行考种;秆、茎叶、籽粒分开采集,在烘箱中105 ℃杀青30 min后,调至80 ℃烘干至恒质量,称量地上部干物质质量,把样品粉碎过筛,通过H2SO4-H2O2消煮,用凯氏定氮法测定全氮含量。
2)土壤NO3--N采样与测定 在夏玉米拔节期、开花期、灌浆期和成熟期采用土钻在小区分层采集0~100 cm土层土样,每20 cm为一层,土壤NO3--N含量采用紫外分光光度法测定,测量仪器是麦科仪(北京)科技有限公司生产的TU1810PC型紫外可见光分光光度计。
3)氮利用效率的计算[18]
氮肥偏生产力(Partial Factor Productivity from Applied Nitrogen,PFPN,kg/kg)是指单位投入氮肥所能得到的作物籽粒质量:
PFPN=
Y
/
F
(1)
式中为施氮肥处理的作物产量,kg/hm2;为氮肥的投入量,kg/hm2。
氮肥农学效率(Agronomic Efficiency of Applied Nitrogen,AEN,kg/kg)是单位施氮量增加的作物籽粒质量。
式中0为不施氮肥处理的作物产量,kg/hm2。
氮肥利用率(Apparent Recovery Efficiency of Applied Nitrogen,REN,%)也称氮肥回收率,指作物吸收的氮素来自肥料的部分占施氮量的比例:
式中为施氮作物收获时地上部植株总吸氮量,kg/hm2;0为未施氮作物收获时地上部植株总吸氮量,kg/hm2。
氮肥收获指数[19](Harvest Index of Applied Nitrogen,HIN)反映作物地上部植株中氮素的分配情况。
HIN=1/(4)
式中1为作物收获后籽粒氮累积量,kg/hm2。
4)氮素吸收转移指标
[20]建立式(5)~式(7)计算氮转运量(Nitrogen Translocation,NT)、素氮素转运效率(Nitrogen Translocation Efficiency,NTE)和各器官氮素转运量对籽粒的贡献率(Nitrogen Translocation to Proportion for Grain,NTP):
=(5)
NT=FN−MN(6)
NTE=(FN−MN)/FN×100% (7)
NTP=(FN−MN)/FNG×100% (8)
式中为植株器官氮素累积量,g/株;为器官干物质质量,g/株;为器官氮素质量分数,g/kg;NTE为灌浆期氮素转运变化的指标,%;FN为开花期某器官全氮积累量,g/株;MN为成熟期各器官全氮累积量,g/株;NTP为各器官氮素转运量对提高籽粒产量贡献的指标,%;FNG为成熟期籽粒的全氮累积量,g/株。
土壤NO3--N累积量的计算采用等质量法[21]计算如下:
式中TN为等质量土壤硝态氮累积量,kg/hm2;ρ为第层土壤容重,g/cm3;h为第层土层厚度,cm;m为第层土壤硝态氮含量,mg/kg。
夏玉米生育期内土壤NO3--N累积变化量计算如式(10)所示:
式中TNM和TNJ分别为夏玉米成熟期和拔节期时相应试验土层NO3--N累积量,kg/hm2。
试验数据采用Excel 2010处理,应用SPSS 20.0进行方差分析,采用最小显著差异法(Least Significant Difference,LSD)进行显著性检验(0.05)。
2.1.1 土壤NO3--N含量的分布
夏玉米生育期内各处理2 a土壤NO3--N含量分布如图2所示,2 a相应处理对土壤NO3--N含量分布影响的趋势一致,各处理均按照2 a的土壤NO3--N平均含量进行分析。拔节期,2 a的秸秆表覆处理显著了提高0~20 cm土层NO3--N含量,秸秆深埋处理显著提高20~40 cm土层NO3--N含量。各土层NO3--N含量均随施氮量增加而增加。各处理土壤NO3--N主要集中分布在0~60 cm土层,占试验土体0~100 cm土层NO3--N含量的60.7%~75.4%,且随施氮量的增加而增大。CK处理土壤NO3--N含量随土层深度加深而逐渐减小,但大于80 cm土层有增加的趋势;秸秆表覆处理随土层深度加深而逐渐降低,但在大于80 cm土层除了BN0处理,其他3个处理有增大的趋势;秸秆表覆各处理在0~20 cm土层的NO3--N含量最大,以BN3处理最大,较SN3和CK处理土壤NO3--N含量平均提高45.3%和13.8%;秸秆深埋处理随土层加深呈现先增后减趋势,但在大于80 cm土层有小幅增大的趋势;秸秆深埋处理在20~40 cm土层NO3--N含量最大,以SN3处理最大,较BN3和CK处理土壤NO3--N含量平均提高44.9%和26.1%。
2 a各处理在开花期土壤NO3--N含量达到峰值,0~20 cm土层最高,随土层深度加深而逐渐减少,尤其80~100 cm土层减幅最大。各处理不同土层NO3--N含量随施氮量增加,均不同程度升高。秸秆深埋下,除SN0外,其他处理在40~60 cm土层NO3--N含量较20~40 cm土层降低幅度达50%以上,而秸秆表覆的4个处理和CK在40~60 cm土层NO3--N含量仅减少5.2%~12.5%,且随施氮量增加该土层NO3--N含量降幅增大。2 a的SN2和SN3处理在40~60 cm土层NO3--N含量较CK平均降低25.1%和15.0%,而BN2和BN3处理较CK仅降低4.6%和1.6%。说明低氮水平下NO3--N迁移慢,高氮水平促进NO3--N在土壤剖面累积,导致NO3--N迁移较快,而秸秆深埋形成的隔层可减缓NO3--N下移,在隔层附近积累,减少了往深层土壤迁移的NO3--N。
2 a各处理在夏玉米灌浆期NO3--N含量较开花期显著降低。秸秆表覆处理土壤NO3--N含量随土层深度加深呈先减后增趋势,秸秆深埋和CK处理随土层深度加深呈先增后减的趋势;各处理土壤NO3--N含量均随施氮量增加而增加。同一施氮水平下,在0~20 cm土层,秸秆表覆处理土壤NO3--N含量较S处理平均提高49.3%~95.8%,且施氮量越小,增幅越大,BN3较CK处理提高54.2%;同一施氮水平下,在20~40 cm土层,秸秆深埋处理土壤NO3--N含量较B处理平均提高32.4%~83.8%,且提高幅度随施氮量增加而先增后减。在大于40 cm土层,S处理土壤NO3--N含量较B和CK处理显著降低。
成熟期各处理0~20 cm土层NO3--N含量显著下降。BN0表层土壤NO3--N含量较CK降低3.5%,BN1、BN2和BN3处理较CK分别提高5.5%、11.4%和19.7%,秸秆深埋各处理NO3--N含量在0~20 cm土层较CK降低5.3%~21.8%,而在20~40 cm土层较CK提高6.5%~29.7%,而秸秆表覆各处理的NO3--N含量在20~40 cm土层较CK降低2.2%~29.1%。在大于40 cm土层NO3--N含量随土层加深,秸秆表覆和CK处理有增加趋势,而S各处理逐渐降低。说明秸秆表覆和CK盈余的氮素在成熟期逐渐迁移到深层土壤,而秸秆深埋将部分NO3--N阻隔在秸秆隔层附近,减少NO3--N往深层土壤迁移。
图2 2017年和2018年不同处理夏玉米生育期内土壤剖面NO3--N含量
2.1.2 夏玉米成熟期土壤NO3--N累积变化量
2 a各处理夏玉米成熟期较拔节期土壤NO3--N累积变化量如表2所示,各处理2 a的土壤NO3--N累积变化趋势一致,均为累积损失,故以下基于2 a平均值展开分析。在0~100 cm土层NO3--N累积损失量随施氮量增加而增大,随土层深度加深而降低。各处理土壤NO3--N含量损失主要集中在0~40 cm土层,约占损失总量的52.9%~71.3%;随施氮量增加,秸秆深埋下土壤NO3--N累积损失量较秸秆表覆降幅逐渐减小,SN0~SN3降幅依次为23.7%、18.6%、14.8%和12.7%;BN3和SN3在0~40 cm土层NO3--N累积损失量2 a平均较CK降低8.1%和19.7%,说明秸秆覆盖可减少0~40 cm土层NO3--N损失,秸秆深埋效果佳;且秸秆深埋处理在40~80 cm土层NO3--N累积损失量较0~40 cm显著下降,降幅在50.9%~65.2%间,说明秸秆深埋形成的隔层可有效降低大于40 cm土层的NO3--N损失,减少NO3--N向深层土壤迁移。在0~100 cm试验土体中,秸秆深埋2 a平均较秸秆表覆显著降低NO3--N累积损失,SN0~SN3依次降低20.7%、19.5%、16.8%和16.7%;BN3、SN2和SN3在0~100 cm土层NO3--N累积损失量2 a平均较CK降低7.1%、39.6%和22.6%。
表2 2a夏玉米成熟期各处理土壤NO3--N累积变化量
注:表中累计变化量为负值,表示夏玉米成熟期土壤NO3--N累积量较拔节期减少;同行数值后不同小写字母表示处理间差异显著(<0.05)。
Note: In the table, negative values of cumulative variation of soil NO3--N represent the decreases of NO3--N accumulation of soil layer at the mature of summer maize compared with that at jointing stage. The different lowercase letters at the same line represent significant difference (<0.05) among treatments.
各处理夏玉米氮肥利用率指标如表3所示。2 a各处理氮肥偏生产力(PFPN)、农学效率(AEN)、利用率(REN)及收获指数(HIN)变化趋势一致,秸秆深埋处理较秸秆表覆处理提升各指标的效果显著(<0.05),2 a各处理氮肥利用指标均以SN2处理最大,PFPN、AEN和REN分别较CK平均提高37.0%、52.9%和28.5%。HIN反映夏玉米地上部植株中氮素分配情况[19],对夏玉米产量影响较大。不同处理HIN在0.44~0.66间变化(表3),且秸秆深埋处理的HIN较秸秆表覆处理大。说明夏玉米HIN受施氮水平和秸秆覆盖方式的影响较大。秸秆表覆处理以BN3的HIN最大,但BN3处理2 a的HIN与CK差异不显著(>0.05);秸秆深埋以SN2处理的HIN最大,2 a较CK平均提高13.4%。
表3 不同处理对夏玉米氮肥利用指标的影响
注:表中CK(B)、CK(S)为在B处理、S处理条件下分别计算CK氮肥利用指标;“—”为此处无数据;同列数据后不同小写字母表示处理间差异显著(<0.05),下同; *表示显著(< 0.05),**表示极显著(< 0.01),下同。
Note: The CK(B) and CK(S) represent nitrogen utilization index calculated by CK under B treatments and S treatments, respectively. —represents no data here. The different lower case letters after the same column data represent significant difference (< 0.05) among treatments, same as below. The * represents significance (< 0.05), and ** represents extremely significance (<0.01), same as below.
分析不同秸秆覆盖方式及施氮水平对氮肥利用指标的方差(表3)表明,二者对氮肥利用指标具有显著的影响(< 0.05),且氮肥利用指标在秸秆覆盖方式和施氮水平之间存在显著或极显著的交互效应,以秸秆深埋配施中氮(SN2)处理效果最佳。
夏玉米的叶、茎秆和穗(苞叶和穗轴)随生育进程,逐渐将氮素向穗转移并在籽粒中累积,其转移情况直接影响其产量高低(表4)。不同秸秆覆盖配施氮在夏玉米叶、茎和穗氮转运量NT、转运率NTE、对籽粒贡献率NTP和产量等方面的影响均表现出显著水平(< 0.05)或极显著水平(<0.01)。
从秸秆覆盖方式分析,秸秆表覆各处理夏玉米叶、茎杆和穗的NT、NTE、NTP和产量随施氮量增加而不同程度的提高,以BN3最大。BN3处理夏玉米叶和茎的NT、NTE和NTP较CK有不同程度提高,增幅为6.1%~17.8%;但穗的NT、NTE和NTP在2017年无显著差异(>0.05),而在2018年较CK显著降低;另外,BN3处理夏玉米产量与CK无显著差异(>0.05)。秸秆深埋各处理夏玉米叶、茎杆和穗的NT、NTE、NTP和产量随施氮量增加而先增后减,以SN2最大,其NT、NTE和NTP较CK平均提高19.2%、30.8%和22.3%,2a平均增产9.3%,说明秸秆深埋配施中氮水平(SN2)显著促进夏玉米氮素转运利用及提高产量。从施氮量分析,同一施氮水平下,秸秆深埋处理较秸秆表覆处理夏玉米各器官的NT、NTE、NTP和产量大部分显著提高(< 0.05)。秸秆覆盖下,无氮(N0)和低氮(N1)处理2 a平均的夏玉米各器官氮转运总量NT较CK下降6.9%~32.6%,中氮(N2)处理提高5.9%~28.9%,高氮(N3)处理提高2.4%~12.1%。说明秸秆覆盖下适当增施氮可促进夏玉米各器官氮素的转运利用,过量施氮对夏玉米各器官氮素转运量提高幅度反而下降。
夏玉米的叶转移氮素对籽粒产量的贡献率NTP最大,其次是茎和穗(苞叶和穗轴)。秸秆表覆各处理的夏玉米器官氮素同化产物的NTP总和为38.1%~53.3%,除了BN3与CK处理无显著差异,其他3个处理2 a平均较CK降低5.2%~13.0%;秸秆深埋各处理夏玉米各器官氮素同化产物对籽粒产量贡献率NTP总和为44.6%~67.5%,较CK平均提高8.4%,以SN2最大,较CK提高32.1%。分析不同秸秆覆盖方式及施氮水平对夏玉米各器官氮素转运指标的方差(表4)表明,二者对夏玉米各器官氮素转运的3个指标具有显著的影响(<0.05),且3个指标在秸秆覆盖方式间的差异大于施氮水平间的差异,在秸秆覆盖方式和施氮水平间存在显著(<0.05)或极显著(<0.01)的交互效应,以秸秆深埋配施中氮(SN2)处理效果最佳。
表4 不同处理对夏玉米器官氮素转移效率的影响
注:NT为某器官氮素转移量;NTE为某器官氮素转移率;NTP为某器官氮素转移量对籽粒产量的贡献率;穗包括穗轴和苞叶。
Note: NT represents N Translocation of an organ; NTE represents N Translocation Efficiency of an organ; NTP represents N translocation To Proportion for grain of organ. The spike includes the bract and axis.
硝态氮污染是农业面源污染主要表现形式,土壤NO3--N含量与夏玉米的吸收消耗、土壤吸附及NO3--N随水向下运移等有关[22]。本试验结果表明,土壤NO3--N含量随施氮量的增加而增大,随着夏玉米生育期推移逐渐降低,成熟期各处理土壤NO3--N含量最低;而在土壤深度方向各处理土壤NO3--N含量差异显著(<0.05)。秸秆还田提高土壤通透性[23],其高C/N抑制土壤氮素矿化[24-25],且增加亚硝酸菌等微生物数量[26],导致了秸秆表覆处理在0~20 cm土层的NO3--N聚集,而秸秆深埋处理在20~40 cm土层的NO3--N聚集,且聚集量随施氮量增大而增大。本试验发现,在夏玉米生长后期土壤NO3--N逐渐往深层迁移,随着施氮量增大而增大。相比CK,秸秆覆盖可显著改善NO3--N在各土层的分布并减少NO3--N在整个土层的累积损失量,缓解土壤NO3--N下移趋势,减少深层土壤NO3--N含量,秸秆深埋效果较佳。在0~100 cm土层,SN2和SN3较CK处理的NO3--N累积损失量平均降低39.6%和22.6%,而BN3较CK处理仅降低7.1%。这由于土壤水是NO3--N垂直运移的载体[27],玉米秸秆质地粗糙,秸秆深埋改变了土壤结构及质地均匀性,显著降低土壤水连续入渗能力,减缓以土壤水为迁移载体的NO3--N向下迁移,降低土壤中NO3--N的淋失;另外秸秆还田营造营养充裕的夏玉米根系生长微环境,促进夏玉米深层根系生长[28-29],使夏玉米根系充分吸收氮素,能够降低土壤NO3--N累积损失量,同时土壤无机氮被微生物固持,也降低了NO3--N损失的风险[23]。然而,秸秆表覆B处理虽能减少表层土壤NO3--N累积损失,但秸秆表覆的耕作层及以下土层与CK类似,土壤质地均匀,导水率无差异,土壤水在短时间内渗入到深层,带走大量盈余氮素;同时CK因过量施氮导致土壤NO3--N残留较多,易随壤中流运移到深层,难再被夏玉米吸收利用,这些均增大了深层土壤环境氮素污染的风险。
氮肥偏生产力、氮肥农学效率、氮肥利用率及氮肥收获指数是表征氮肥利用效率的重要指标,影响着植株氮素吸收转运,进而影响产量的形成[19]。结果表明,秸秆表覆中BN3处理HIN最高,除了BN3的HIN与CK无显著差异,其他3个处理较CK显著降低;秸秆深埋的SN2处理的HIN较CK提高13.4%。秸秆覆盖下各处理的氮肥利用效率以SN2效果较佳,2 a较CK平均提高28.5%。夏玉米各器官对养分的吸收、转运与分配是产量形成的基础,氮素的分配随着作物生长中心的转移而变化[30]。研究表明,施氮量显著影响植株各器官的氮素转运及对籽粒的贡献率,且成熟期植株氮素转运量与产量呈正相关[31],这与本试验结果一致。试验表明,秸秆覆盖方式、施氮量及二者互作效应对夏玉米各器官氮素吸收利用、转运分配及产量影响存在显著(<0.05)或极显著性(<0.01)。夏玉米不同器官间氮素转运量差异显著(<0.05),夏玉米在生长后期叶和茎等器官氮素向籽粒转运为主,对产量的贡献率最大。秸秆表覆处理下随施氮量增大夏玉米各器官氮素转运量和转运率均增大,并提高氮素向籽粒转移的贡献率,以BN3效果较佳,BN3处理的夏玉米产量与CK无显著差异(>0.05)。秸秆深埋下随施氮量增大夏玉米氮素转运指标呈先增后减的趋势,以SN2较佳,2 a较CK平均增产9.3%。因此,秸秆覆盖配施适量氮,能够有效促进夏玉米氮素转运与利用,提高氮素转运量对夏玉米籽粒产量贡献率,充分发挥植株供氮和库容的潜力,形成良好的库-源平衡[32]而达到高产。
通过研究不同秸秆覆盖方式与施氮量互作效应对夏玉米氮利用率及土壤NO3--N含量分布的影响,揭示了施氮量、秸秆覆盖方式等多因素的夏玉米氮转运利用、土壤NO3--N分布及累积变化规律。秸秆覆盖配施氮显著影响土壤NO3--N分布,对夏玉米氮素转运利用及产量的影响存在显著(<0.05)或极显著(<0.01)交互效应,适当增加施氮量(中氮水平及以下)可促进氮素利用率,提高对产量的贡献率。与当地耕作相比,秸秆深埋形成的隔层有效减缓土壤NO3--N迁移及减少累积损失,SN2处理减少土壤NO3--N累积损失量39.6%,对深层土壤环境形成有效保护屏障,且SN2处理氮肥利用率提高28.5%,氮素转运同化产物对籽粒产量贡献率提高32.1%,2 a平均增产9.3%,可考虑将秸秆深埋配施中氮处理作为河套灌区夏玉米适宜的耕作施氮模式。
[参 考 文 献]
[1] 丛宏斌,姚宗路,赵立欣,等. 中国农作物秸秆资源分布及其产业体系与利用路径[J]. 农业工程学报,2019,35(22):132-140.
Cong Hongbin, Yao Zonglu, Zhao Lixin, et al. Distribution of crop straw resources and its industrial system and utilization path in China[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(22): 132-140. (in Chinese with English abstract)
[2] Singh B, Shan Yuhua, Johnson Beebout S E, et al. Crop residue management for lowland rice-based cropping systems in Asia[J]. Advances in Agronomy, 2008, 98: 117-199.
[3] 王秋菊,刘峰,迟凤琴,等. 秸秆还田及氮肥调控对不同肥力白浆土氮素及水稻产量影响[J]. 农业工程学报,2019,35(14):105-111.
Wang Qiuju, Liu Feng, Chi Fengqin, et al. Effect of straw returning and nitrogen fertilizer regulation on nitrogen and rice yield in albic soil with different fertilities[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2019, 35(14): 105-111. (in Chinese with English abstract)
[4] Cheng Yi, Cai Zuchong, Chang Scott X, et al. Wheat straw and its biochar have contrasting effects on inorganic N retention and N2O production in a cultivated black chernozem[J]. Biology and Fertility of Soils, 2012, 48: 941-946.
[5] 陈维梁,高扬,林勇明,等. 紫色土坡耕地氮淋溶过程及其环境健康效应[J]. 环境科学,2014,35(6):2129-2138.
Chen Weiliang, Gao Yang, Lin Yongming, et al. Nitrogen leaching and associated environmental health effect in sloping cropland of purple soil[J]. Environmental Science, 2014, 35(6): 2129-2138. (in Chinese with English abstract)
[6] Maeda M, Zhao Bingzi, Ozaki Y, et al. Nitrate leaching in an andisol treated with different types of fertilizers[J]. Environmental Pollution, 2003, 121(3): 477-487.
[7] 盖霞普,刘宏斌,翟丽梅,等. 长期增施有机肥/秸秆还田对土壤氮素淋失风险的影响[J].中国农业科学,2018,51(12):2336-2347.
Gai Xiapu, Liu Hongbin, Zhai Limei, et al. Effects of long-term additional application of organic manure or straw incorporation on soil nitrogen leaching risk[J]. Scientia Agricultura Sinica, 2018, 51(12): 2336-2347. (in Chinese with English abstract)
[8] 朱兆良. 中国土壤氮素研究[J]. 土壤学报,2008,45(5):778-783.
Zhu Zhaoliang. Research on soil nitrogen in China[J]. Acta Pedologica Sinica, 2008, 45(5): 778-783. (in Chinese with English abstract)
[9] Vitousek P M, Naylor R, Crews T, et al. Nutrient imbalances in agricultural development[J]. Science, 2009, 324(5934): 1519-1520.
[10] Perez J M, Antiguedad I, Arrate I, et al. The influence of nitrate leaching through unsaturated soil on groundwater pollution in an agricultural area of the Basque country: A case study[J]. The Science of the Total Environment, 2003, 317(1/3): 173-187.
[11] 魏国孝,孙继成,朱锋. 内蒙古河套灌区农业面源污染及防治对策[J]. 中国水土保持,2009(8):27-29.
Wei Guoxiao, Sun Jicheng, Zhu Feng. Agricultural non-point source pollution and control countermeasures in Hetao irrigation district of Inner Mongolia[J]. Soil and Water Conservation in China, 2009(8): 27-29. (in Chinese with English abstract)
[12] 张学林,王群,赵亚丽,等. 施氮水平和收获时期对夏玉米产量和籽粒品质的影响[J]. 应用生态学报,2010,21(10):2565-2572.
Zhang Xuelin, Wang Qun, Zhao Yali, et al. Effects of nitrogen fertilization rate and harvest time on summer maize grain yield and its quality[J]. Chin J Appl Ecol, 2010, 21(10): 2565-2572. (in Chinese with English abstract)
[13] 赵允格,邵明安. 不同施肥条件下农田硝态氮迁移的试验研究[J]. 农业工程学报,2002,18(4):37-40.
Zhao Yunge, Shao Mingan. Experimental study on nitrate transport for different fertilization methods[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2002, 18(4): 37-40. (in Chinese with English abstract).
[14] 葛均筑,李淑娅,钟新月,等. 施氮量与地膜覆盖对长江中游春玉米产量性能及氮肥利用效率的影响[J]. 作物学报,2014,40(6):1081-1092.
Ge Junzhu, Li Shuya, Zhong Xinyue, et al. Effects of nitrogen application and film mulching on yield performance parameters and nitrogen use efficiency of spring maize in the middle reaches of Yangtze River[J]. Acta Agronnmica Sinica, 2014, 40(6): 1081-1092. (in Chinese with English abstract)
[15] 郭富强,史海滨,杨树青,等. 河套灌区氮素流失分析及最佳施氮量的确定[J]. 土壤通报,2013,44(6):1477-1482.
Guo Fuqiang, Shi Haibin, Yang Shuqing, et al. Analysis of nitrogen loss and determination of optimum rates of nitrogen application in Hetao irrigation area[J]. Chinese Journal of Soil Science, 2013, 44(6): 1477-1482. (in Chinese with English abstract)
[16] 吕鹏,张吉旺,刘伟,等. 施氮时期对超高产夏玉米产量及氮素吸收利用的影响[J]. 植物营养与肥料学报,2011,17(5):1099-1107.
Lü Peng, Zhang Jiwang, Liu Wei, et al. Effects of nitrogen application dates on yield and nitrogen use efficiency of summer maize in super-high yield conditions[J]. Journal of Plant Nutrition and Fertilizers, 2011, 17(5): 1099-1107. (in Chinese with English abstract)
[17] 朱晓霞,谭德水,江丽华,等. 减量施用控释氮肥对小麦产量效率及土壤硝态氮的影响[J]. 土壤通报,2013,44(1):179-183.
Zhu Xiaoxia, Tan Deshui, Jiang Lihua, et al. Effect of reducing amount of controlled release N fertilizer on yield of winter wheat, N efficiency and soil NO3--N[J]. Chinese Journal of Soil Science, 2013, 44(1): 179-183. (in Chinese with English abstract)
[18] 张福锁,王激清,张卫峰,等. 中国主要粮食作物肥料利用率现状与提高途径[J]. 土壤学报,2008,45(5):915-924.
Zhang Fusuo, Wang Jiqing, Zhang Weifeng, et al. Nitrogen use efficiencies of major cereal crops in China and measures for improvement[J]. Acta Pedologica Sinica, 2008, 45(5): 915-924. (in Chinese with English abstract)
[19] 张国平,张光恒. 小麦氮素利用效率的基因型差异研究[J]. 植物营养与肥料学报,1996,4(2):331-336.
Zhang Guoping, Zhang Guangheng. Studies on variation among wheat genotypes in N utilization[J]. Plant Nutrition and Fertilizer Science, 1996, 4(2): 331-336. (in Chinese with English abstract)
[20] Papakosta D K, Gagianas A A. Nitrogen and dry matter accumulation, remobilization, and losses for Mediterranean wheat during grain filling[J]. Agronomy Jouranal, 1991, 83(5): 864-870.
[21] Ellert B H, Bettany J R. Calculation of organic matter and nutrients stored in soils under contrasting management regimes[J]. Canadian Journal of Soil Science, 1995, 75(4): 529-538.
[22] 刘小刚,张富仓,杨启良,等. 调亏灌溉与氮营养对玉米根区土壤水氮有效性的影响[J]. 农业工程学报,2010,26(2):135-141.
Liu Xiaogang, Zhang Fucang, Yang Qiliang, et al. Effects of regulated deficit irrigation and nitrogen nutrition on soil water and nitrogen availability in maize root zone[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2010, 26(2): 135-141. (in Chinese with English abstract)
[23] 张丹,付斌,胡万里,等. 秸秆还田提高水稻-油菜轮作土壤固氮能力及作物产量[J]. 农业工程学报,2017,33(9):133-140.
Zhang Dan, Fu Bin, Hu Wanli, et al. Increasing soil nitrogen fixation capacity and crop yield of rice-rape rotation by straw returning[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2017, 33(9): 133-140. (in Chinese with English abstract)
[24] Huang Yao, Zou Jianwen, Zheng Xunhua, et al. Nitrous oxide emissions as influenced by amendment of plant residues with different C/N ratios[J]. Soil Biology and Biochemistry, 2004, 36(6): 973-981.
[25] Heal O, Anderson J, Swift M. Plant Litter Quality and Decomposition: An Historical Overview[M]. Oxford-shire: CAB International, 1997.
[26] 范富,张庆国,邰继承,等. 玉米秸秆夹层改善盐碱地土壤生物性状[J]. 农业工程学报,2015,31(8):133-139.
Fan Fu, Zhang Qingguo, Tai Jicheng, et al. Biological traits on corn straw inter-layer in improving saline-alkali soil[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2015, 31(8): 133-139. (in Chinese with English abstract)
[27] Sharma S K, Manchanda H R. Influence of leaching with different amounts of water on desalinization and permeability behaviour of chloride and sulphate dominated saline soils[J]. Agricultural Water Management, 1996, 31(3): 225-235.
[28] Zhang Peng, Wei Ting, Jia Zhikuan, et al. Soil aggregate and crop yield changes with different rates of straw incorporation in semiarid areas of northwest China[J]. Geoderma, 2014, 230/231(6): 41-49.
[29] 张万锋,杨树青,娄帅,等. 耕作方式与秸秆覆盖对夏玉米根系分布及产量的影响[J]. 农业工程学报,2020,36(7):117-124.
Zhang Wanfeng, Yang Shuqing, Lou Shuai, et al. Effects of tillage methods and straw mulching on the root distribution and yield of summer maize[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(7): 117-124. (in Chinese with English abstract)
[30] 刘景辉,刘克礼. 春玉米需氮规律的研究[J]. 内蒙古农牧学院学报,1994,15(3):12-18.
Liu Jinghui, Liu Keli. The research of spring maize in the regulation of the need of nitrogen[J]. Journal of Inner Mongolia Institute of Agriculture and Animal Husbandry, 1994, 15(3): 12-18. (in Chinese with English abstract)
[31] 张欢,谭贺,姜佰文,等. 施氮模式对玉米氮吸收分配及产量的影响[J]. 玉米科学,2014,22(5):127-131.
Zhang Huan, Tan He, Jiang Baiwen, et al. Effect of different N application patterns on nitrogen absorption, distribution and yield of maize[J]. Journal of Maize Sciences, 2014, 22(5): 127-131. (in Chinese with English abstract)
[32] 杨国航,崔彦宏,刘树欣,等. 供氮时期对玉米干物质积累、分配和转移的影响[J] . 玉米科学,2004,12(专刊):105-106.
Yang Guohang, Cui Yanhong, Liu Shuxin, et al. Effect of the providing nitrogen period on maize dry matter accumulation, distribution and transformation[J]. Journal of Maize Sciences, 2004, 12(Special): 105-106. (in Chinese with English abstract)
Effects of stover mulching combined with N application on N use efficiency and yield of summer maize in Hetao Irrigated District
Zhang Wanfeng, Yang Shuqing※, Liu Peng, Lou Shuai, Sun Duoqiang
(010018,)
To explore the dynamic response of nitrogen transport of summer maize and distribution of soil nitrate nitrogen to different straw mulching methods and nitrogen application, the orthogonal field experiments were carried out in Hetao Irrigation District in 2017 and 2018. Two different straw mulching methods were set up including the straw surface covering treatment B and the straw deep burial treatment S. Four different nitrogen application rates were designed including no nitrogen application rate(N0), low nitrogen application rate treatment (N1), medium nitrogen application rate treatment (N2) and high nitrogen application rate treatment (N3). The traditional farming mode was used as contrast (CK) treatment. The results showed that in the soil layer between 0 and 100 cm, the accumulation of soil nitrate nitrogen increased with the increase of N application rate in each treatment. The B treatments significantly increased nitrate nitrogen content in 0-20 cm soil layer, and the straw deep burial treatments significantly increased nitrate nitrogen content in 20-40 cm soil layer (<0.05). With the increase of the soil depth, the accumulation of soil nitrate nitrogen increased first and then decreased by treatments S, while the accumulation of soil nitrate nitrogen decreased first and then increased by the straw surface covering treatments. No significant difference in soil nitrate nitrogen accumulation and loss was found between the straw surface covering treatments and CK treatment, but the straw deep burial treatments significantly reduced nitrate nitrogen accumulation and loss. In the soil layer of 0-100 cm, compared with summer maize jointing stage, the cumulative loss of nitrate nitrogen of SN2 treatment at the mature stage of summer maize was 39.6% lower on average than that in CK, which reduced the NO3--N migration to deep soil and reduced the risk of groundwater pollution. Significant difference in nitrogen accumulation was found among different organs of summer maize. The interaction effects of straw mulching and N application rate on nitrogen absorption and utilization, transport and distribution and summer maize yield were significant (<0.05) or extremely significant (<0.01), respectively. The straw mulching increased the nitrogen utilization efficiency, and the contribution rate of nitrogen transfer of summer maize to grain yield. And straw deep burial effect was better than the other treatments. Compared with the straw surface covering treatment and CK, the straw deep burial treatment significantly improved the N absorption and utilization and summer maize yield. The SN2 treatment showed the best effect. No significant difference in N absorption and utilization and summer maize yield was found between the straw surface covering treatments and CK. Compared with CK, the SN2 treatment improved the N utilization efficiency by 28.5%, the contribution rate of nitrogen transfer in summer maize to grain yield increased by 32.1%, and increased the yield by 9.3% on average during the two years. Based on the comprehensive analysis, the effect of straw deep burial treatments combined with medium nitrogen application rate was best, which can achieve the goal of increasing summer maize yield and reduce the risk of NO3--N leaching in Hetao Irrigated District. The research provides a technical support for straw resource utilization, alleviating agricultural non-point source pollution, optimizing tillage and fertilization patterns in Hetao Irrigated District.
straw; mulching; nitrogen; translocation; summer maize; non-point source pollution
张万锋,杨树青,刘鹏,等. 秸秆覆盖方式和施氮量对河套灌区夏玉米氮利用及产量影响[J]. 农业工程学报,2020,36(21):71-79. doi:10.11975/j.issn.1002-6819.2020.21.009 http://www.tcsae.org
Zhang Wanfeng, Yang Shuqing, Liu Peng, et al. Effects of stover mulching combined with N application on N use efficiency and yield of summer maize in Hetao Irrigated District[J]. Transactions of the Chinese Society of Agricultural Engineering (Transactions of the CSAE), 2020, 36(21): 71-79. (in Chinese with English abstract) doi:10.11975/j.issn.1002-6819.2020.21.009 http://www.tcsae.org
2020-05-23
2020-07-10
国家自然科学重点基金项目(51539005);国家自然科学基金项目(51669019)
张万锋,博士生,高级工程师,研究方向农业水土资源利用与水土环境调控。Email:z.wf123@163.com
杨树青,教授,研究方向农业水土资源利用与水土环境调控。Email:nmndysq@126.com
10.11975/j.issn.1002-6819.2020.21.009
S278
A
1002-6819(2020)-21-0071-09