孔隙型砂岩储集层主流通道指数及矿场应用

2020-12-22 01:24李熙喆罗瑞兰胡勇徐轩焦春艳郭振华万玉金刘晓华李洋
石油勘探与开发 2020年5期
关键词:储集层气藏含水

李熙喆,罗瑞兰,胡勇,徐轩,焦春艳,郭振华,万玉金,刘晓华,李洋

(中国石油勘探开发研究院,北京100083)

0 引言

孔隙型砂岩气藏在中国天然气储量和产量构成中占有重要地位。截至 2018年底,中国探明储量超过300×108m3的大气田共 64个,累计探明地质储量101 724×108m3,其中孔隙型砂岩大气田32个,探明地质储量52 183×108m3,占全国大气田探明地质储量的51.3%;2018年孔隙型砂岩大气田年产量629×108m3,占全国大气田当年产量的39.8%。

受沉积环境和成岩作用的影响,孔隙型砂岩储集层渗透率分布范围十分广泛,从小于0.1×10−3μm2到几平方微米的砂岩均有分布[1-4]。

孔隙型砂岩储集层的主要渗流通道是基质孔喉,受含水饱和度和上覆岩层压力等影响,其在地层条件下的有效渗透率与实验室常规气测渗透率之间存在较大差异。国内外相关研究表明[5-17]:在地层条件下,不同渗透率的砂岩储集层,尤其是低渗透、致密储集层,由于孔喉大小、上覆岩层压力以及含水饱和度的不同,其地下渗流特征与常规实验测试结果存在较大差异,这种差异会影响气井产能、储量动用等指标的评价,进而影响气藏开发技术政策的制定。

本文综合利用试井[18]、生产动态分析和覆压孔渗、气水相渗、高压压汞等检测技术评价孔隙型砂岩储集层在地层条件下有效渗透率与常规基质渗透率、含水饱和度的关系,确定了不同渗透率级别孔隙型砂岩储集层的主流通道指数范围,建立了孔隙型砂岩气藏地层条件下有效渗透率的快速评价方法,可指导该类气藏合理、高效开发技术政策的制定。

1 孔隙型砂岩储集层主流通道指数

1.1 涵义

为判识油气储集层中复杂多孔介质的主流通道类型,李熙喆等[19]定义“主流通道指数”为储集层综合有效渗透率与常规基质渗透率比值:

其中Ke通过试井解释或生产动态分析获取,代表地层条件下的有效渗透率,Km通过室内岩心测试或测井解释获取,代表储集层基质渗透率。从定义可以看出,“主流通道指数”一定程度上表征了地层宏观渗流能力与基质渗流能力的差异。

1.2 特征

文献[19]通过建立大通道流量与主流通道指数之间的定量关系,确定了主流通道类型的定量判识标准:当“主流通道指数”小于 3时,基质孔喉为主要流动通道,储集层为单孔单渗型;“主流通道指数”为3~20时,流动通道以裂缝为主、基质孔喉为辅,储集层为双孔双渗型;“主流通道指数”大于 20时,可视裂缝为唯一渗流通道,储集层为双孔单渗型。

根据(1)式统计分析中国主要孔隙型砂岩气藏(区块)的储集层主流通道指数(见表1),结果表明:孔隙型砂岩储集层的主流通道指数与常规基质渗透率、含水饱和度密切相关,常规基质渗透率越低、含水饱和度越高,主流通道指数越低。常规基质渗透率大于5.0×10-3μm2时,主流通道指数一般大于 0.5;常规基质渗透率为 1.0×10-3~5.0×10-3μm2时,主流通道指数为0.2~0.5;常规基质渗透率小于1.0×10-3μm2时,主流通道指数通常小于0.2。

表1 孔隙型砂岩气藏(区块)的储集层主流通道指数

2 主流通道指数的物理模拟

评价主流通道指数的关键是要获取可靠的储集层综合有效渗透率与常规基质渗透率,常规基质渗透率可以通过室内钻取柱状岩心,在烘干状态下开展岩心测试获得,也可以通过测井解释获得;储集层综合有效渗透率常采用试井解释或生产动态分析获取,但一般需要较长时间对资料进行录取和处理才能获得较为可靠的结果,气田开发评价时存在一定局限性。根据这类储集层裂缝不发育、有效渗透率主要受上覆岩层压力和含水饱和度影响的特点,可以通过室内物理实验方法模拟真实地层条件,实现地层条件下储集层有效渗透率的准确测试。

2.1 净上覆岩层压力对储集层有效渗透率的影响

采用钛合金材料,自主研发了地层条件下岩心渗透率测试装置,最高耐压100 MPa,测试气体为氮气。利用该实验装置,采用岩心测试方法,对苏里格气田天然岩心分别开展了覆压条件下储集层有效渗透率和常规基质渗透率测试,研究了净上覆岩层压力对储集层有效渗透率的影响。以苏里格气田为例,其储集层埋深3 000 m,岩石密度2.36 g/cm3,地层孔隙压力30 MPa,计算地层初始净上覆岩层压力为40.8 MPa。结果表明:在初始净上覆岩层压力条件下,当常规基质渗透率大于 5.0×10−3μm2时,覆压渗透率与常规基质渗透率比值大于 0.8;当常规基质渗透率为 1.0×10−3~5.0×10−3μm2时,覆压渗透率与常规基质渗透率比值为0.4~0.8;当常规基质渗透率小于 1.0×10−3μm2时,覆压渗透率与常规基质渗透率比值小于0.4(见图1)。

图1 净上覆岩层压力对砂岩气测渗透率的影响

2.2 含水饱和度对储集层气水两相渗透率的影响

采用气水两相渗流实验方法[20]测试了含水饱和度对孔隙型砂岩储集层气水两相渗透率的影响(见图2)。结果表明:随含水饱和度增加,气相相对渗透率逐渐降低而水相相对渗透率逐渐升高。根据表1统计结果,气藏储集层含水饱和度一般为 30%~50%,在此含水饱和度范围内,对于常规基质渗透率为14.22×10−3μm2的岩心,其气相相对渗透率为0.15~0.50,水相相对渗透率为0.007~0.050;对于常规基质渗透率为1.23×10−3μm2的岩心,其气相相对渗透率为0.11~0.36,水相相对渗透率为0.000 5~0.011 0;对于常规基质渗透率为0.45×10−3μm2的岩心,其气相相对渗透率为 0.05~0.20,水相相对渗透率为0.000 43~0.007 00。

生产过程中若无地层水产出,则气藏含水饱和度不变,认为气藏的有效渗透率只受束缚水饱和度的影响。统计分析了不同常规基质渗透率砂岩束缚水饱和度及对应气相相对渗透率(见图 3)。结果表明:当常规基质渗透率大于 5.0×10−3μm2时,束缚水饱和度一般小于 30%,气相相对渗透率大于 0.40,束缚水对该类储集层气相渗流能力影响较小;当常规基质渗透率为1.0×10−3~5.0×10−3μm2时,束缚水饱和度一般为30%~40%,气相相对渗透率一般为0.25~0.40,束缚水饱和度对该类储集层气相渗流能力有明显影响;当常规基质渗透率小于1.0×10−3μm2时,束缚水饱和度一般大于 40%,气相相对渗透率小于 0.25,束缚水对该类储集层气相渗流能力影响十分显著。

图2 孔隙型砂岩储集层气水两相渗流特征曲线

图3 不同渗透率砂岩束缚水饱和度及气相相对渗透率

2.3 机理分析

图4 不同常规基质渗透率砂岩铸体薄片

采用高压压汞和铸体薄片实验[21-22],测试了苏里格气田不同渗透率孔隙型砂岩储集层的孔喉大小、排驱压力、孔隙类型和连通性(见图 4—图 6)。结果表明:常规基质渗透率大于5.0×10−3μm2时,岩石成分主要为石英及流纹岩屑,孔隙以原生孔为主且粒间溶孔发育,连通性好,排驱压力小于0.1 MPa,中值孔喉半径一般大于 2.0 μm。常规基质渗透率为 1.0×10−3~5.0×10−3μm2时,石英以单晶为主,表面洁净,无解理,含少量斜长石;岩屑主要为硅质岩、砂岩和千枚岩;填隙物中胶结物主要为杂基,孔隙以原生粒间孔为主,连通性中等,排驱压力为0.1~0.5 MPa,中值孔喉半径为 0.5~2.0 μm。常规透率小于 1.0×10−3μm2时,主要为砂岩与板岩岩屑,填隙物中胶结物主要为钙质,孔隙主要为原生粒间孔和粒内溶孔,连通性较差;排驱压力大于0.5 MPa,中值孔喉半径小于0.5 μm。

图5 不同常规基质渗透率砂岩排驱压力

图6 不同常规基质渗透率砂岩孔喉半径分布

上述结果分析表明不同渗透率砂岩的岩石成分、孔隙类型、连通性均存在明显差异。当地层条件下储集层岩石孔隙中赋存水时,由于水对不同岩石矿物的敏感性以及不同尺寸孔喉对水相作用力的差异,导致地层条件下储集层有效渗透率产生差异,这是不同渗透率孔隙型砂岩主流通道指数存在差异的根本原因。

3 矿场应用

利用主流通道指数可以便捷地实现气藏有效渗透率和储量动用程度的评价,对制定气藏合理开发技术政策具有重要的指导意义。

3.1 气藏有效渗透率评价

根据主流通道指数定义,建立了孔隙型砂岩储集层地层条件下有效渗透率评价方法,可以对新发现气藏或未开展试井测试的气藏实现快速评价,计算方法如下:

主流通道指数可以通过以下方法获得:①对已开展试井和测井测试的气藏,可根据“主流通道指数”定义进行计算;②对新区块或未进行试井测试的气藏,可以根据经验方法确定,采用表 1中典型孔隙型砂岩气藏(不含疏松砂岩)基础参数,建立主流通道指数与基质渗透率、含气饱和度的关系图版(见图7),拟合出“主流通道指数”经验计算公式(3)式;③除上述两种方法外,还可以通过前述物理模拟方法确定。

图7 主流通道指数与基质渗透率、含气饱和度关系图版

3.2 致密砂岩气判识

根据国家标准(GB/T 2679—2011天然气藏分类标准[23]),储集层有效渗透率低于 0.1×10−3μm2时为致密气,在矿场生产中,一般通过试井测试或生产动态分析得到气藏的储集层有效渗透率,然而对于低渗透气藏、致密气,要达到稳定/拟稳定渗流需要较长时间,因此,在开发早期难以对致密气进行准确评价和判识。

利用典型孔隙型砂岩气藏的主流通道指数关系式可以实现致密砂岩气的快速判识。联立(2)式、(3)式和致密气判识条件,可知致密砂岩气储集层参数满足以下条件:

根据(4)式可求得致密砂岩气判识临界曲线(见图8),当新开发气藏/区块的常规基质渗透率和含气饱和度参数位于临界曲线下方时,判识为致密砂岩气,此时拟合得到常规基质渗透率和含气饱和度满足以下关系:

3.3 气藏可动用储量评价

由于地层条件下不同孔隙型砂岩储集层主流通道指数存在明显差异,因此,不同渗透率储集层在不同含水饱和度条件下的动用程度也存在差异,如何在气藏开发早期准确落实可动用储量是气藏开发评价的核心工作,也是开发方案科学编制的基础。

图8 致密砂岩气判识图版

采用文献[24]中的长岩心多点测压物理模拟实验方法及流程,以常规基质渗透率为 0.063×10−3μm2的孔隙型砂岩长岩心为例,开展 3组不同含水饱和度条件下的模拟实验,测试产气量降为初期配产的10%时对应的孔隙压力与动用距离间的关系(见图9)。

图9 孔隙压力与动用距离间的关系

根据图 9中地层压力与动用距离间的关系,为了排除末端效应对实验结果的影响,选择离采气端较远的数据点进行拟合,结果显示二者具有幂函数关系:

式中a、b为与储集层渗透率和含水饱和度相关的系数,可采用不同渗透率储集层在不同含水饱和度条件下的实验测试结果进行函数拟合确定。

根据气藏储集层物性条件和原始地层压力,利用(6)式可计算动用范围,然后根据石油行业标准(SY/T 6170—2012 气田开发主要生产技术指标及计算方法[25])中气藏储量动用程度的定义实现量化评价。

采用上述方法,评价了400 m井距条件下孔隙型砂岩气藏不同渗透率储集层在不同含水饱和度条件下的储量动用程度,根据各渗透率储集层不同含水饱和度对应的主流通道指数,建立储量动用程度与主流通道指数关系图版(见图 10),可以看出当主流通道指数大于0.2时,储量动用程度超过80%,储量动用较为充分,井网加密余地小;当主流通道指数为0.1~0.2时,储量动用程度为40%~80%,井网加密空间较大;当主流通道指数小于0.1时,储量动用程度小于40%,储集层致密,储量动用困难,井网加密对提高储量动用程度效果有限。

图10 储量动用程度与主流通道指数关系

4 结论

孔隙型砂岩储集层主流通道指数与常规基质渗透率、含水饱和度密切相关,常规基质渗透率越低、含水饱和度越高,主流通道指数越低。

常规基质渗透率大于 5.0×10−3μm2时,主流通道指数一般大于 0.5;常规基质渗透率为 1.0×10−3~5.0×10−3μm2时,主流通道指数一般为0.2~0.5;常规基质渗透率小于 1.0×10−3μm2时,主流通道指数通常小于 0.2。

孔隙型砂岩储集层地层条件下有效渗透率评价方法可以对新发现气藏或未开展试井测试的气藏实现快速评价;孔隙型砂岩气藏储量动用程度与主流通道指数关系图版可为可动用储量评价及井网加密提供依据。

符号注释:

a,b——与储集层渗透率和含水饱和度相关的系数,无因次;Ke——储集层综合有效渗透率(通过试井解释或生产动态分析获取),μm2;Km——常规基质渗透率(岩心测试或测井解释获取),μm2;p——动用范围内某一位置的孔隙压力,MPa;r——动用距离,m;R——相关系数,无因次;Sg——含气饱和度,%;Sw——含水饱和度,%;λ——主流通道指数,无因次。

猜你喜欢
储集层气藏含水
姬塬油田麻黄山地区长4+5和长6储集层敏感性差异评价
非均布导流下页岩气藏压裂水平井产量模拟
镇北油田某油藏延长低含水采油期技术研究
鄂尔多斯盆地彭阳地区长3储集层气测录井解释评价方法研究与应用
含水乙醇催化制氢催化剂研究
复杂孔隙结构低阻油层含水饱和度解释新方法
川中震旦系灯影组储集层形成及演化研究
基于谱反演的超限厚储层描述技术及其在渤海海域“富砂型”极浅水三角洲储集层的应用
LG地区复杂礁滩气藏描述技术
伏龙泉气田含水气井排水采气工艺研究及应用