发展学生求证的天性

2020-12-29 14:46宋煜阳特级教师
小学教学设计(数学) 2020年4期
关键词:天性结论逻辑

宋煜阳(特级教师)

求证,是儿童与生俱来的意识和能力。数学教学,其中一项重要目标任务是发展儿童求证的天性,在各种问题的求证中培养数学式的思维。这已经成为国际数学教育领域的共同视野。

培养和发展学生的论证意识、推理能力,将成为小学数学教学不可或缺的目标。小学阶段的求证,虽然无法进行严格证明,但是可以帮助学生养成有条理地说、有根据地议、有方法地辨的思维习惯。

学会有条理地说,就是构造逻辑论证的话语系统。

如何把生活语言改造为数学语言,如何从自由表述到逻辑表达,都是训练有条理地说的着力点。

数学语言要求准确、简洁,要让学生感受数学语言的简洁美。

逻辑表达需要特定话语系统。如平面图形面积公式推导,始终要围绕“大前提(转化前后图形面积相等)”“小前提(图形各部分之间关系)”“结论(推导出新图形面积公式)”三部曲展开,积累“因为……又因为……所以……”三段论的表达经验。

学会有根据地议,就是构造逻辑论证的例证。

论证就是让自己和他人确信结论的过程,关键在于寻找可以信赖的论据。对于学生已经提前获知的结论,要鼓励学生从“我知道”转向“我能解释说明”,感知例证的力量。

针对结论,有哪些例证可以调用?到底需要多少个例子才可以证实?例证如何从特殊走向一般?例证数量储备与调用的背后,既是学生对知识本身的系统理解,又是教师对学情的通透分析。

学会有方法地辨,就是构造逻辑论证的路径。

尽管小学阶段的数学规律、性质和定理,大多数是不完全归纳推理所得,但并不影响多个论据论证路径的选择。当然,体会不同论证路径的方法和要求也成为其中的一部分。

不完全归纳推理,要在多个正例与一个反例之间体会不完全归纳的风险,如运算律学习。完全归纳推理,要善于引导学生开展分类研究,实现“类”的完全归纳,如三角形内角和的探索。演绎推理,要多尝试从定义出发进行推断,如“因为圆上有无数个点,又因为连接圆心与圆上任意一点的线段是半径,所以圆有无数条半径”。

求证是一种天性,也是一种思维品质,更是一种理性精神,它需要我们精心呵护与培养。

猜你喜欢
天性结论逻辑
由一个简单结论联想到的数论题
刑事印证证明准确达成的逻辑反思
逻辑
尊重天性 顺势而为——读《培养孩子从画画开始》有感
创新的逻辑
女人买买买的神逻辑
结论
或许,只因为天性
惊人结论