湖相页岩滞留烃形成条件与富集模式
——以渤海湾盆地黄骅坳陷古近系为例

2020-12-22 01:24赵贤正周立宏蒲秀刚金凤鸣时战楠韩文中姜文亚韩国猛张伟汪虎马建英
石油勘探与开发 2020年5期
关键词:小层脆性甜点

赵贤正,周立宏,蒲秀刚,金凤鸣,时战楠,韩文中,姜文亚,韩国猛,张伟,汪虎,马建英

(中国石油大港油田公司,天津 300280)

0 引言

湖相页岩滞留烃是页岩油的重要类型之一。页岩油是赋存于大套富有机质页岩层系中的石油,可划分为狭义和广义两大类,狭义页岩油指滞留于页岩层中尚未排出、相对原位存储的石油(实际上也有微小尺度的从有机质纹层到相邻储集纹层的渗滤)。一定尺度上可以认为页岩层本身既是烃源岩又是储集层,即源储一体型页岩油,其主要特征是烃类相对原地滞留,这是本文重点讨论的对象——页岩滞留烃。所谓的源储一体,并非绝对意义上的源就是储,高分辨率图像与组分分析揭示:页岩层中源和储频繁薄互层状共存,源纹层和储纹层也是呈薄互层状各自分开的,只是从压裂施工的尺度(十几米到几十米的较大尺度)来看,源和储是一体的,亦称源储共存。广义页岩油泛指除了狭义页岩油部分外,还包括页岩层系内致密砂岩、致密碳酸盐岩中的石油(即互层型页岩油和夹层型页岩油)[1-3],烃类存在一定程度的明显运移。

中国页岩油资源十分丰富,是继页岩气之后被证实的、具有巨大资源潜力的油气领域。2010年来,湖相页岩油地质特征、甜点富集规律取得诸多创新认识:①泥页岩矿物组成复杂,石英、长石、方解石、白云石等脆性矿物含量高,黏土含量平均值为20%~40%,突破了泥页岩黏土含量一般大于50%的传统认识[4-6];②高分辨率扫描电镜、纳米-微米 CT扫描、高压压汞等技术的应用进一步明确了页岩微纳米孔隙类型和三维结构特征,认识到有机孔、无机孔、微裂缝、层理缝是泥页岩重要的储集空间[7-8];③泥页岩有机质丰度中等偏高、类型多样、热演化程度适中,相比北美海相页岩油成熟度偏低[9];④页岩含油普遍但非均质性较强,油水界限不明显[1,7];⑤提出有机质丰度、游离烃含量、孔隙度、层理与裂缝、地层压力以及页岩脆性、水平应力差等是页岩油富集高产的重要因素[10-12];⑥提出“优势源储组合或优势岩相+保存条件”的页岩油成藏理论,建立了薄互层型和源储共生型两类页岩油源储组合配置类型[13],以及“有机质丰度-岩石沉积构造-矿物组成”岩相分类标准,在地质特征及单井产量对比分析基础上,提出了“高脆性+高孔隙、高有机质丰度+水平裂缝、中等有机质+纹层状结构+长英质泥页岩相”等页岩油富集高产模式[14-17]。上述认识对中国湖相页岩油勘探起到重要的指导作用[3-8,18-21],渤海湾盆地古近系沙河街组和孔店组二段、南襄盆地泌阳凹陷古近系核桃园组、松辽盆地白垩系青山口组及准噶尔盆地二叠系芦草沟组等湖相页岩地层中多口水平井实现工业油流并取得单井年累产超万吨的勘探突破。但与北美海相页岩油相比,中国湖相页岩油赋存的构造条件复杂、地层非均质性强、热演化程度偏低,效益开发难度更大,面临诸多认识与技术上的挑战,其中页岩油甜点富集规律与高产地质条件更是页岩油效益开发的基础难题之一,亟待深化研究。

沧东凹陷属于中国东部渤海湾盆地新生代断陷湖盆,古近系孔店组二段(简称“孔二段”)页岩层系是湖相页岩滞留烃的典型代表,平面分布范围广、纵向地层厚度大、油气显示活跃,前期部署的多口直井和水平井均突破工业油流关。前期通过系统地质分析,基本明确了孔二段页岩油“七性”特征[3-4,6,22-30],但目前的认识已不能满足页岩油效益勘探开发的需要,尤其是页岩油富集规律及高产地质条件深化认识越发重要,为此,本文利用前期研究成果及G108-8井、GD12井、GD14井3口井分析化验资料,并结合30余口新钻井岩屑TOC、热解、裂缝及实际生产动态数据等,进一步梳理湖相页岩滞留烃富集规律、模式及高产地质条件,以期为本区和邻区水平井的优化部署及压裂段簇的设计等提供认识依据。

1 研究区地质概况

1.1 构造及沉积特征

沧东凹陷是渤海湾盆地富油凹陷之一,位于黄骅坳陷的西南部,夹持于西部沧县隆起、东部徐黑凸起、北部孔店凸起及南部东光凸起之间,是新生代受区域性拉张而形成的陆相断陷湖盆[31-33](见图 1)。孔二段沉积时期,沧东凹陷为一个内陆淡水—半咸水的椭圆形坳陷闭塞湖盆[34],受来自盆地周缘孔店凸起、沧县隆起、东光凸起、徐黑凸起 4大物源的碎屑物质输入的影响,沉积相带从湖盆边部至中部呈现外、中、内三环分带性的规律性变化[35],外环是以辫状河三角洲前缘为主体的常规砂岩发育带,中环则是以辫状河三角洲前缘远端—前三角洲为主的粉砂质泥岩-粉细砂岩、灰云岩组成的致密岩性发育带,内环则是以厚层暗色泥页岩夹薄层粉砂岩及白云岩的细粒沉积发育带。前人研究表明,孔二段为一个完整的三级层序(SQEk2),根据纵向上地层叠加样式的不同及演化规律的差异,进一步可自下而上划分为 4个四级层序(SQEk24—SQEk21),其中 SQEk23—SQEk21为湖扩体系域—高位体系域[24],该时期湖盆中部发育了一套由颗粒粒径小于 0.062 5 mm的细粒沉积岩为主要组分的页岩,为大面积页岩油的形成与富集奠定了物质基础。

图1 沧东凹陷区域位置及孔二段综合柱状图(XRD—X射线衍射)

1.2 页岩层系基本地质特征

沧东凹陷孔二段细粒段具有高频纹层发育,有机质类型多样且有机质丰度高,岩性复杂且脆性矿物含量高、黏土含量低的特点。G108-8井孔二段338.5 m高丰度页岩段显性纹层密度平均值为 33层/dm,显微薄片及场发射扫描电镜 AmicScan统计的隐形纹层发育密度可达 1 100层/dm,可观察到微米-纳米级别的长石、石英、白云石、黏土等矿物层纵向相互叠置。孔二段941块样品岩石热解、TOC值统计,揭示孔二段页岩有机质类型主要为Ⅰ型和Ⅱ1型,其中Ⅰ型干酪根样品数占比超过70%,Ⅱ1型干酪根样品数占比超过20%,TOC值最高可达12.92%,平均值为4.87%,烃源岩品质整体为富烃源岩—很好烃源岩[36]。孔二段细粒段矿物成分复杂,主要由陆源碎屑、碳酸盐、黏土及其他矿物(方沸石、黄铁矿、菱铁矿等)组成,其中陆源碎屑平均含量为34%,主要是黏土级的石英、长石;碳酸盐平均含量为 34%,主要为黏土级的方解石、白云石;黏土矿物含量仅为 16%;黄铁矿、菱铁矿及方沸石等矿物平均含量 16%。无优势矿物成分,总体具有脆性矿物含量高、黏土含量低的特点。根据矿物成分组成及结构构造特征,孔二段细粒段岩石类型可识别出长英质页岩、混合质页岩和灰云质页岩3大类[3,22]。

2 页岩滞留烃形成富集条件:“适中性”五原则

2.1 适中TOC有利于页岩滞留烃形成和页岩层高脆性

2.1.1TOC与S1、OSI

2.1.1.1TOC与可动烃的关系

湖相页岩滞留烃高产与否主要取决于地层中可动烃Sf的含量:

式中,Ka由实验数据取值100 mg/g,在相关关系直角坐标图中,任一热解测试点P沿平行于Y轴方向到直线(该直线表示可动烃下限为100 mg /g)的距离L即为Sf(见图2a、图2b)。

通过对沧东凹陷GY1-1-1H、GY2-1-1H等33口井、12 468个岩屑热解数据的分析发现(见图2a、图2b),与TOC相关图中外包络线上的数据点(指地质条件相对较好的情况),主要呈现快速上升和稳定高值的特征[3,37-41],拐点的TOC值均为2%~4%(见图2b),是单井可动烃含量的峰值,且在该区间内随着TOC值的增大可动烃峰值也增大,即外包络线拐点随TOC值的增大向右偏移(见图2b)。由此可见,与TOC相关关系外包络线拐点附近时(TOC值为 2%~4%)是可动烃最为富集的范围。

2.1.1.2TOC与OSI的关系

图2 有机碳含量与滞留烃(S1*)及可动油指数(OSI)关系(以GY1-1-1H等10口井为例)

由TOC与Sf及OSI的关系可见,适中的TOC值有利于页岩层系中可动滞留烃的富集及页岩油的高产,尤其是当TOC值为2%~4%时,中间值为3%时,Sf值及OSI值均相对较高,是最有利于页岩油富集的丰度范围。

2.1.2TOC与页岩层脆性

富有机质页岩中有机质与无机矿物主要呈互层状分布,占据一定的岩石体积,是影响页岩脆性的重要参数之一。由于不同矿物具有不同的脆度,以石英的脆度为标准,赋予其他矿物不同的系数[44],同时考虑有机质对岩石脆性的影响,通过对取心井1 000余块次X射线衍射(XRD)矿物组分数据分析,建立了脆性指数BI1评价方法(2)式,同时利用力学参数法分析了脆性指数BI2(3)式:

两种方法计算的 G108-8井、GD12井、GD14井脆性指数BI1和BI2相关性好,相关系数超过0.80,说明矿物含量与力学参数反映的岩石脆性有着较好的一致性(见图3a),故应用XRD的脆性矿物也可以较为准确的表征页岩脆性,且XRD分析脆性矿物法易于操作。通过统计 W16井 189块样品的脆性指数BI1与TOC、黏土含量的相关关系(见图 3b、图 3c),结果表明:当TOC值小于4%或黏土含量小于20%时,大部分样品BI1>50%,为高脆性页岩;当TOC值大于6%或黏土含量大于 40%时,多数样品BI1<40%,为低脆性页岩。由此可见,TOC值整体与脆性指数呈负相关关系,但部分样品受较高黏土含量影响(TOC值与黏土含量比值小于0.3,即页岩中有机质所占的体积与黏土体积的比值小于0.3),并非都是高脆性页岩(见图3b)。

图3 BI1与BI2、TOC及黏土含量关系

上述研究表明,随着TOC值增加,Sf值及OSI值呈现先增大后降低的特征,但脆性逐渐降低,当TOC值为2%~4%时,含油性与脆性达到最佳匹配,页岩既富集油又利于压裂改造,形成最优甜点,TOC值再增大时(大于6%),脆性逐步降低,甜点工程品质反而变差。

2.2 适中的物源波及范围造就页岩油甜点

通过对21个不同沉积时期(21个小层单元)湖盆大小(以细粒沉积区的面积表示古湖盆分布范围)和物源供给强度(以陆源碎屑输入湖盆的波及范围表示,本文以短轴方向物源供应强度的影响为例进行统计)配置关系对比表明,湖盆大小与物源供给强度配置关系对脆性矿物含量、黏土含量及TOC值具有控制作用。

①湖盆大小与物源波及范围匹配适中。如 2号小层沉积时期细粒沉积区东西方向距离(短轴)18.5 km(以A表示),东西方向陆源碎屑入湖距离8.6 km,占湖盆宽度的 46%,两者匹配适中。湖相页岩黏土含量平均13.9%,TOC值平均值为3.68%,长英质含量平均28.8%,脆性指数平均44.6%。其各项指标均满足前述讨论的TOC值为2%~4%,黏土含量小于20%页岩油优质甜点标准(见表1)。湖盆大小与物源供给强度的适中匹配,造就页岩TOC及脆性矿物含量的最佳匹配,是页岩油甜点发育的内在控制因素(见表1)。

②湖盆小而物源供给强度大。如 8号小层沉积时期细粒沉积区东西方向距离16.2 km,东西方向陆源碎屑入湖距离为10.8 km,占湖盆宽度的67%。湖相页岩长英质含量平均值为 36.9%,黏土含量平均仅为10.8%,有机质丰度偏低,TOC平均值仅为1.22%。这种匹配关系虽利于页岩储集层压裂改造,但页岩有机质丰度低,导致生烃量不足,页岩自身滞留烃难以富集。

表1 物源供给与矿物组成关系

③湖盆大而物源供给强度小。如17小层沉积期细粒沉积区东西方向距离19.2 km,东西方向陆源碎屑入湖距离仅为3.5 km,占湖盆宽度的18%。湖相页岩黏土含量平均值为27.8%,TOC值最高可达12.4%,平均值为6.62%,这种匹配关系虽有利于页岩总生烃量(排出烃量+滞留烃量),但滞留的吸附烃相对较多、游离可动烃量相对较少,且不利于后期压裂改造(脆性指数平均仅为36.2%)(见表1)。

总之,湖盆的大小与物源的输入距离(以B/A值表示)适中匹配时才能形成空间上黏土含量、TOC值及脆性矿物的合理配置(见表 1),从而达到生烃量与可压性的有利共存状态。沧东凹陷孔二段生产实践显示,湖盆的大小与物源的输入距离之比约为40%~60%时,生烃量和可压裂性在空间上配置良好,但不同湖盆因其他地质条件的差异可能存在不同。

2.3 适中热演化程度有利于页岩滞留烃的富集

通过G77井(2 106.8 m,TOC值为5.24%)热模拟及干酪根溶胀实验,定量表征了不同热演化阶段的干酪根吸附烃、滞留可动烃、排出烃的比例(见表2、图 4)。其中热模拟实验采用逼近地质条件的半开放直压式生排烃模拟仪,实验温度从 300~630 ℃,间隔25~30 ℃不等,之后对残余岩样干酪根进行Ro值实测,获取不同成熟度条件下的产烃率数据;对热模拟实验完成后的残样制备成干酪根开展溶胀实验,采用正十四烷、邻二甲苯、乙酸、异丙醇、乙醇 5种涵盖了干酪根及常见油气组分溶解度范围的溶剂,形成钟形溶胀曲线并换算成滞留烃量,结合热模拟产烃率数据,形成不同热演化阶段的干酪根吸附烃、滞留可动烃、排出烃的比例数据(见表2、图4)。当Ro值为0.6%~1.2%时,干酪根生成的烃除满足其自身吸附溶解外,尚有7.4%~60.0%的烃可动,Ro值为0.7%~1.0%时滞留可动烃含量最高,超过总生烃量的40%。

表2 不同成熟度页岩油吸附、滞留及排出烃量

图4 G77井页岩热模拟生排烃曲线(据文献[25, 28]修改)

沧东凹陷15口直井、16口水平井页岩油试油日产油量与埋藏深度(垂深)的关系统计表明(见图 5):2 500~3 900 m深度范围内,无论是直井还是水平井,日产油量和埋藏深度之间都存在一定的正相关关系,即埋藏深度越大,整体试油效果越好,日产油量大于10 t的埋藏深度基本都在3 300 m以深,且埋深大于3 700 m以后会产生一定量的气体,提高滞留烃的气油比,降低滞留烃的黏度和密度,利于烃类的渗流;埋深大于3 900 m以后,日产油量随埋藏深度增大呈降低趋势,排出烃增多、滞留烃减少,与热模拟生排烃实验结果一致。目前部署的GD1701H、GD1702H水平井垂深约3 750 m,压裂改造后均获得高产油流,平均日产油量约为直井日产油量的5~6倍以上,目前累计产油分别为8 404 m3、11 336 m3。

图5 沧东凹陷孔二段埋藏深度(垂深)与页岩油产量关系

可见,适中的热成熟度(Ro值为0.7%~1.0%,对应埋深3 200~4 300 m)是页岩热演化生烃与有机质吸附油最佳匹配区间,此时页岩中滞留可动烃量大,试油产量往往较高,是页岩油富集的热演化甜点区段。

“嗯,一开始肯定不适应,不过我相信,学习成绩好的孩子,到哪里都是好的。我也是希望你能带动成绩不好的同学,给他们一点压力和动力!”周老师说起这次“行动”还挺高兴的。

2.4 适中的成岩演化程度利于页岩储集空间发育

沧东凹陷孔二段 G108-8、GD12等多口井研究表明,泥页岩地层的孔隙度、孔隙体积及比表面积随着埋藏深度的变化存在3个典型的演化阶段(见图6),①其中阶段一主要处于早成岩B期,以压实作用占据主导,随深度的增加,孔隙度、孔隙体积及比表面积逐渐降低。②阶段二主要处于中成岩 A期,Ro值为0.5%~0.9%、埋深为2 900~3 850 m时,是泥页岩层系孔隙度、孔隙体积及比表面积由早期的逐渐降低转向逐渐升高的阶段,主要原因一是此阶段有机质向烃类大量转化导致生烃增压,既可减缓地层的机械压实作用,亦可形成大量有机孔,TOC值为7%的烃源岩消耗35%的干酪根,最大可增加5%左右的有机孔[45];二是富有机质地层生烃过程中可形成大量的有机酸及富含 CO2的酸性流体等,总量约占有机质含量的 2%~12%,酸性流体对碳酸盐、长石等矿物具有较强的溶蚀作用,可形成大量溶蚀孔隙,尤其是紧邻干酪根的易溶矿物,更易于形成板条状、港湾状、不规则状等矿物边缘溶蚀孔缝,最大可提高4.5%~10.0%的孔隙度[46];另外生烃过程中形成的酸性流体会促进碳酸盐矿物的重结晶作用以及蒙脱石、伊蒙混层等向伊利石的转化等,进一步提高泥页岩层系的储集空间,孔隙度最高可达10.25%。③阶段三,埋藏深度超过3 850 m以后,酸性流体减少、黏土矿物转化完成、碳酸盐重结晶作用减弱,地层压实作用再次占据主导作用,储集空间随深度增大逐渐变差。由此可见,适中的成岩演化阶段有利于富有机质页岩层系形成较多的储集空间[47],尤其以中成岩A期(埋深为3 200~4 300 m),可形成大量有机质孔、溶蚀孔、晶间孔等最有利于储集空间的发育。

2.5 适中的天然裂缝发育程度利于页岩油的渗流和保存

按照成因,页岩层系主要发育两大类裂缝,一类是构造应力作用形成的裂缝,强烈的构造运动可能形成大型裂隙带,贯穿上下顶底板盖层,易破坏页岩油富集成藏的盖层条件;同时构造应力作用还会派生出大量次级裂隙和微裂缝,仅限于页岩层系内部延伸,平面呈区域性分布。另一类为各种物理作用或化学作用形成的裂缝,主要包括层间裂缝、异常高压缝、溶蚀裂缝、矿物相变裂缝、脱水收缩裂缝等,这些类型的微裂缝整体分布局限、非均质性强、规模较小。

从沧东凹陷页岩油试油产量(均为直井数据)与至断层距离可以看出(见图7),随着试油层段与断层距离的增大,试油产量整体呈下降的趋势,如 G1608井,与断层距离仅为150 m,且地层具有微幅背斜构造背景(易于形成裂缝发育带),试油产量高达47.1 t/d,试采105 d,累产油达到1 540.68 t。这类断层派生出的(微)裂缝纵向上仅限于页岩层系内部延伸,未破坏上覆泥岩盖层。因此,与断层距离越小的井位,断裂构造派生出的微裂缝发育程度越大,试油产量相对越高。但是与断层距离为200~300 m的井试油产量存在明显的差异,如GD13井与断层距离约为275 m,产油量仅为4.52 t/d,而KN9井与断层距离同样约为275 m,但产油量达到13.27 t/d,也进一步证实了天然裂缝发育程度只是控制局部层段页岩油富集的重要因素之一,但其他因素(如岩性、储集物性、结构构造等)也同样影响页岩油富集程度。

由于页岩层系自身低孔、低渗的特征,所以天然裂缝的发育既可以起到储集空间的作用,更重要的是起到沟通基质孔隙利于烃类渗流的作用。但裂缝发育规模不宜太大,否则可能破坏页岩油富集的盖层条件导致烃类散失,以仅限于页岩层系内部的天然裂缝发育段,相对利于页岩滞留烃渗流与保存。

图7 沧东凹陷孔二段页岩油试油产量与至断层距离的关系

3 页岩滞留烃富集模式

通过对沧东凹陷孔二段页岩滞留烃富集条件综合分析,建立了湖相页岩滞留烃富集模式(见图8),其中以古湖盆大小与物源供应强度匹配适中的情况下(模式 M2),利于形成中等有机质丰度(TOC值为2%~4%)、较高细粒长英质及碳酸盐等脆性矿物(大于 40%)、较低黏土含量(小于 20%)、高频纹层结构的页岩,岩性以长英质页岩、混合质页岩与灰云质页岩的频繁互层为主,当页岩地层埋深为3 200~4 300 m(中成岩A期)、Ro值为0.6%~1.2%时,烃源岩生成大量烃类,超越效应明显(OSI值整体较高),同时储集空间相对较大、脆性程度较高,是湖相页岩滞留烃富集的最有利条件,是当前页岩油开发的首选目标。

当古湖盆偏小而物源供给强度较大时(模式M1),易于形成高脆性、低有机质丰度的页岩,以长英质页岩、混合质页岩夹砂屑为主,这类页岩有机质丰度整体偏低,生烃不足,含油性整体偏差,但紧邻高丰度页岩段的砂屑地层,因烃类就近直接充注,多具有良好的含油性(超越效应非常明显),且砂屑层储集物性较好、脆性程度高,具备高产的有利地质条件,是互层型页岩油或夹层型页岩油开发的主要目标(见图8)。

当古湖盆较大而物源供应强度偏小时(模式M3),易于形成高有机质丰度、低脆性矿物含量的页岩,以纹层状黏土质页岩夹长英质页岩、混合质页岩、灰云质页岩为主,这类页岩整体生烃量较大,具有中等—好的超越效应特征,当满足自身吸附、储集后,大量烃类运移出去形成常规油藏,但此类页岩滞留吸附烃含量偏高且工程改造效果略差,可作为页岩油勘探开发的后备资源类型,紧邻优质高丰度段的灰云质页岩,因烃类充注且储集条件好,也可形成良好的页岩油富集层(见图8)。

图8 沧东凹陷孔店组二段湖相页岩滞留烃富集模式与关键指标分析图

4 勘探实践

4.1 沧东凹陷孔二段一体型页岩油工业化开发

4.1.1 甜点综合评价及水平井部署

“适中TOC有利于页岩滞留烃形成和页岩层高脆性”用于选层,“适中的物源波及范围造就页岩油甜点”用于选区,“适中热演化有利于页岩滞留烃的富集”+“适中的成岩演化程度利于页岩储集空间发育”+“适中的天然裂缝发育程度利于页岩油的渗流和保存”用于评价富集条件和产能,综合以上适中性五原则,结合页岩滞留烃富集模式,有效指导了纵向甜点段及平面甜点区的优选,为水平井的勘探部署提供了重要的科学支撑。以GD14井孔二段Ek2-C1开发层系为例(见图9a),该段可划分为4个小层,其中1小层以M3模式为主,2小层、3小层及4小层上部以M2模式为主,4小层下部以M3模式为主,进一步优选出1小层中下部、3小层中上部为最佳甜点段,其次是 2小层及 4小层。

目前,针对官东地区,按照方案部署整体化、评价建产一体化、地下地面一体化、资源动用最大化及效益开发接替化的页岩油水平井部署原则,以断块为基本单元整体规划设计,瞄准高产区块优中选优,同时考虑地面供水管线及大型沟渠分布情况,建立水平井立体交叉井网,采用井丛场、层接替、块接替部署思路,实现产量有序接替。以官东地区Ek2-C1开发层系水平井部署方案为例(见图9c),水平井井眼轨迹与地层主应力方向夹角一般大于45°,入窗点距断层空间距离150~200 m,水平段长短结合,井距平均200 m,共部署水平井井位61口,预计实现可动用地质储量3 000×104t。

图9 沧东凹陷孔二段Ek2-C1段纵向甜点段、平面甜点区综合评价及井位部署

4.1.2 实践效果

4.1.2.1 GD1701H、GD1702H两口科学实验井获高产稳产在官东地区有利勘探区,针对Ek2-C1实施了2口水平井GD1701H及GD1702H,其中GD1701H井最高日产油量达75.9 m3,同时产气5 200 m3,截至2020年3月1日放喷200 d,下泵370 d,累计产油量8 576 m3(见表3)。GD1702H最高日产油量为61 m3,日产气5 947 m3,截至2020年3月1日放喷633 d,累产油11 603 m3(见表 3)。

表3 沧东凹陷及歧口凹陷页岩油地质特征及生产状况

4.1.2.2 首个页岩油井组实现工业性开发

由GY2-1-1H、GY2-1-2H、GY2-1-3H 这3口页岩油水平井组成的井组均以Ek21SQ⑨的C1-2小层(模式M2为主)为主要钻探靶层,投产见油返排率均小于1%。其中GY2-1-1H井初期日产油24.56 m3,截至2020年3月1日,累产油2 449 m3(见表3);GY2-1-2H井初期日产油17.83 m3,截至2020年3月1日,累产油2 832 m3(见表3、图10);GY2-1-3H井初期日产油量为23.37 m3,截至2020年3月1日,累产油2 108 m3(见表 3)。目前该井组日产油量稳产 40~50 m3,累产油已达7 390 m3。

4.2 技术推广应用——歧口凹陷沙三段取得重要发现

4.2.1 甜点综合评价

上述湖相页岩滞留烃适中性五原则及富集模式推广应用于歧口凹陷沙三段页岩油气甜点的综合评价,以F38X1井沙三段为例,划分为C1-C8共8个开发层系、18个小层,整体以模式M2及M3为主,其中1、2、3、4、8、9、10、11、12小层为最有利甜点段,累计厚度可达400 m(见图11)。

基于纵向甜点段的优选,综合利用OSI、脆性指数、核磁共振测井孔隙度、Ro、地层厚度以及地震属性等资料,对开发层系C1平面甜点区进行综合评价(见图12),优选出Ⅰ类甜点区面积48.6 km2,Ⅱ类甜点区面积53.9 km2,Ⅲ类甜点区面积175.2 km2。

图10 官东地区首个页岩油水平井组生产动态曲线(以GY2-1-2H为例)

图11 歧口凹陷沙三段页岩油气纵向甜点段综合评价

4.2.2 实践效果

歧口凹陷沙三段页岩油气勘探获重要发现苗头。该区域页岩油气研究起步于 2017年,目前 F38X1井沙三1亚段页岩油气海水基压裂已获高产,开拓了页岩油勘探新局面(见图 12)。F38X1井最高日产油量为50.1 t、日产气量为17 240 m3,累计产油量为762.7 m3。同时在Ⅰ类甜点区部署水平井 QY10-1-1H,钻探目的层系为C1开发层系,压裂改造后最高日产油达102 t(见图12)。歧口凹陷深湖相区页岩油水平井钻探取得的成效,证实了歧口凹陷古近系湖泛期细粒段也具备良好的页岩油气勘探潜力。

图12 歧口凹陷沙三段C1开发层系页岩油平面甜点区综合评价及水平井井位部署

5 结论与建议

湖相页岩滞留可动烃富集受页岩有机质丰度(TOC值)、热成熟度(Ro值)、成岩演化、天然裂缝发育程度及湖盆的大小与物源的输入距离之比(B/A值)等 5大因素耦合控制,各因素具有普遍适中的指标,即TOC值为2%~4%,Ro值为0.7%~1.0%(埋深为3 200~4 300 m),成岩演化阶段处于中成岩A期,天然裂缝发育但未破坏页岩油顶底板盖层条件,B/A值为40%~60%,各指标太高或太低均不利于页岩油富集。

页岩油富集的适中性原则主要适用于湖相页岩滞留烃,而对于明显运移型的狭义致密油(属于广义页岩油范畴),TOC值越高、热成熟度越高越有利于其富集,对常规油气勘探也是有利的。相对于狭义致密油,湖相页岩滞留烃分布面积、资源规模更大,开发难度也更大,页岩油富集的适中性对该类页岩油开发更具有指导意义。

通过技术上 5大因素耦合匹配评价甜点,优选水平井靶层和甜点区,指导井位部署,实现了沧东凹陷孔二段湖相页岩滞留烃的工业化开发及歧口凹陷沙三段页岩油的重要突破。孔二段两口科学实验井累产油超2×104m3,首个页岩油井组稳产40~50 m3/d。勘探实践结果表明页岩油富集的适中性原则可有效指导湖相页岩滞留烃的勘探开发。

符号注释:

BI1——基于XRD矿物组分的脆性指数,%;BI2——基于力学参数的脆性指数,%;GR——自然伽马,API;Ka——单位有机质吸附量,mg/g;OSI——可动油指数,mg/g;PRsd——归一化处理后岩石泊松比,%;RM2R6——609.6 mm(2 ft)纵向分辨率、1 524 mm(60 in)径向探测深度阵列感应测井曲线,Ω·m;RM2RX——609.6 mm(2 ft)纵向分辨率、3 048 mm(120 in)径向探测深度阵列感应测井曲线,Ω·m;Sf——滞留可动烃量,mg/g;SP——自然电位,mV;S1——热解游离烃含量,mg/g;——热解滞留烃值,mg/g;TOC——残余总有机碳含量,%;Δt——补偿声波时差,μs/m;V*o——有机质所占的体积,%;V*qa,V*fe,V*ca,V*do,V*an,V*cl——考虑有机质校正后的XRD分析的石英、长石、方解石、白云石、方沸石和黏土含量,%;YMsd——归一化处理后岩石弹性模量,%;ρ——补偿密度,g/cm3。

猜你喜欢
小层脆性甜点
湖相页岩油建产区小层构造可视化精细建模
——以吉木萨尔芦草沟组为例
利用物质平衡法分析小层注水量
甜点世界
搞怪的甜点
一种零件制造过程工序脆性源评价方法
大灰狼的甜点屋
考虑初始损伤的脆性疲劳损伤模型及验证
基于能量耗散的页岩脆性特征
尕斯库勒油田E31油藏长停井恢复治理思路
甜点师 美丽不止多一分