短期气候预测:南京信息工程大学60年回顾与展望

2020-12-11 09:09孙照渤陈海山
大气科学学报 2020年5期
关键词:团队建设教学工作科学研究

孙照渤 陈海山

摘要 本文从科学发展角度回顾了国内外短期气候预测的发展历程;在此基础上,回顾了南京信息工程大学建校60 a来短期气候预测领域的团队建设及其在教学、科研和预测方面的实践,并展望其未来工作。

关键词 短期气候预测;团队建设;教学工作;科学研究;预测业务;回顾与展望

1 短期气候预测的发展历程回顾

短期气候预测是指对气候要素的月、季和年平均值或者总量及其变率的预测。常用的气候要素主要有气温、降水等。由于这个时间尺度的气候要素与经济发展和社会需求有密切关系,因此短期气候预测受到了各国政府和科技界的高度重视。

短期气候预测作为大气科学的一个分支,其发展过程是从19世纪末开始的,至今经历了三个主要的发展阶段。

1.1 初始阶段

1873年布仑福德(Blandford)发现印度西北部5月大雪不利于后期印度季风发展,并利用积雪因子制作并发布了后期印度季风雨量预报。1883年泰瑟伦·德·鲍特(Teisserrene de Bort)提出了大气活动中心概念,指出大气活动中心的位置和强度变化具有长期趋势,能为短期气候预测提供重要的依据。瓦克(Walker)从1904年开始,通过计算相关系数,研究了世界各地天气之间的遥相关(Walker,1910);提出了世界三大涛动的概念,即北大西洋涛动(NAO)、北太平洋涛动(NPO)和南方涛动(SO)。他根据三大涛动的研究结果,应用回归方程预报印度季风雨量,取得了一定的效果。我国涂长望应用瓦克的理论和方法,研究了我国冷暖旱涝与三大涛动的关系,并建立了回归方程,开启了我国短期气候预测的先河(涂长望,1937)。大气涛动至今仍旧是短期气候预测研究的热点问题。

穆尔坦诺夫斯基从1913年开始研究了极地冷空气活动路径与欧洲天气系统的关系,并进行了分型研究,提出欧洲的季节天气是由某几个大气活动中心制约的观点,此后又提出了自然天气季节、大型天气过程的活动韵律、发展位相等概念,并于1922年开始制作季节预报。王根盖姆从1935年开始致力于大西洋到欧洲区域的大气环流分型研究,并提出了优势环流型的季节转换规律,用以制作季节预报。后来,吉尔斯把这种分型推广到了亚洲太平洋区域,进一步建立了整个北半球的基本大气环流型,从北半球大气环流结构出发,研究大气环流各种时段的演变规律,为根据大气环流变化制作短期气候预测奠定了基础。

鲍尔从1926年开始研究短期气候预测问题,并用回归方程和复相关表制作短期气候预报,经过长期实践以后,他提出要以天气谚语、气候规律和预报员经验为线索,经过分析以后转换成定量的气象参数,加以严格的统计学检验和物理解释,可以作为短期气候预测的基础。

在制作短期气候预测的初始期,科学家们已经清醒认识到,大气环流与短期气候变化具有密切的关系,提出了大气活动中心、三大涛动等概念,并对大气环流演变进行了分型研究;科学家们还把积雪作为大气外部因子,在短期气候预测中应用;短期气候预测方法主要是统计学方法。可以看出,尽管这些研究结果是初步的,但是这些研究结果,从认识论和方法论两个方面为短期气候预测奠定了科学基础,开启了希望之光。他们的科学思想,甚至于有些结果,至今仍然具有重要意义。

1.2 探索阶段

短期气候预测作为大气科学的一个分支,其发展是以大气科学的发展为基础的。

由于大气探测技术的发展,气象观测资料增加,在此基础上,20世纪30年代末,罗斯贝(Rossby)发现了大气长波,10 a以后,气象学家提出了斜压不稳定和正压不稳定理论以及波动频散理论。这些理论奠定了大气科学的理论基础,随后恰尼(Charney)又提出了尺度分析理论,并建立了准地转模式,成功地得到了第1张数值天气预报图。菲利普(Phillips)则用两层准地转模式,成功地模拟了大气环流(Phillips,1956)。

大气科学基础理论的创立,为短期气候预测提供了依据和新思路(Lorenz,1969,1976)。20世纪40年代开始,纳米亚斯(Namias)用5 d平均的700 hPa图,采用外推方法,制作大气长波预报,取得了一定的效果。接着他又尝试做30 d平均图的预报,但是没有成功(Namias,1953,1968)。20世纪50年代后期,英国开始制作短期气候业务预报,几年以后,因为预报效果不好,又停止了这项预报业务,1963年,索耶(Sawyer)用数字滤波方法研究了大西洋上空月时间尺度的大气环流变化,发现了月尺度大气环流系统,并以此为科学依据,重新开始了短期气候预测业务。1958年,我国杨鉴初提出了应用气象要素历史演变规律制作短期气候预报的方法,推动了我国广大气象台站开展短期气候预测业务,1960年我国中央气象台分析了欧亚西太平洋地区的大气环流形势,建立了分型体系,共分11个型,其中冬季分为6型,夏季3型,过渡季节2型,以此作为短期气候预测的基本工具。我国学者还研究了影响我国夏季旱涝的东亚夏季风和雨带的发展,以及冬半年寒潮爆发的规律。这些研究为我国短期气候预测奠定了牢固的大气环流基础(叶笃正和朱抱真,1958;叶笃正等,1959;王绍武,1962)。

20世纪60年代,计算机科学和技术快速发展,大大改善了计算条件,统计学方法在大气科学中得到了广泛应用。由于历史的原因,直到1973年春天,我国才在南京气象学院(现更名为南京信息工程大学)开办了全国气象统计预报培训班,培养了一批骨干力量,使得应用统计学方法制作短期气候预报在广大台站迅速推广。通过实践,我国学者认识到应用统计学方法要挑选有物理意义的因子,要与大气环流演变规律和預报经验相结合。至今为止,经验统计学方法仍然是短期气候预测的主要方法。

短期气候过程的时间尺度决定了它是非绝热过程,因此,寻找对大气具有加热作用的外部因子就成了科学家关注的重要问题(吉尔斯,1963)。拉特克利夫(Ratcliffe)和纳米亚斯(Namias)分别研究了太平洋和大西洋的海表温度对英国和美国短期气候变化的影响,中国科学院大气物理研究所研究了黑潮对我国短期气候变化的影响(中国科学院大气物理研究所长期预报组,1973;中国科学院大气物理研究所,1978)。与此同时,海冰、积雪以及陆面状况等与短期气候变化之间的关系,也引起了科学家们的高度重视。

20世纪70年代起,科学家们开始探索用数值模式预报一个以月以上的短期气候变化,米亚可达(Miyakoda)用GFDL模式做出了月平均图(Miyakoda et al.,1983,1986)。中科院大气物理研究所率先用二层模式预测我国跨季节夏季降水,取得了令人鼓舞的结果(曾庆存等,1990;Zeng et al.,1994)。我国科学家丑纪范等从理论上研究了短期气候数值预报(丑纪范,1986;丑纪范和徐明,2001)。这些研究开启了用数值模式作短期气候预测的新阶段。

1.3 发展阶段

20世纪80年代初开始,大气科学进入了一个快速发展阶段,这个阶段开始于1978年国际科学联盟(ICSU)提出的现代气候和气候系统概念,取代了经典的气候概念。1980年,世界气象组织(WMO)和国际科学联盟等机构共同制定了世界气候规划(WCP),特别是其下设的世界气候研究计划(WCRP)及其子计划(CLIVAR),引起了世界各国政府和科学家的高度重视。由于短期气候预测所致力的月、季、年时间尺度预测是这些计划的核心科学问题,因此研究集中在几个方面:大气环流的演变规律;气候系统各圈层的相互作用;建立完善的气候模式用于短期气候预测;研究当前的业务预报方法,提高预报准确率。为此,世界气象组织还设立了长期预报专家组,推动各国的短期气候预测研究和业务的发展。

20世纪80年代初,Wallace and Gutzler(1981)对大气遥相关的研究推动了准定常行星波动力学研究,Hoskins and Karoly(1981)提出了罗斯贝波在球面大气中的二维传播,我国学者曾庆存提出了波包理论(Zeng,1983)。这些研究从理论上为短期气候预测建立了坚实的大气环流动力学基础(Hoskins and Pearce,1987)。

气候系统各圈层之间的相互作用研究,为选择短期气候预报因子提供了科学依据。海洋的影响受到特别的关注(巢纪平,1977),在大量的观测研究结果基础上,Gill(1980)以及Palmer and Sun(1985)分别从理论上证明了热带海洋和中纬度海洋对大气的加热作用。特别是ENSO现象,Bjerknes(1969)以及Wallace and Gutzler(1981)为代表的研究,使得ENSO现象成为短期气候预测中最有效的预报因子(Rasmusson and Carpenter,1982;Rasmusson and Wallace,1983)。此外,科学家们研究证明,陆面过程特别是植被和冰雪覆盖也是短期气候预测的重要物理因子。我国科学家研究证明,青藏高原也是影响短期气候变化的重要因子(叶笃正和高由禧,1979)。

20世纪70年代以后,大气科学最重要的成就是建立了大气环流模式,使得大气科学能在计算机上进行科学实验,就像物理化学能在实验室里做试验一样,这标志着大气科学跨进了现代科学的门槛。自从Phillips(1956)用二层准地转模式模拟了大气环流以来,世界各国科学家都在努力设计完善的大气环流模式。我国学者首先设计出了原始方程模式。20世纪70年代以后,国际上先后出现了有代表性的GFDL、UCLA和NCAR模式。

气候系统的研究为建立短期气候预测数值模式提供了正确的科学路径,那就是必须建立完善的大气-海洋-冰雪覆盖-陆面过程耦合模式。但是,由于科技水平制约,目前世界各国的模式都存在着一定程度的不完善状况,建立完善的气候模式是科学家们的努力目标。

在目前的氣候模式水平下,为了充分有效地应用气候模式的数值结果制作短期气候预测,曾庆存等(1990)和Bengtsson et al.(1993)分别提出了“两步法”制作短期气候预测方法。另外,由于大气是一个高度非线性系统,对初始条件误差非常敏感,为此,Leith早在1974年就提出了集合预报思想和方法(Leith,1974),1995年Kalnay提出了解决集合预报初值问题的具体方法(Kalnay,1995)。这些努力为充分应用数值模式结果制作短期气候预测做出了贡献。

1989年,我国制定了中国气候计划,科技部和国家自然科学基金委以及有关部门都积极支持短期气候预测的有关研究项目。“七五”(1985—1990年)和“八五”(1991—1995年)期间中国气象局设立了局重点科研项目《长期预报理论、方法和资料库建立研究》,“九五”期间,科技部还设立了短期气候预测重中之重的攻关项目。在广大气象工作者的努力下,特别值得提出的是我国中央气象台长期科的专家们(后来转入国家气候中心),为我国的短期气候业务预报做出了巨大贡献(丁一汇,2004)。近年来,国家气候中心在短期气候预测研究和业务预报中取得了若干重要进展,为我国的短期气候预测做出了重要贡献;我国的短期气候预测研究和业务预报都处于世界先进水平(李维京,2012;宋连春等,2013)。

在科学研究领域,我国科学家始终紧密联系实际,把影响我国短期气候预测的实际问题作为主要研究对象(黄荣辉,2006;吴国雄等,2006)。黄荣辉提出了东亚夏季EAP遥相关型(黄荣辉和岸保勘三郎,1983),李崇银研究了气候系统动力学(李崇银,1988,2000),吴国雄、徐祥德分别研究了青藏高原动力学(徐祥德等,2001;吴国雄等,2004,2005;徐祥德和陈联寿,2006),丁一汇研究了亚洲季风(丁一汇和刘芸芸,2008),王会军深入研究了短期气候过程及其预测(王会军,1997;王会军等,2002,2008,2010,2012),张人禾多方面研究了海气相互作用及其影响东亚(张人禾和黄荣辉,1998;Zhang et al.,1999;Zhang,2001),戴永久深入研究了陆面过程(戴永久和曾庆存,1996;戴永久等,1997)。这些研究从理论和实践两个方面为我国短期气候预测建立了坚实基础。

为了提高我国干旱、洪涝、冷害、极端气候事件等灾害现象的预报准确率,我国广大专家学者集中研究了大气内部短期气候变化的物理过程:东亚季风、夏季雨带和雨型、西太平洋副热带高压、南亚高压、越赤道气流、极涡、冷空气活动、季节内振荡、大气遥相关和风暴轴等。在影响短期气候变化的大气外部因子方面,集中研究了海表温度、特别是ENSO事件、冰雪覆盖、陆面过程、青藏高原等(王绍武等,2005)。在短期气候预测方法方面,研究了经验统计方法、动力学方法及动力和统计相结合的方法(陈菊英,1991;廖荃荪和赵振国,1992;李维京和陈丽娟,1999;陈兴芳和赵振国,2000;李维京和纪立人,2000;任宏利和丑纪范,2005,2007;陈丽娟等,2008)。

在短期气候数值预报领域,早在20世纪70年代初,中国科学院大气物理研究所就应用2层模式,预测我国夏季降水,取得了可喜成果。目前我国在海气耦合模式,陆面过程模式,海冰模式领域,都取得了引人注目的成绩。中国科学院大气物理研究所、国家气候中心以及南京信息工程大学等都在发展和应用气候数值模式,为解决短期气候预测水平而努力。

2 六十载攀登路

南京信息工程大学成立于1960年我国经济困难时期,建校以后,始终坚持正确的办学方向,为国家培养了一大批优秀人才。历任校领导和教职工都把培养国家需要的人才作为奋斗目标,在办学中把教学放在第一位,在教学内容中把台站业务需求放在第一位。秉承着这样的办学理念,南京信息工程大学从无到有,从弱到强,走出了有独立特色的办学之路。短期气候预测就是在这片校园的哺育下成长起来的,经历了60 a的攀登之路。

2.1 教学团队

建校后教学单位是按照行政单位设置的,学校设气象系和农业气象系,短期气候预测属于气象系的天气教研组。气象系第一任系主任朱和周先生是新中国成立以后从美国回国的学者,在大气环流和中小尺度气象学方面卓有建树。1960年建校时,他从中国气象局天气处的领导岗位被派到学校担任系主任,他把提高教学质量,培养高素质人才放在工作首位。为此,他不拘一格从全国各地挑选优秀人才到学校任教,对教师提出了很高要求。每一位上课老师都要经过辅导、备课、试讲等一系列的严格考核,合格以后才能走上讲台。即使走上讲台,如果不能够胜任教学任务,也要被“拉”下讲台。他还经常深入到学生当中,既关心学生,又严把考试关,培养学生的优良学风。在他的严谨管理之下,气象系培养出了一批优秀教师,树立了优秀的教风和学风,为气象系的发展打下了坚实的基础。短期气候预测就是在这种优秀的学风环境中发展起来的课程团队。

应该说明,由于学科间有着密切的联系,学校的数学、物理等学科的教师,以及气象学科内部不同领域的教师也从事了很多短期气候方面的研究工作。以下主要以短期气候预测的课程教学为基础,回顾短期气候预测的发展历程。

学校的短期气候预测创始人是章基嘉先生,他就读于上海交大物理学专业,为响应国家号召,参加了气象工作,以后又被国家派往苏联列宁格勒水文气象学院攻读研究生,师从著名的短期气候学者吉尔斯,主要的研究领域是大气环流与短期气候预测,获得学位以后,回国后在中国气象局工作。我校成立时,被派到我校任教。到学校以后,他积极筹备短期气候预测的教学工作,编写教材,并翻译出版了吉尔斯的《长期天气预告原理》一书不久以后,他又被派到越南工作,因此我校1960级的短期气候预测课是聘请中央气象台专家李小泉来校主讲的。从1961级开始,就由章基嘉老师和本校的教师承担。当时大气环流、短期气候预测和气象统计预报教师是统一安排教学任务的,早期参加教学工作的有王得民、程极益、施能等老师。1972年,孙照渤调到学校工作,也被安排在这个教学组。后来,葛玲、陈寅生、刘玳、何金海等先后调到学校也安排在这个教学组工作。“文革”期间有一些毕业生留校在这个教学组工作,但是不久又陆续调离学校,这里就不一一列出了。1977年国家恢复研究生招生以后,王盘兴、吴洪宝等考取研究生以后,师从章基嘉老师,获得学位以后先后留校工作,参加了短期气候预测领域的教学科研工作,他们是章基嘉老师团队中卓有建树的学者。随着事业的发展,大气环流、短期气候预测和气象统计预报独立发展出各自的教学团队。王盘兴和他的学生接替章基嘉老师承担了本科生大气环流教学,也参加了气象统计预报教学。吴洪宝则主要从事气象统计预报教学。20世纪80年代初,学校公派何金海和孙照渤分别到美国和英国进修学习,何金海回国以后就派到天氣教研室工作,孙照渤在英国气象局长期预报部门进修学习,回国以后仍旧承担短期气候预测教学工作,并给研究生开设了高等大气环流课程。后来,学校引进了李栋梁等专家学者,还引进了一批博士:朱伟军、陈海山、谭桂容、曾刚、李忠贤、彭丽霞、邓伟涛、华文剑等陆续参加了短期气候预测教学工作。

多年来,在学校历届领导的关心支持下,在优秀学风的熏陶下,章基嘉院士创立的短期气候预测教学团队,不断传承和发展,已经发展成在国内外有一定影响的教学科研团队,涌现出了著名的专家葛玲、施能、陈寅生、王盘兴、吴洪宝等。孙照渤曾任世界气象组织长期预报专家组成员,还获得了全国优秀教师称号和国家有突出贡献的留学回国人员称号。近年来,陈海山荣获了“国家杰青”和“教育部特聘教授”称号;还有一批中青年专家获得了各种奖励和荣誉称号。

特别令人鼓舞的是,2015年学校引进了王会军院士和部分团队成员,王会军院士是国内外著名的大气科学专家,特别是在短期气候预测领域卓有建树,他团队的部分成员周波涛、黄艳艳等也直接参加了学校短期气候预测的教学工作。2018年,学校还引进了国家特聘专家罗京佳教授,他曾经在日本和澳大利亚从事短期气候数值预测研究,取得了令人瞩目的成果。

2.2 科学研究

科学研究是提高教师学术水平和教学质量的重要保障。由于教学任务比较重,短期气候预测的科研起步较晚。1973年,章基嘉先生组织了一些教师对短期气候预测教材中的一些实际例子进行计算和分析,在此基础上,他组织了两个科研小组:一个由章基嘉、彭永清和王鼎良组成,主要从事青藏高原的研究;另一个由章基嘉、孙照渤和陈松军组成,主要研究大气环流异常与我国旱涝和气温的关系。1978年,有关的研究获得了全国科学大会奖。1979年,这两个小组主要成员赴成都参加了第一次全球大气试验关联的青藏高原考察和研究。1982年章基嘉老师调任中国气象局副局长,但是他依然在我们学校招收研究生,经常回学校进行指导工作,他坚持每年到学校开设关于短期气候预测领域的专题讲座。“七五”(1985—1990年)和“八五”(1991—1995年)期间,他主持中国气象局重点科研项目《长期预报的理论、方法和资料库建立研究》,学校主持了该项目的第1课题,研究大气环流异常与我国旱涝的关系,以及大气外部因子的作用。期间章基嘉先生被遴选为中国工程院院士,开始了他的学术研究新征程,然而由于意外事故,章基嘉先生不幸离世。项目的后续工作,是由孙照渤主持完成的。这两项研究分别获得了中国气象局科技进步奖二等奖两次,国家科技进步三等奖一次。

20世纪90年代,我国的大气科学进入了新的快速发展阶段,国家增加了对大气科学的投入力度,科技部和国家自然科学基金都有课题支持短期气候预测领域的研究。学校的短期气候预测领域成员,从不同渠道获得了研究经费支持,在短期气候过程、大气环流动力学、陆面过程、海洋、冰雪覆盖和预报方法等领域进行了广泛深入的研究,这些研究站在短期气候预测领域的国际前沿,紧密联系我国的实际,取得了令人瞩目的成果。

20世纪90年代初我校成功地申请到博士授予单位和气象学博士点,在申请过程中就把短期气候预测的科研教学成果列为最主要的研究方向,为学校发展做出了重要贡献。

我校办学的主要特点是面向业务实际。短期气候预测在教学和科研方面取得了一定成绩的时候,提出了直接参加国家业务预报的目标,也就是参加国家气候中心主持的夏季降水和冬季气温跨季节预报会商。这是一个艰巨的任务,因为业务预报与写科研论文不同,不仅需要预报效果达到一定水平,还必须符合业务预报的各项要求,而且要面对实际结果的检验考核。为了实现这个目标,孙照渤带领博士研究生谭桂容等经过几年的努力,建立了以人工神经网络为主的夏季降水型预测,在此基础上再选择重大因子修正降水量预报。经过对新建立的预报模型反复检验以后,从1996年开始,我们学校应邀参加了全国汛期降水和年度气候趋势预测会商会,从此与中国气象科学研究院、中国科学院大气物理研究所、北京大学、水利部水利信息中心、总参水文气象中心等8大单位一起参加预报会商。2008年在预报系统中又加入了区域气候模式数值预报结果,2012年在原有基础上又引入了交叉检验和集合预报思想,建立了人工神经网络集合预报方法作短期气候预测。多年来,我校参加国家会商的预报结果取得了优异成绩。2019年开始,学校由新引进的罗京佳团队以数值模式预报结果为主参加国家短期气候预测会商。

2.3 国际交流

国际学术交流可以在不同国家之间相互借鉴,有效推动科学技术进步。在短期气候预测发展过程中,我们学校曾经吸收了国际先进科学思想,同时,我们也为国际的发展做出了贡献。

建校初期,章基嘉先生吸收了苏联的短期气候预测先进学术思想和成果,改革开放以后,鉴于英国的短期气候预测一直处于世界前沿,学校公派孙照渤到英国气象局学习进修,回国以后就参加了新版《中长期预报基础》教材编写,吸收了英国的短期气候预测思想和成果。20世纪80年代开始,孙照渤作为世界气象组织长期预报专家组成员,借鉴了许多国家的先进经验,应用到了学校的教学和科研中,使得学校在短期气候预测领域的发展既保持我国特色又具有国际视野。

为了落实世界气候研究计划的有关条款,世界气象组织成立了长期预报专家组,由美国、英国、法国、澳大利亚、加拿大、中国和苏联专家组成。我们学校孙照渤由中国气象局推荐,被世界气象组织聘任为长期预报专家组成员。1987年在英国里丁欧洲中期数值预报中心召开了长期预报专家组第一次会议,由组长美国的吉尔曼主持会议,研究了很多问题。其中有一个问题,就是召开国际学术交流会。当时有好几个国家争取在自己的国家召开这个会议,在中国气象局支持下,孙照渤做了很多努力,最后争取到了世界气象组织的第一次长期预报国际学术交流会1990年10月在我校举行。为了推动发展中国家开展短期气候预测业务,在学术交流会议前还举行了一次培训班,也由我校承担这个培训任务。中国气象局和我校领导都非常重视,对各项准备工作都做了周密的安排。我校专门编写了短期气候预测的培训教材,由世界气象组织编号出版并向成员国发送。会议前夕,中国气象局派出了外事司领导王才芳同志来校具体指导,有力保证了这次国际学术会议的成功举行。共有100多位国内外著名专家学者参加学术会议,交流了各国短期气候预测新科学思想和新技术,会议非常成功。在闭幕式上,中国气象局领导和江苏省领导以及世界气象组织官员对这次会议给予了充分肯定。

1994年,孙照渤应世界气象组织邀请,为世界气象组织公报撰写文章介绍季节预报的经验统计方法。1995年,我校成立了世界气象组织区域培训中心(RMTC),此后我校又为发展中国家举办了两次短期气候预测培训班。

随着改革开放的发展,我校短期气候预测领域加强了与国外的科研人员互访交流,许多国际著名专家访问我们学校,我们也派出很多专家学者到国外学习交流,使得我校的短期气候预测始终保持在国际前沿上发展。多年来,我校短期气候预测还为越南,巴基斯坦和非洲发展中国家培养了一批博士和硕士,有力地促进了发展中国家的短期气候预测的发展。

值得一提的是,2014年我校获批了教育部首批气候与环境变化国际合作联合实验室,依托该平台先后与夏威夷大学等国外高校组建了中美大气海洋研究中心、地球系统模拟中心和气候动力学研究中心。2018年,先后建立了亚欧与北极气候变化前沿科学研究中心、气候与应用前沿研究院。依托这些高水平国际科研平台,大力推动与美国、挪威、日本等在短期气候预测领域的国际科研合作和学术交流。

建校60 a来的攀登,我校在短期气候预测领域快速发展,不仅在学科水平上处于国际科学前沿,还立足于解决我国的短期气候预测问题,为国家做出了贡献。

3 教学工作回顾

建校以来,在学校“强基础、重实践,培养应用型和复合型人才”的办学理念指导下,短期气候预测作为气象专业的必修骨干课程,按照精品课程的建设要求,经过60载的课程建设和教学实践,不断完善,已经建设成为国内外有影响的课程,为国内外培养了一大批优秀人才。

3.1 坚守教学初心

为国家培养优秀人才是大学的办学初心。短期气候预测作为一门课程,搞好教学工作,培养优秀人才,才符合国家的要求,也是我们做好短期气候预测教学的初心。但是大学与社会有着密切的联系,短期气候预测在60 a的教学过程中,也遇到了各种社会思潮的干扰,干扰主要有两个方面:一方面是社会上形形色色的“读书无用论”和“理论无用论”的干扰,“理论无用论”否定学科的基本概念和基本理论的重要性,削弱学生的发展后劲;形形色色的“讀书无用论”,则误导学生急功近利,涣散学习积极性。面对这样的干扰,只有坚守教学初心,持之以恒搞好教学,才能提高教学质量。另一方面的干扰来自学科内部,由于短期气候预测还处于发展阶段,学科水平所限,实际预报效果不理想。因此,20世纪80年代后半期到90年代初,在学科内部产生了一种失望的情绪,有的学校甚至取消了这门课程,还有的只讲理论,不讲预测。当时,章基嘉先生主持了中国气象局重点研究项目,取得的研究进展打破了这种情绪。我们学校始终坚持开设短期气候预测课程。到了20世纪90年代后半期,由于数值模式的发展和计算条件的改善,又出现了一种过分乐观的情绪,认为不需要太长的时间,短期气候预测问题就能解决。事实证明过分悲观和过分乐观的情绪,都不符合短期气候预测的科学发展规律。另外,近些年来,受市场经济下商业营销模式的影响,教学中应付考试的“刷题”风有所蔓延,干扰影响了教学效果。这些干扰对短期气候预测的教学,带来了不利影响。我校的短期气候预测教学团队成员,始终牢记学校的办学理念,坚守教学初心,克服了形形色色的干扰,使得短期气候预测课程的建设不断发展,取得了很好的教学效果。

短期气候预测作为大气科学的一个分支,在气候系统的五大圈层中,大气是变化最快的圈层,而且大气变化具有随机性和非线性特征,人类对大气变化规律的认识还有很大距离。只能在当前的科学认识基础上,让短期气候预测为社会服务。短期气候预测课程也只能在当前科学水平的基础上,加强课程建设,不断更新教学内容,培养学生的科学素养和创新能力。

60载的短期气候预测教学工作表明,培养一支优秀的教师队伍才能有效地应对各种干扰,做好教学工作。

3.2 优化教学计划

教学计划是落实办学理念的重要保证。建校时,我校气象专业的教学计划主要参考了南京大学气象专业的教学计划和教学大纲,建校后,系主任朱和周先生根据高教六十条的要求,主持制定了1962级使用的教学计划,这份教学计划充分体现了“强基础、重实践”的要求,主要特点是在基础课阶段数学、物理、外语不断线,在专业课阶段除去课程教学以外,设立了课程实习、教学实习和到业务部门的生产实习三个层次。此后,从1963级起又不断修改。1977级学生的教学计划,是经过改革开放、拨乱反正以后制定的,比较接近1962级的教学计划。20世纪90年代,学校又对教学计划做了一次比较大的修改。应该说明的是,尽管不同时期的教学计划都受到了当时社会思潮的影响,但是每一次修改教学计划,我们学校都保留了短期气候预测作为气象专业必修骨干课程的地位。

我校的短期气候预测之所以能够发展成为有影响的课程,并为短期气候预测学科的发展做出了贡献,首先是因为我们学校的教学计划中一直保留了短期气候预测课程,稳定了一批教师,为短期气候预测发展提供了保障;其次是按照学校的办学理念,“强基础、重实践,培养面向气象台站业务需要的应用型、复合型人才”,不断加强课程建设,逐步形成了我校短期气候预测的学科优势和特色。

3.3 推进教材建设

短期气候预测作为大气科学的一个分支,目前处于发展阶段,而且发展很快,因此教学内容需要不断地更新,这也是短期气候预测课程建设的一个难题。为了选择适当的研究成果作为教学内容,我们一直坚持以下三个原则:第一要具有科学性价值,选择相对成熟的研究成果;第二要具有实践性价值,选择在实际业务中具有可应用性的成果;第三要具有适合本科生的教学价值,要求对学生有可接受性和启发性。我校短期气候预测的创始人章基嘉先生,在这方面做出了典范,很好地回答了这个问题。他带领大家把短期气候预测的主要内容和范畴做了深入的研究,同时也为如何选择恰当的教学内容打下了基础。

事实上,不断地修正和完善专业课的教学内容,是所有专业课的永恒主题,也是保证专业课教学具有先进性的重要保障。

建校60 a来,我们学校的短期气候预测教材经过了四次大的更新。第一次是建校初期,那时候受印刷条件限制,用的是油印本教材,为了补充新内容,还会临时加发一些手刻蜡纸的油印教材,这个时期具有代表性的教材是1966年章基嘉先生编写的《大气环流及中长期天气预报》(章基嘉,1966)。第二次是為了供1977级学生教学用,章基嘉先生组织编写了新的教材(章基嘉,1977),经过修改和完善,由章基嘉主编,葛玲参加编写的《中长期天气预报基础》,于1983年由气象出版社出版(章基嘉和葛玲,1966)。第三次的教材修改主要是为了增加气候系统的有关研究内容,章基嘉主编,葛玲和孙照渤参加编写的《中长期天气预报基础》修订版,于1994年出版(章基嘉等,1994)。第四次的教材编写,是为了完成中国气象局的培训任务,孙照渤于20世纪90年代末开始编写的《短期气候变化及其预测讲义》,这本教材立足于现代气候基本概念和气候系统理论。由于是全新的教学内容,重新构建了全新的教材体系。初稿完成以后,经过了近十年的应用,广泛征求了校内外专家意见,特别是征求了教育部大气科学教学指导委员会专家学者的意见,反复修改完善,2010年由孙照渤、陈海山、谭桂容、李忠贤、邓伟涛、曾刚和彭丽霞编写,气象出版社出版了《短期气候预测基础》(孙照渤等,2010)。这本教材总结了短期气候预测领域最新的研究成果,构建了全新的教材体系,适应了学科的发展,满足了教学需要,被评为国家精品教材。

目前使用的《短期气候预测基础》教材,由10章五个部分组成:一是气候、气候系统、气候变化和气候预测概念;二是气候系统各成员的性质及其相互作用,以及在短期气候预测中的应用;三是短期气候预测方法,包括统计学方法、动力数值方法以及统计动力相结合的方法,并专设一章综合介绍我国夏季降水的成因和预测方法;四是预测结果的评估方法;五是介绍短期气候预测的气候背景。每一章都附有复习思考题,最后还给出了9个实习材料及计算机程序。从教材体系上说是很完整的。但是应该指出,由于短期气候预测是发展很快的学科,因此,需要不断地更新和完善。

教学是一种具有创新性的科学思维活动,对教师、教学内容、教学方法与教学手段,都有着特殊的要求。当教师走上讲台,面对几十甚至上百的学生,仅仅用几十个学时,既要引起学生的兴趣和注意力,又要把一门专业课程的理论体系、实际应用和科学思维方法教给学生,达到培养学生的科学思维和建立创新意识的目标,的确是一项具有极端挑战性的科学思维活动,绝对不是轻易就能够做好的,需要教师刻苦修炼,首先要让自己具有创新性思维才能够达到预期的教学目的。

3.4 做好教学工作

建校60 a来,在学校的领导下,在兄弟学科的关心支持下,短期气候预测教学团队逐渐成长壮大,在课程建设、师资队伍、教学内容、教学方法和教学手段、以及教材和课程管理等方面都取得了很好的成绩,不仅已经建设成富有特色的课程,而且对短期气候预测学科体系的形成也起到了推动促进作用。受到国内外同行的肯定和高度评价。

建校60 a来,我们学校的短期气候预测教师队伍,不忘教学初心,一直坚守在教学科研前沿。目前不仅为大气科学专业本科生开设短期气候预测课程,还为研究生开设了有关的课程,2015年起,又为外国留学生开设了《短期气候预测理论与实践》的课程。同时,为国家培养了一批优秀的硕士和博士,从国家气候中心到全国各省市气象部门的骨干岗位上,都有他们的身影,为国家建设做出了重大贡献。特别是为国外培养了一批优秀硕士和博士以及科技人员,他们遍布世界各地,推动了短期气候预测的发展,造福各国人民。

作为大学教师,教学初心就是要为国家培养优秀的人才,做好教学工作是教师的天职。

4 科研若干进展

60 a来,我校的专家学者围绕短期气候预测的相关科学问题,在多个方面开展了深入的研究,在短期气候预测相关领域取得了一系列创新性的科研成果,以下回顾相关方面的一些进展。

4.1 东亚和中国气候变异机理研究

在东亚夏季风及降水年代际变化及其机理方面开展了系列研究(李春等,2002;Zeng et al.,2007;曾刚等,2010;彭丽霞等,2016)。发现20世纪70年代中后期,中国东部夏季降水从北到南呈现出“+-+”转变为“-+-”的三极分布型态,此变化可能与太平洋年代际振荡(PDO)由负位相向正位相转变有关,而20世纪80年代末90年代初中国东部夏季降水由北至南转变成“-+”的偶极分布型态(邓伟涛等,2009)。数值试验证实热带太平洋海表温度年代际背景变化对东亚夏季风20世纪70年代中后期年代际减弱有重要作用(曾刚等,2013)。

在中国区域气候异常方面取得了一些新的进展。Cai et al.(2010)研究指出,长江中下游地区夏季温度异常和大气环流异常与遥相关波列有关;并指出吸收性气溶胶通过与大气环流的协同作用,对夏季气温产生影响,而不单是简单的增温效应(Cai et al.,2016)。研究发现2011年长江中下游地区冬春连旱和海洋性大陆区域的热力强迫及北大西洋遥相关型的联系(Jin et al.,2013)。此外,还揭示了南印度洋偶极型海温异常和中国南方降水异常的联系及机理(Jin et al.,2017);阐明了年际时间尺度上,长江中下游与河套地区夏季降水反相振荡现象和北大西洋涛动的关系及其物理机制(Jin and Guan,2017)。

关于中国极端降水变化规律的研究发现长江中下游地区极端降水的异常变化表现为两类,其异常环流型、加热场以及海温场上均存在明显差异(Guan et al.,2011)。此外,还发现夏季华南地区极端降水有1/3的比例与TC活动有关,并且受到台风影响和不受台风影响的极端降水在发生时间以及发生时的异常环流型上均存在显著差异(Li et al.,2016);而华中地区夏季区域性极端日降水事件有显著的年际和年代际变化,且极端事件的发生与华中地区气旋性环流异常、青藏高原东北侧地形强迫、以及华中地区与周边非绝热加热梯度异常关系密切(Ke and Guan,2014)。

此外,在我国极端低温和极端降水变化的机理方面取得了一些新认识,最新研究发现“北极偏暖、欧亚偏冷”模态主要取决于北极暖中心的垂直延伸范围,当北极出现深层暖(暖中心可以延伸到对流层上层)时,欧亚大陆显著偏冷,易出现极端低温事件(He et al.,2020);定量评估了我国极端降水的水汽源地(Sun et al.,2019a),指出热带太平洋海温影响东亚水汽输送的多途徑性 (Sun et al.,2019b)。

4.2 大气环流异常动力学及其影响研究

大气环流的异常变化是短期气候变化的关键因子,我校短期气候预测团队在大气环流异常动力学及其影响方面开展了系列研究,取得了丰硕的成果。

在东亚大气环流异常变化的机理研究方面,发现了东亚大气环流季节交替的演变规律和并提出了相应的分型表征方法(章基嘉等,1984);关于北半球风暴轴演变特征(邓兴秀和孙照渤,1994;孙照渤和朱伟军,1998)、青藏高原15~25 d、30~60 d振荡、热带外大气中40~60 d等低频振荡(孙照渤等,1990;孙照渤等,1991a,1991b;孙照渤,1992)方面也取得了一些新的认识。基于海平面气压差分别定义了冬、夏季风的强度指数(Shi and Zhu,1996;施能,1996);该东亚冬、夏季风指数得到了广泛应。60 a来,我校学者在季风,尤其是东亚季风的研究方面也取得了大量成果。

大气环流系统的识别和界定问题是大气环流异常的基础问题。在全球范围内,存在多个闭合的永久性及半永久性活动中心,它们是造成大范围天气气候异常的重要环流因子。提出了数学上更简洁、物理上更合理的极涡指数(王盘兴等,2007),该指数已被用于南、北半球各主要闭合环流系统的研究中。

全球大气环流存在显著的季节内变化特征。李天明和徐邦琪(2017)及Li et al.(2020)总结了赤道东传的季节内振荡(MJO)传播和触发机制:边界层水汽纬向不对称导致了对流东侧对流不稳定度的增加,是引发MJO东传的重要过程;当MJO干位相位移行至海洋性大陆时,其西北侧的反气旋Rossby环流有利赤道西印度洋地区的湿静能持续增加,使新一波的MJO对流易在此区被触发。Yang and Li(2016,2017)则关注中高纬地区天气系统和大气环流的季节内变化,诊断并揭示了南亚高压、青藏高原视热源和阻塞高压的季节内变率演变特征和机制。

最近的研究揭示了大气质量涛动现象及其对中国气候异常的影响机理。研究发现地表气压存在南北半球间的涛动变化(Guan and Yamagata,2001),Lu et al.(2008)和Guan et al.(2010)揭示出了不同季节南北半球涛动(IHO)的基本特征,并指出IHO亦对东亚季风和中国东部降水存在显著影响(Lu and Guan,2009;Lu et al.,2010)。北半球冬季海洋、海冰和大陆间大气质量变化之间存在显著的联系(Guan et al.,2015),欧亚大陆和北太平洋异常大气质量变化之间存在显著的联系反相关系,称之为欧亚/太平洋大气质量振荡型遥相关(ENPO)。Zhang et al.(2018)揭示了ENPO型遥相关的形成和维持机制,并指出了PDO对这种遥相关型的年代际调制作用(Zhang and Guan,2017)。此外,针对东亚-澳洲季风区,定义了东亚-澳洲季风联合指数IAAM。东亚-澳洲季风具有年际和年代际变化,在1993年之前东亚-澳洲季风总体偏弱,1993年之后,东亚-澳洲季风增强(Chen and Guan,2017)。

平流层极涡变化是影响冬季地面天气的重要因子之一,诸多的外源强迫可以影响平流层极涡(Rao et al.,2019a)。如平流层环流在ENSO的不同位相有显著的异常(葛玲等,1991),并且其对ENSO的响应在1979年前后出现了显著的年代际变化(Hu et al.,2017;Yang et al.,2017);太阳11 a周期通过热力和动力的加热异常,可以同时影响热带和中纬度的平流层环流(Shi et al.,2018)。实际上,冬季极地平流层温度年际以上的变率,在一定条件下,可以由一个行星波动力加热异常的简化模型去理解(Liu and Fu,2019)。

研究还揭示了次季节-季节预报中的平流层信号。平流层环流的春季转变早晚,能影响夏季南亚高压的强弱(葛玲和陆丹,1989)。由于动力和化学作用,夏季南亚高压区的臭氧低值区垂直方向上存在双心结构,而该臭氧低值区通过辐射效应对南亚高压有一定的反馈作用(Guo et al.,2015,2017;覃皓等,2018)。冬季平流层大气质量环流的多尺度异常,可以解释不同强度的平流层弱极涡事件(Yu et al.,2018a,2018b)。关于冬季平流层的次季节-季节(S2S)预报,研究发现BCC_CSM预报系统对平流层极涡强异常事件—平流层爆发性增温(SSW)事件有1~2周的预报时效,并且适当的误差订正方案可以改进该系统对于SSW的预报(Rao et al.,2018,2019b)。而以大气质量环流平流层非绝热向极地支为指标的平流层极涡预报,在CFSv2模式中可延长至20 d甚至更长(Yu et al.,2019),这些工作有助于通过平流层极涡异常信号进行地面次季节预测。发现平流层异常在延伸期尺度上与对流层极端事件相联系。如大气质量环流强脉冲事件和SSW都可以作为地面寒潮事件的指示因子(Yu et al.,2018b,2018c;Yu and Ren,2019),并且SSW常与前期的阻塞高压相联系(Shi et al.,2017;Rao et al.,2018)。

最近,研究发现CPTT(Cold-Point Tropopause Temperature)的变化趋势在热带中东太平洋抬升变暖而在中东太平洋以外区域抬升冷却的纬向非对称特征。并揭示此纬向非对称特征主要与海温纬向梯度变化通过引起沃克环流增强、对流活动变化及上对流层下平流层区域温度廓线变化有关(Hu et al.,2016)。发现了北极平流层极涡在近二十年间呈增强趋势,进一步定量评估揭示约25%的SAV增强是由北太平洋中部增暖的海温通过减弱阿留申低压,减少行星1波上传造成的(Hu et al.,2018)。发现SAV存在明显年代际变化,且该年代际变化与PDO存在显著正相关关系(Hu and Guan,2018)。揭示了北极春季平流层臭氧与北半球春季Hadley环流边界在年际时间尺度上存在反相关关系(Hu et al.,2019)。

此外,还开展了中层大气重力波特征研究,从波源属性等多角度认识了中层大气不同尺度重力波的特征及其分布(Jia et al.,2014;Chen et al.,2019a),这有助于改善气候预测模式中重力波过程。

4.3 海气相互作用及其影响研究

早在1985年,Palmer and Sun(1985)探讨了西北大西洋海表温度异常对大气环流的影响,此工作被认为是首次从观测分析、数值模拟和理论观点方面给出了热带外海表温度异常对大气环流影响的结论性证明;比较早关注了南海海温与中国夏季降水的联系(Sun et al.,1988)。

ENSO是全球气候年际变率中最强的信号,其多样性及其对气候影响的复杂性给短期气候预测带来了巨大的挑战。近年来,在ENSO的动力学机制及其气候影响方面取得了一些创新性成果。

作为ENSO的背景态,研究发现冷舌区海温存在一变冷模态(Zhang et al.,2010;Li et al.,2015a),这一变冷模态对El Nio海气耦合的中心位置有着重要的影响。Zhang et al.(2016)根據ENSO局地海气动力学,利用太平洋赤道外信号提出了一个新的Nio指数(即Nio-A指数),该指数能同时表征ENSO多样性特征以及相关的东亚降水的变化。

最新研究指出ENSO对东亚气候影响展现出了多尺度相互作用现象:ENSO与月内尺度信号的相互作用(Geng et al.,2017a;Hsu and Xiao,2017)、ENSO与年循环的相互作用(Zhang et al.,2015c)、ENSO与年代际信号的相互作用(Geng et al.,2017b,2020)。两个信号之间的关系常常出现非平稳现象,Geng et al.(2018)基于泰勒展开式的一级近似,提出了非平稳关系物理归因分析法,该方法有助于提炼出气候系统中多尺度相互作用的关键物理过程。

研究还发现ENSO可预报性表现出明显的年代际变率,这一年代际变率决定于中部型ENSO事件的频次(Zhang et al.,2019d)。ENSO类型不仅影响自身的可预报性,且对我国秋旱(Zhang et al.,2014)、夏季副高(Huang et al.,2020c)等的影响也截然不同。Wen et al.(2020)也发现三种不同形态的厄尔尼诺(中部型、东部型和混合型)在其发展年的夏季可导致东亚汛期降水的不同响应。这些研究强调了在短期气候预测中不仅要关注El Nio类型,且要特别关注中部型El Nio的纬向位置。同样的,在短期气候预测中也应该分类考虑两类La Nia的作用(Zhang et al.,2015d)。

季节内振荡活跃于热带海洋,存在明显的海气相互作用。与MJO有关的低频对流和环流活动可通过影响云-辐射反馈及蒸发-风效应,改变海表面热通量、动量和温度,而这些海表面状态又将进一步影响水汽和气温的分布及源汇,从而调制大气的低频湿静能及季节内对流的发生和发展(Gao et al.,2016)。海气热通量具有复杂的非线性过程,Gao et al.(2018b,2019b,2020b)研究显示,高频天气尺度风场和低频背景场(环流、水汽、气温)的非线性相互作用,可升尺度反馈至季节内尺度的潜热通量、感热通量和SST变化,影响季节内对流的强度和传播速度。

此外,Yuan et al.(2019)研究表明热带印度洋海盆模态(IOBM)可激发西北太平洋反气旋异常,其西北缘的西南风异常增强低层水汽输送,提高我国华南地区前汛期降水;而华南地区后汛期降水受同期热带中西太平洋海温偶极子的显著影响,后者引起的西北太平洋气旋性环流异常可减少华南向长江中下游的水汽输送,增加华南降水。我国西南地区夏季降水则受热带大西洋尼诺的显著影响(Yuan and Yang,2020)。

4.4 陆面过程研究

陆面过程一直被认为是影响气候系统的关键过程;陆面过程一方面受到天气气候的影响,同时又对天气气候具有重要的反馈作用。自20世纪70年代以来,陆气相互作用的研究就受到科学界的广泛关注。但是由于陆面过程自身的复杂性,陆气相互作用的研究一直是国际前沿、热点和难点问题。20世纪80年代中期,我校学者就开始关注陆面过程研究(罗哲贤,1985;周琐铨和陈万隆,1995),此后的一段时间,我校陆面过程研究的队伍不断壮大,尤其是近10多年来,在陆面模式、陆气相互作用机理和陆面过程的影响方面取得了诸多进展(陈海山和孙照渤,2002)。

在陆面模式研发、改进和评估方面,陈海山和孙照渤(2005a,2005b)针对当时陆面模式的不足,新发展了一个富有特色、性能优良的陆面过程模式CLSM,极大程度上改善了陆面模式对全球范围内不同下垫面陆面过程及地-气交换过程的模拟能力。通过全面评估NCAR陆面模式CLM3.0,指出CLM3.0严重高估了碳通量和植被蒸腾,并详细阐释了导致模式偏差的主要原因,为之后CLM的改进提供了科学依据(Chen et al.,2011)。一系列工作明确指出了NCAR CLM系列模式及CMIP模式对全球、中国区域陆面过程模拟的不确定性及其主要原因,为该模式在中国区域的应用提供了重要参考(陈海山等,2010;熊明明等,2011;Hua et al.,2014)。此外,还改进了植被动态过程和冠层降水拦截的參数化方案(俞淼等,2011a,2011b;陈海山等,2019)。

关于陆气耦合过程和陆气相互作用的机理方面也取得了一些新的认识。研究发现中国区域陆气耦合的区域性差异及其基金演变对气候条件的依赖性(Gao et al.,2018a),量化了夏季土壤湿度对华北地区年代际增暖的反馈(Xu et al.,2019)。在非局地陆气相互作用研究方面,运用拉格朗日水汽追踪方案获得了全球陆地降水的水汽源,首次获得了一个非局地蒸散发影响全球陆地降水的空间分布,发现在2/3的全球陆地,6—8月降水对局地蒸散发比对非局地蒸散发更为敏感,指出陆气相互作用研究需要注意陆地非局地的影响(Wei and Dirmeyer,2019)。最近的研究深入探讨了植被动态耦合过程及其对区域气候的影响(Yu et al.,2016a,2016b;Liu et al.,2019,2020a,2020b)。同时,在陆面水文-生态过程及其对气候变化响应机理也取得一些重要成果,量评估了气候变化对关键陆面水文-生态变量的影响,揭示了相关的物理机制(Sun et al.,2012,2014,2016,2017)。

一系列的工作深入研究了积雪异常对我国气候的影响。利用观测和数值模拟,提出了积雪异常分布影响我国冬、夏气候的可能的物理机制(陈海山等,1999;孙照渤等,2000;陈海山和孙照渤,2003;陈海山等,2003);发现欧亚大陆中高纬西部春季融雪偏多、东部春季融雪偏少时,我国东北夏季易出现低温(陈海山和周晶,2013)。此外,还阐明了高原积雪和热力双模态对欧亚波列位相及东亚夏季风北边缘的调制作用(Zhang et al.,2018)。最近的研究揭示了青藏高原雪盖高频变率对东亚大气环流中期过程的影响(Li et al.,2018),发现青藏高原雪盖季节内快速变化对东亚大槽活动具有重要影响(Li et al.,2020a,2020b)。

在土壤湿度影响及相关机理方面,发现极端天气气候事件的模拟对土壤湿度异常十分敏感(周晶和陈海山,2012;陈海山和周晶,2013)。此外,研究表明土壤湿度年际异常对东亚夏季气候的潜在可预报性有重要影响;考虑土壤湿度年际异常可以明显改善模式对地表蒸发、湍流热通量和中高纬大气环流年际变化的模拟能力,显著提高模式对我国西北夏季气候年际变率的模拟能力(李忠贤等,2012;Li et al.,2015b)。研究还发现仅考虑土壤湿度的自身持续性,土壤湿度的可预报性仅为1~2个月,而考虑海温作为外强迫因子时,可以显著提高土壤湿度的可预报性(Zhu et al.,2020)。阐明了北方春、夏土壤干化及其与环流异常耦合加强夏季高温热浪频发的机理(Zhang et al.,2015b),深入评估了土壤湿度在季节和年际尺度的记忆及其对地表水热通量的影响(Song et al.,2019),探讨了中国东部土壤湿度次季节变率及其可能成因(Zhou et al.,2020)。最近,研究还发现中南半岛春季作为一个干-湿过渡的气候区,土壤湿度在局地热力调节中具有十分明显的作用;而土壤湿度具有很强的记忆性,其局地热力作用将进一步调节夏季西太平洋副热带高压、东亚夏季风和梅雨锋等的变化,最终对我国夏季长江流域旱涝灾害产生重要的影响(Gao et al.,2019a,2020a)。

陆面热力异常的气候效应取得了重要进展:评估了陆气相互作用对东亚中纬度夏季非均匀增暖的贡献及其影响机理,发现与气旋活动减弱相伴随的局地大气强迫和陆面过程反馈对20世纪90年代中期以来夏季东亚中纬度陆面异常增暖具有重要作用(Chen et al.,2020);揭示陆地非均匀增暖影响东亚中纬度地区气旋进而影响东亚夏季风的物理机制,发现90年代初之后,东亚中纬度气旋活动减弱是造成东亚夏季风年代际减弱的一个重要原因(Chen et al.,2017;Chen et al.,2019b;Zhang et al.,2020b)。研究了欧亚大陆非均匀增暖对中国北方高温干旱的局地和遥强迫,发现欧洲非均匀增暖导致大气正、斜压能量转换和传输增强,并通过加强夏季急流波导和欧亚强迫波导致北方干期延长(Zhang et al.,2019b)。发现欧亚大陆与北大西洋海温的耦合效应对中国北方多尺度干旱具有重要的影响(Zhang et al.,2020a),而西亚地表热力因子可能通过影响大气环流分布并通过遥相关型影响我国初夏东北地区冷涡(王迪等,2018)。此外,在青藏非绝热加热多模态及其对北方气候影响方面也获得了一些新的认识:提出了概率神经网络方法遥感反演非均匀下垫面地-气温差的新思路(Zhang et al.,2015a),提出了高原南-北热力模态通过对春夏急流、波列漂移及对北方气候的影响(Zhang et al.,2018)。发现了印度次大陆气旋-高原反气旋-中国北方上空低槽的遥相关型,揭示了高原热力与印度季风协同对两支欧亚波列、两支季风水汽输送以及其对北方干旱的影响(Zhang et al.,2019c)。

人类活动相关的陆面过程影响也是最近备受关注的科学问题,在土地利用/土地覆盖变化(LUCC)的气候效应及其机理方面也取得了一些新认识(Hua and Chen,2013a,2013b;Hua et al.,2015a,2015b;陈海山等,2015);揭示了LUCC对极端温度影响的可能机制及其不确定性(Li et al.,2017,2018)。在城市化的气候效应方面,揭示了大规模城市化影响东亚冬、夏季风的复杂性及机理:通过理想化试验发现中国东部大规模城市化总体上将导致东亚冬季风强度减弱,但会引起我国东北地区异常增强的偏北风,使得该区域的冬季风表现出区域性异常增强(Chen and Zhang,2013);而东亚夏季风环流系统对大规模城市化的响应存在明显季节性差异,我国东部大规模城市化有利于初夏东亚季风的增强,但总体会导致盛夏东亚季风减弱(Chen et al.,2016)。

4.5 短期气候预测方法研究

20世纪80年代初,我校学者就开展了短期气候预测方法的研究。章基嘉等(1981)提出了自然正交函数(EOF)的稳定性问题,为以EOF分解方法为基础的预报问题提供了依据,并可大大节省了计算工作量。章基嘉等(1989)研制出了一个长期天气预报客观方案,参加业务会商,提高了准确率。此后,将EOF、奇异值分解(SVD)和人工神经网络等方法用于短期气候预测(孙照渤等,1991b;张邦林等,1991;Zhang et al.,1993;孙照渤等,1998,2013)。孙照渤等(1998)在我国夏季雨型预报中引进了人工神经网络方法,其后又引入交叉检验及集合预报思想,改进人工神经网络独立预报方法(孙照渤等,2013),该方法预报效果较好且在2012年夏季降水的预测评分中全国排名第一。受世界气象组织(WMO)委托,Sun(1994)撰文评述了长期预报中使用的经验统计学方法,指导WMO成员国建立长期预报业務。

20世纪90年代以来,在统计预测模型构建方面也取得了诸多进展。先后构建了混合回归模型(王建新等,1992)、稳健回归方程(施能和王建新,1992)以预测长江中下游月降水量和月平均气温。发展了多个用于短期气候预测的统计模型(吴洪宝和吴蕾,2005),例如全球热带海表温度异常的主振荡型预报模型(段安民和吴洪宝,1998)、热带印度洋-太平洋地区海表温度异常的线性转置预报模型(王秀荣和吴洪宝,2000)、我国气温距平的典型相关分析统计预报模型(余金波和吴洪宝,2001;吴洪宝等,2007)。这些预测模型在短期气候预测的实践中取得了较好的效果。

考虑到前期大尺度信号(预报因子)和未来气象要素(预报量)在时间和空间上不断演变,两者的统计关系应同时为时间和空间的函数,Hsu et al.(2012,2015)提出了时空投影技术(Spatial-Temporal Projection Method,STPM),采用了预报因子和预报量在时间和空间演化的耦合模态进行建模和预报,并将其应用在我国的延伸期天气预报业务预报中。STPM统计预报系统成功地对全国尺度降水、气温距平及区域高影响天气(暴雨、高温热浪、冬季低温事件、台风群发等)进行提前10~30 d的预报(徐邦琪等,2020),已在国家气候中心及多个省份开展了业务应用。

近年来,在陆面过程及陆面因子对气候预测及其在短期气候预测中的应用也开展了一些探索。定量评估了土壤湿度异常对东亚地区夏季气候潜在可预报性的贡献,发现土壤湿度对东亚地区夏季气候潜在可预报性具有正贡献,尤其是在中国西北,其夏季气温和降水的潜在可预报性和预报技巧得到显著提高(Li et al.,2015b)。利用典型相关分析(CCA)和集合典型相关分析(ECC)方法建立了基于陆面热力因子的我国东部夏季降水的预测模型,发现综合海表温度和土壤温度因子建立的模型比仅用海表温度因子的模型各项预测评分均有提高(朱蒙等,2014)。基于集合典型相关分析(ECC)方法和年际增量的概念,建立了基于关键区土壤湿度年际增量的我国东北夏季降水和气温的集合预测模型,对我国东北夏季气候表现出一定的预测能力(李启芬等,2016;刘婷婷等,2016)。深入评估了土壤热含量(焓)、土壤湿度和土壤温度在季节性降水预测中的作用,发现土壤热含量(焓)较单一的陆面因子能够更加全面地表征陆面热力状况,为我国夏季降水预测业务提供了新思路(Zhao et al.,2018;赵昶昱等,2018)。

最新的研究基于年际增量方法的动力-统计预测模型,有效提高了春季热带海温和南极涛动的预测(Zhang et al.,2019a)。针对年代际气候预测,首次提出年代际增量方法,即通过滑动平均得到年代际变率后,将年代际增量作为预测对象,构建预测模型,再将前期观测加上预测的年代际增量得到最终预测结果。由于前期观测包含年代际信号,同时年代际增量可以放大预测信号和提高有效样本,该方法对于太平洋年代际振荡和华北夏季降水的年代际预测展现了很高的预测技巧(Huang et al.,2020a,2020b)。

值得一提的是,最近的研究还揭示了我国东部污染天气与气候变异的联系,发现气候变异、北极海冰和太平洋海温异常对中国大气污染的调控作用和机制(Yin et al.,2017,2019)。率先研发了大气污染的短期气候预测模型(Yin and Wang,2016)并开展了大气污染气候预测。从2016年开始针对京津冀和长三角区域冬季霾污染开展实时气候预测(尹志聪等,2019)。

在动力气候模式预测方面,利用全球大气环流模式CAM与区域气候模式RegCM进行嵌套,对我国夏季降水异常进行预测,并表现出不错的技巧(邓伟涛,2008);提出了基于EOF和SVD的模式误差订正方法(秦正坤等,2011)。最近,建立了基于SINTEX-F全球耦合海气环流模式的季节-年际气候预测系统(NUIST CFES1.0),并于2019年1月开始逐月发布滚动更新的未来2 a的气候预测试验(http://icar.nuist.edu.cn/)。SINTEX-F耦合模式由罗京佳教授主持研发,基于SINTEX-F模式的热带气候预测研究过去十几年来处于全球领先水平,对ENSO和IOD等热带气候的模拟性能优良,世界上首次成功提前1 a实时预测IOD和提前2 a实时预测ENSO,已被广泛应用于气候研究和季节-年际预测试验(Luo et al.,2005,2008)。21世纪以来,人工智能越来越多地应用于气候预测领域。最近,通过与韩国科学家合作(Ham et al.,2019),利用人工智能深度学习方法将ENSO指数预测时效提前至一年半,并达到80%左右的预测准确率。同时针对3种不同类型厄尔尼诺SST异常的不同空间分布,也有较高的预测准确率,弥补了目前传统统计和动力预测系统的不足。

5 展望

经过几十年的发展,短期气候预测取得了很大进步。60 a来南京信息工程大学在短期气候预测的科学研究、教育教学、人才培养等方面都取得了很多成果,为国家短期气候预测发展做出了重要的贡献。但是,气候系统涉及不同圈层、多时间尺度的相互作用,短期气候预测仍然是一个世界性的科学难题。为了更好满足国家防灾减灾的重大需求,加强短期气候预测相关的科学研究,提升短期气候预测水平,仍然是南京信息工程大学短期气候预测团队需要重点努力的方向。

未来一段时间,南京信息工程大学短期气候预测团队将会立足现有的特色和优势,在科学研究上紧盯国际科学前沿,进一步深入研究气候系统中多圈层相互作用的过程与机理,进一步认识次季节到季节、年际、年代际甚至更长时间尺度气候变率和极端气候的成因,进一步加强短期气候预测方法和理论的研究,努力在地球系统模式和预测系统研发方面做出南京信息工程大学的贡献,并立足解决中国短期气候预测问题,为提高次季节、季节、年际到年代际气候预测水平而不懈努力;与此同时,不忘教育初心,做好教学工作,为中国乃至全世界培养一批短期气候预测领域的优秀人才。

致谢:感谢周波涛教授、张文君教授、徐邦琪教授、张杰教授、袁潮霞教授、谭桂容教授、曾刚教授、施春华教授、俞淼教授、施宁教授、李忠贤副教授、卢楚翰副教授、孙善磊副教授、贾建颖副教授、邓伟涛博士、彭丽霞博士、金大超博士、黄艳艳博士、施健博士、郝鑫博士提供了相关素材和所做出的努力;感谢孙悦、齐雅静和许凌轩在文献整理过程中提供的帮助。

参考文献(References)

Bengtsson L,Schlese U,Roeckner E,et al.,1993.A two-tiered approach to long-range climate forecasting[J].Science,261(5124):1026-1029.

Bjerknes J,1969.Atmospheric teleconnections from the equatorial Pacific1[J].Mon Wea Rev,97(3):163-172.

Cai J X,Guan Z Y,Gao Q J,et al.,2010.Summertime temperature variations in the middle and lower reaches of Yangtze River and their related circulation anomalies in the past five decades[J].J Geogr Sci,20(4):581-598.

Cai J X,Guan Z Y,Ma F H,2016.Possible combined influences of absorbing aerosols and anomalous atmospheric circulation on summertime diurnal temperature range variation over the middle and lower reaches of the Yangtze River[J].J Meteor Res,30(6):927-943.

巢纪平,1977.大尺度海气相互作用和长期天气预报[J].大气科学,3:223-232. Chao J P,1977.Large-scale air-sea interaction and long-term weather forecast[J].Chin J Atmos Sci,3:223-232.(in Chinese).

Chen D,Strube C,Ern M,et al.,2019a.Global analysis for periodic variations in gravity wave squared amplitudes and momentum fluxes in the middle atmosphere[J].Ann Geophys,37(4):487-506.

陈海山,孙照渤,2002.陆气相互作用及陆面模式的研究进展[J].南京气象学院学报,25(2):277-288. Chen H S,Sun Z B,2002.Review of land atmosphere interaction and land surface model studies[J].J Nanjing Inst Meteor,25(2):277-288.(in Chinese).

陈海山,孙照渤,2003.欧亚积雪异常分布对冬季大气环流的影响I.观测研究[J].大气科学,27(3):304-316. Chen H S,Sun Z B,2003.The effects of Eurasian snow cover anomaly on winter atmospheric general circulation part I.observational studies[J].Chin J Atmos Sci,27(3):304-316.(in Chinese).

陈海山,孙照渤,2005a.陆面模式CLSM的设计及性能检验II.模式检验[J].大氣科学,29(2):272-282. Chen H S,Sun Z B,2005a.Design of a comprehensive land surface model and its validation part II.model validation[J].Chin J Atmos Sci,29(2):272-282.(in Chinese).

陈海山,孙照渤,2005b.陆面模式CLSM的设计及性能检验II.模式检验[J].大气科学,29(2):272-282. Chen H S,Sun Z B,2005b.Design of a comprehensive land surface model and its validation part II.model validation[J].Chin J Atmos Sci,29(2):272-282.(in Chinese).

陈海山,周晶,2013.土壤湿度年际变化对中国区域极端气候事件模拟的影响研究Ⅱ.敏感性试验分析[J].大气科学,37(1):1-13. Chen H S,Zhou J,2013.Impact of interannual soil moisture anomaly on simulation of extreme climate events in China.Part Ⅱ:sensitivity experiment analysis[J].Chin J Atmos Sci,37(1):1-13.(in Chinese).

Chen H,Zhang Y,2013.Sensitivity experiments of impacts of large-scale urbanization in East China on East Asian winter monsoon[J].Chin Sci Bull,58(7):809-815.

陈海山,孙照渤,闵锦忠,1999.欧亚大陆冬季积雪异常与东亚冬季风及中国冬季气温的关系[J].南京气象学院学报,22(4):609-615. Chen H S,Sun Z B,Min J Z,1999.The relationships between Eurasian winter snow cover anomaly and EAWM,China winter air temperature[J].J Nanjing Inst Meteor,22(4):609-615.(in Chinese).

陈海山,孙照渤,朱伟军,2003.欧亚积雪异常分布对冬季大气环流的影响Ⅱ.数值模拟[J].大气科学,27(5):847-860. Chen H S,Sun Z B,Zhu W J,2003.The effects of Eurasian snow cover anomaly on winter atmospheric general circulation part Ⅱ.model simulation[J].Chin J Atmos Sci,27(5):847-860.(in Chinese).

陈海山,熊明明,沙文钰,2010.CLM3.0对中国区域陆面过程的模拟试验及评估Ⅰ:土壤温度[J].气象科学,30(5):621-630. Chen H S,Xiong M M,Sha W Y,2010.Simulation of land surface processes over China and its validation PartⅠ:soil temperature[J].J Meteor Sci,30(5):621-630.(in Chinese).

Chen H,Dickinson R E,Dai Y J,et al.,2011.Sensitivity of simulated terrestrial carbon assimilation and canopy transpiration to different stomatal conductance and carbon assimilation schemes[J].Clim Dyn,36(5/6):1037-1054.

陈海山,李兴,华文剑,2015.近20年中国土地利用变化影响区域气候的数值模拟[J].大气科学,39(2):357-369. Chen H S,Li X,Hua W J,2015.Numerical simulation of the impact of land use/land cover change over China on regional climates during the last 20 years[J].Chin J Atmos Sci,39(2):357-369.(in Chinese).

Chen H,Zhang Y,Yu M,et al.,2016.Large-scale urbanization effects on eastern Asian summer monsoon circulation and climate[J].Clim Dyn,47(1):117-136.

Chen H,Teng F D,Zhang W X,et al.,2017.Impacts of anomalous midlatitude cyclone activity over east Asia during summer on the decadal mode of East Asian summer monsoon and its possible mechanism[J].J Climate,30(2):739-753.

陳海山,穆梦圆,尹伊,等,2019.CLM4.5冠层截留方案的敏感性试验与改进[J].大气科学学报,42(3):334-347. Chen H S,Mu M Y,Yin Y,et al.,2019.Sensitivity study and improvement of canopy interception scheme in CLM4.5[J].Trans Atmos Sci,42(3):334-347.(in Chinese).

Chen H,Zhang W,Zhou B,et al.,2019b.Impact of nonuniform land surface warming on summer anomalous extratropical cyclone activity over East Asia[J].J Geophys Res-Atmos,124(19):10306-10320.

Chen H,Yu B,Zhou B T,et al.,2020.Role of local atmospheric forcing and land-atmosphere interaction in recent land surface warming in the midlatitudes over East Asia[J].J Climate,33(6):2295-2309.

陈菊英,1991.中国旱涝分析与长期预报研究[M].北京:中国农业出版社. Chen J Y,1991.Chinas drought and flood analysis and long-term forecast research [M].Beijing:China Agriculture Press.(in Chinese).

陈丽娟,李维京,1999.月动力延伸预报产品的评估和解释应用[J].应用气象学报,10(4):486-490. Chen L J,Li W J,1999.The score skill and interpretation of monthly dynamic extended range forecast[J].J Appl Meteor Sci,10(4):486-490.(in Chinese).

陈丽娟,李维京,刘绿柳,等,2008.中国区域月气候预测方法和预测能力评估[J].高原气象,27(4):838-843. Chen L J,Li W J,Liu L,et al.,2008.Assessment and analysis of monthly climate prediction in China[J].Plateau Meteor,27(4):838-843.(in Chinese).

Chen W,Guan Z Y,2017.A joint monsoon index for East Asian-Australian monsoons during boreal summer[J].Atmos Sci Lett,18(10):403-408.

陈兴芳,赵振国,2000.中国汛期降水预测研究及应用[M].北京:气象出版社. Chen X F,Zhao Z G,2000.Research and application of precipitation forecast in flood season in China [M].Beijing:China Meteorological Press.(in Chinese).

丑纪范,1986.长期数值天气预报[M].北京:气象出版社. Chou J F,1986.Long-term numerical weather forecast[M].Beijing:China Meteorological Press.(in Chinese).

丑纪范,徐明,2001.短期气候预测的进展和前景[J].科学通报,46(11):890-895. Chou J F,Xu M,2001.Progress and prospects of short-term climate prediction[J].Chin Sci Bull,46(11):890-895.(in Chinese).

戴永久,曾庆存,1996.陆面过程研究[J].水科学进展,7(S1):40-53. Dai Y J,Zeng Q C,1996.Study on land surface process[J].Adv Water Sci,7(S1):40-53.(in Chinese).

戴永久,曾慶存,王斌,1997.一个简单的陆面过程模式[J].大气科学,21(6):705-716. Dai Y J,Zeng Q C,Wang B,1997.A simple land surface model for use in AGCM[J].Chin J Atmos Sci,21(6):705-716.(in Chinese).

邓伟涛,2008.利用CAM-RegCM嵌套模式预测我国夏季降水异常[D].南京:南京信息工程大学. Deng W T,2008.Prediction of summer precipitation anomalies over China by CAM-RegCM nested model[D].Nanjing:Nanjing University of Information Science and Technology.(in Chinese).

邓伟涛,孙照渤,曾刚,等,2009.中国东部夏季降水型的年代际变化及其与北太平洋海温的关系[J].大气科学,33(4):835-846. Deng W T,Sun Z B,Zeng G,et al.,2009.Interdecadal variation of summer precipitation pattern over eastern China and its relationship with the North Pacific SST[J].Chin J Atmos Sci,33(4):835-846.(in Chinese).

邓兴秀,孙照渤,1994.北半球风暴轴的时间演变特征[J].南京气象学院学报,17(2):165-170. Deng X X,Sun Z B,1994.Characteristics of temporal evolution of northern storm tracks[J].J Nanjing Inst of Meteor,17(2):165-170.(in Chinese).

丁一汇,2004.我国短期气候预测业务系统[J].气象,30(12):11-16. Ding Y H,2004.China operational short-range climate prediction system[J].Meteor Mon,30(12):11-16.(in Chinese).

丁一汇,刘芸芸,2008.亚洲-太平洋季风区的遥相关研究[J].气象学报,66(5):670-682. Ding Y H,Liu Y Y,2008.A study of the teleconnection in the Asian-Pacific monsoon region[J].Acta Meteorol Sin,66(5):670-682.(in Chinese).

段安民,吴洪宝,1998.全球热带海表温度异常的POP预报模型[J].南京气象学院学报,21(3):346-353. Duan A M,Wu H B,1998.A POP prediction model of SSTA in the global tropical oceans[J].J Nanjing Inst of Meteor,21(3):346-353.(in Chinese).

Gao C,Chen H,Sun S,et al.,2018a.Regional features and seasonality of land-atmosphere coupling over eastern China[J].Adv Atmos Sci,35(6):689-701.

Gao C J,Chen H S,Li G,et al.,2019a.Land-atmosphere interaction over the Indo-China Peninsula during spring and its effect on the following summer climate over the Yangtze River basin[J].Clim Dyn,53(9/10):6181-6198.

Gao C J,Li G,Chen H S,et al.,2020a.Interdecadal change in the effect of spring soil moisture over the Indo-China Peninsula on the following summer precipitation over the Yangtze River basin[J].J Climate,33(16):7063-7082.

Gao Y,Hsu P C,Hsu H H,2016.Assessments of surface latent heat flux associated with the Madden-Julian Oscillation in reanalyses[J].Clim Dyn,47:1755-1774.

Gao Y X,Klingaman N P,DeMott C A,et al.,2018b.Diagnosing ocean feedbacks to the BSISO:SST-modulated surface fluxes and the moist static energy budget[J].J Geophys Res Atmos,124:146-170.

Gao Y X,Hsu P C,Li T,2019b.Effects of high-frequency activity on latent heat flux of MJO[J].Clim Dyn,52(3/4):1471-1485.

Gao Y X,Hsu P C,Chen L,et al.,2020b.Effects of high-frequency surface wind on the intraseasonal SST associated with the Madden-Julian oscillation[J].Clim Dyn,54(9/10):4485-4498.

葛玲,陸丹,1989.南亚高压异常与平流层环流的春季转变[J].南京气象学院学报,12(3):259-269. Ge L,Lu D,1989.The anomaly of the South-Asian High in connection with the reversal of the stratospheric circulation in spring[J].J Nanjing Inst Meteor,12(3):259-269.(in Chinese).

葛玲,章基嘉,李川,1991.北半球平流层环流在厄尔尼诺年和反厄尔尼诺年的异常[J].南京气象学院学报,14(3):449-454. Ge L,Zhang J J,Li C,1991.Northern stratospheric circulation anomalies during El Nio and anti-El Nio years[J].J Nanjing Inst Meteor,14(3):449-454.(in Chinese).

Geng X,Zhang W,Stuecker M F,et al.,2017a.Strong sub-seasonal wintertime cooling over East Asia and Northern Europe associated with super El Nio events[J].Sci Rep,7:3770.

Geng X,Zhang W,Stuecker M F,et al.,2017b.Decadal modulation of the ENSO-East Asian winter monsoon relationship by the Atlantic Multidecadal Oscillation[J].Clim Dyn,49(7/8):2531-2544.

Geng X,Zhang W J,Jin F F,et al.,2018.A new method for interpreting nonstationary running correlations and its application to the ENSO-EAWM relationship[J].Geophys Res Lett,45(1):327-334.

Geng X,Zhang W J,Jin F F,et al.,2020.Modulation of the relationship between ENSO and its combination mode by the Atlantic multidecadal oscillation[J].J Climate,33(11):4679-4695.

Gill A E,1980.Some simple solutions for heat-induced tropical circulation[J].Quart J Roy Meteor Soc,106(449):447-462.

Guan Z Y,Yamagata T,2001.Interhemispheric oscillations in the surface air pressure field[J].Geophys Res Lett,28(2):263-266.

Guan Z Y,Lu C H,Mei S L,et al.,2010.Seasonality of interannual inter-hemispheric oscillations over the past five decades[J].Adv Atmos Sci,27(5):1043-1050.

Guan Z Y,Han J,Li M G,2011.Circulation patterns of regional mean daily precipitation extremes over the middle and lower reaches of the Yangtze River during the boreal summer[J].Clim Res,50:171-185.

Guan Z Y,Zhang Q,Li M G,2015.Interannual variations in atmospheric mass over liquid water oceans,continents,and sea-ice-covered arctic regions and their possible impacts on the boreal winter climate[J].J Geophys Res Atmos,120:11846-11861.

Guo D,Su Y C,Shi C H,et al.,2015.Double core of ozone valley over the Tibetan Plateau and its possible mechanisms[J].J Atmos Sol-Terr Phys,130/131:127-131.

Guo D,Su Y C,Zhou X J,et al.,2017.Evaluation of the trend uncertainty in summer ozone valley over the Tibetan Plateau in three reanalysis datasets[J].J Meteor Res,31(2):431-437.

Ham Y G,Kim J H,Luo J J,2019.Deep learning for multi-year ENSO forecasts[J].Nature,573(7775):568-572.

He S P,Xu X P,Furevik T,et al.,2020.Eurasian cooling linked to the vertical distribution of Arctic warming[J].Geophys Res Lett,47(10).doi:10.1029/2020gl087212.

Hoskins B J,Karoly D J,1981.The steady linear response of a spherical atmosphere to thermal and orographic forcing[J].J Atmos Sci,38(6):1179-1196.

Hoskins B J,Pearce R,1987.大氣中大尺度动力过程[M].孙照渤,译.北京:气象出版社:175-206. Hoskins B J,Pearce R,1987.Large scale dynamical processes in the atmosphere [M].Sun Z B,Translated.Beijing:China Meteorological Press:175-206.(in Chinese).

Hsu P C,Xiao T,2017.Differences in the initiation and development of Madden-Julian Oscillation over the Indian Ocean associated with two types of El Nio[J].J Climate,30:1397-1415.

Hsu P C,Li T,Lin Y C,et al.,2012.A spatial-temporal projection method for seasonal prediction of spring rainfall in northern Taiwan[J].J Meteor Soc Japan,90(2):179-190.

Hsu P C,Li T,You L J,et al.,2015.A spatial-temporal projection model for 10—30 day rainfall forecast in South China[J].Clim Dyn,44(5/6):1227-1244.

Hu D Z,Guan Z Y,2018.Decadal relationship between the stratospheric Arctic vortex and Pacific decadal oscillation[J].J Climate,31(9):3371-3386.

Hu D Z,Tian W S,Guan Z Y,et al.,2016.Longitudinal asymmetric trends of tropical cold-point tropopause temperature and their link to strengthened walker circulation[J].J Climate,29(21):7755-7771.

Hu D Z,Guan Z Y,Tian W S,et al.,2018.Recent strengthening of the stratospheric Arctic vortex response to warming in the central North Pacific[J].Nat Commun,9:1697.

Hu D Z,Guan Z Y,Tian W S,2019.Signatures of the Arctic stratospheric ozone in northern Hadley circulation extent and subtropical precipitation[J].Geophys Res Lett,46(21):12340-12349.

Hu J G,Li T,Xu H M,et al.,2017.Lessened response of boreal winter stratospheric polar vortex to El Nio in recent decades[J].Clim Dyn,49(1/2):263-278.

Hua W J,Chen H S,2013a.Impacts of regional-scale land use/land cover change on diurnal temperature range[J].Adv Clim Chang Res,4(3):166-172.

Hua W J,Chen H S,2013b.Recognition of climatic effects of land use/land cover change under global warming[J].Chin Sci Bull,58(31):3852-3858.

Hua W J,Chen H S,Sun S L,2014.Uncertainty in land surface temperature simulation over China by CMIP3/CMIP5 models[J].Theor Appl Climatol,117(3/4):463-474.

Hua W J,Chen H S,Li X,2015a.Effects of future land use change on the regional climate in China[J].Sci China Earth Sci,58(10):1840-1848.

Hua W J,Chen H S,Sun S L,et al.,2015b.Assessing climatic impacts of future land use and land cover change projected with the CanESM2 model[J].Int J Climatol,35(12):3661-3675.

黃荣辉,2006.我国重大气候灾害的形成机理和预测理论研究[J].地球科学进展,21(6):564-575. Huang R H,2006.Progresses in research on the formation mechanism and prediction theory of severe climatic disasters in China[J].Adv Earth Sci,21(6):564-575.(in Chinese).

黄荣辉,岸保勘三郎,1983.关于冬季北半球定常行星波传播另一波导的研究[J].中国科学B辑,10:940-950. Huang R H,Gambo K,1983.Study on another waveguide for stationary planetary wave propagation in the northern hemisphere in winter[J].Sci China(Ser B),13(10):940-940.(in Chinese).

Huang Y Y,Wang H J,2020a.A possible approach for decadal prediction of the PDO[J].J Meteor Res,34(1):63-72.

Huang Y Y,Wang H J,2020b.Is the regional precipitation predictable in decadal scale? A possible approach for the decadal prediction of the summer precipitation over North China[J].Earth Space Sci,7(1).doi:10.1029/2019ea000986.

Huang Z C,Zhang W J,Geng X,et al.,2020.Recent shift in the state of the western Pacific subtropical high due to ENSO change[J].J Climate,33(1):229-241.

Giles A A,1963.長期天气预告原理[M].章基嘉,译.北京:科学出版社. Giles A A,1963.Principles of long-term weather forecasting[M].Zhang J J,Translated.Beijing:Science Press.(in Chinese).

Jia J Y,Preusse P,Ern M,et al.,2014.Sea surface temperature as a proxy for convective gravity wave excitation:a study based on global gravity wave observations in the middle atmosphere[J].Ann Geophys,32(11):1373-1394.

Jin D C,Guan Z Y,2017.Summer rainfall seesaw between Hetao and the middle and lower reaches of the Yangtze River and its relationship with the North Atlantic Oscillation[J].J Climate,30(17):6629-6643.

Jin D C,Guan Z Y,Tang W Y,2013.The extreme drought event during winter—spring of 2011 in East China:combined influences of teleconnection in midhigh latitudes and thermal forcing in maritime continent region[J].J Climate,26(20):8210-8222.

Jin D C,Guan Z Y,Huo L W,et al.,2017.Possible impacts of spring sea surface temperature anomalies over South Indian Ocean on summer rainfall in Guangdong-Guangxi region of China[J].Clim Dyn,49(9/10):3075-3090.

Kalnay E,1995.Numerical weather prediction[J].Comput Phys,9(5):488.

Ke D,Guan Z Y,2014.Variations in regional mean daily precipitation extremes and related circulation anomalies over central China during boreal summer[J].J Meteor Res,28(4):524-539.

Leith C E,1974.Theoretical skill of Monte Carlo forecasts[J].Mon Wea Rev,102(6):409-418.

李崇银,1988.中国东部地区的暖冬与厄尔尼诺[J].科学通报,33:283-286. Li C Y,1988.Warm winter and El Nio in Eastern China[J].Chin Sci Bull,33:283-286.(in Chinese).

李崇银,2000.气候动力学引论[M].2版.北京:气象出版社. Li C Y,2000.Introduction to climate dynamics[M].2rd ed.Beijing:China Meteorological Press.(in Chinese).

李春,孙照渤,陈海山,2002.华北夏季降水的年代际变化及其与东亚地区大气环流的联系[J].南京气象学院学报,25(4):455-462. Li C,Sun Z B,Chen H S,2002.Inter-decadal variation of North China summer precipitation and its relation with East Asian general circulation[J].J Nanjing Inst Meteor,25(4):455-462.(in Chinese).

Li M G,Guan Z Y,Jin D C,et al.,2016.Anomalous circulation patterns in association with two types of daily precipitation extremes over southeastern China during boreal summer[J].J Meteor Res,30(2):183-202.

李启芬,刘婷婷,陈海山,等,2016.基于土壤湿度和年际增量方法的中国夏季气温预测试验[J].气象科学,36(5):629-638. Li Q F,Liu T T,Chen H S,et al.,2016.Prediction of summer temperature in China based on soil moisture and interannual increment approach[J].J Meteor Sci,36(5):629-638.(in Chinese).

李天明,徐邦琪,2017.熱带气候动力学引论[M].北京:科学出版社. Li T,Hsu P C,2017.Fundamental of tropical climate dynamics[M].Beijing:Science Press.(in Chinese).

Li T,Ling J,Hsu P C,2020.Madden-Julian Oscillation:its discovery,dynamics and impact on East Asia[J].J Meteor Res,34(1):20-42.

李维京,2012.现代气候业务[M].北京:气象出版社. Li W,2012.Modern climate operation [M].Beijing:China Meteorological Press.(in Chinese).

李维京,陈丽娟,1999.动力延伸预报产品释用方法的研究[J].气象学报,57(3):338-345. Li W J,Chen L J,1999.Research on reexplanation and reanalysis method of dynamical extended range forecast products[J].Acta Meteorol Sinica,57(3):338-345.(in Chinese).

李维京,纪立人,2000.月动力延伸预报研究[M].北京:气象出版社. Li W,Ji L,2000.Research on dynamical extended range forecast [M].Beijing:China Meteorological Press.(in Chinese).

Li W K,Guo W D,Qiu B,et al.,2018.Influence of Tibetan Plateau snow cover on East Asian atmospheric circulation at medium-range time scales[J].Nat Commun,9:4243.

Li W K,Qiu B,Guo W D,et al.,2020a.Intraseasonal variability of Tibetan Plateau snow cover[J].Int J Climatol,40(7):3451-3466.

Li W K,Qiu B,Guo W D,et al.,2020b.Rapid response of the East Asian trough to Tibetan Plateau snow cover[J].Int J Climatol.doi:10.1002/joc.6618.

Li X,Chen H S,Liao H,et al.,2017.Potential effects of land cover change on temperature extremes over Eurasia:current versus historical experiments[J].Int J Climatol,37:59-74.

Li X,Chen H S,Wei J F,et al.,2018.Inconsistent responses of hot extremes to historical land use and cover change among the selected CMIP5 models[J].J Geophys Res Atmos,123(7):3497-3512.

Li Y,Li J P,Zhang W J,et al.,2015a.Ocean dynamical processes associated with the tropical Pacific cold tongue mode[J].J Geophys Res Oceans,120(9):6419-6435.

李忠贤,陈海山,倪东鸿,等,2012.土壤湿度对东亚夏季气候潜在可预报性影响的数值模拟[J].大气科学学报,36(4):423-430. Li Z,Chen H,Ni D,et al.,2012.Numerical simulation of effect of soil moisture variability on potential predictability of summer climate over East Asia[J].Trans Atmos Sci,36(4):423-430.(in Chinese).

Li Z X,Zhou T J,Chen H S,et al.,2015b.Modelling the effect of soil moisture variability on summer precipitation variability over East Asia[J].Int J Climatol,35(6):879-887.

廖荃荪,赵振国,1992.我国东部夏季降水的季度预报方法[J].应用气象学报,4(3):338-345. Liao Q,Zhao Z,1992.A seasonal forecasting scheme on precipitation distribution in summer in China[J].J Appl Meteor Sci,4(3):338-345.(in Chinese).

Liu R Q,Fu Y Y,2019.Verification of an approximate thermodynamic equation with application to study on arctic stratospheric temperature changes[J].J Atmos Sci,76(1):3-9.

刘婷婷,陈海山,蒋薇,等,2016.基于土壤湿度和年际增量方法的我国夏季降水预测试验[J].大气科学,40(3):591-603. Liu T T,Chen H S,Jiang W,et al.,2016.Summer precipitation prediction in China using soil moisture and the year-to-year increment approach[J].Chin J Atmos Sci,40(3):591-603.(in Chinese).

Liu W G,Wang G L,Yu M,et al.,2020a.Multimodel future projections of the regional vegetation-climate system over East Asia:comparison between two ensemble approaches[J].J Geophys Res Atmos,125(13).doi:10.1029/2019jd031967.

Liu W G,Wang G L,Yu M,et al.,2020b.Projecting the future vegetation-climate system over East Asia and its RCP-dependence[J].Clim Dyn,55(9/10):2725-2742.

Lorenz E N,1969.Atmospheric predictability as revealed by naturally occurring analogues[J].J Atmos Sci,26(4):636-646.

Lorenz E N,1976.大气环流的性质和理论[M].北京:科学出版社. Lorenz E N,1976.The nature and theory of the general circulation of the atmosphere[M].Beijing:Meteorological Press.(in Chinese).

Lu C H,Guan Z Y,2009.On the interannual variation in spring atmospheric inter-hemispheric oscillation linked to synchronous climate in China[J].Prog Nat Sci,19(9):1125-1131.

Lu C H,Guan Z Y,Mei S L,et al.,2008.Seasonal cycle of atmospheric mass interhemispheric oscillation[J].China Sci Bull,53(20):3226-34.

Lu C H,Guan Z Y,Cai J X,2010.Interhemispheric atmospheric mass oscillation and its relation to interannual variations of the Asian monsoon in boreal summer[J].Sci China Earth Sci,53(9):1343-1350.

Luo J J,Masson S,Behera S,et al.,2005.Seasonal climate predictability in a coupled OAGCM using a different approach for ensemble forecasts[J].J Climate,18(21):4474-4497.

Luo J J,Masson S,Behera S K,et al.,2008.Extended ENSO predictions using a fully coupled ocean-atmosphere model[J].J Climate,21(1):84-93.

羅哲贤,1985.植被覆盖度对干旱气候影响的数值试验[J].地理研究,4(2):1-8. Luo Z X,1985.Numerical experiments about the effects of the degree of vegetation cover on drought climate[J].Geogr Res,4(2):1-8.(in Chinese).

Miyakoda K,Gordon T,Caverly R,et al.,1983.Simulation of a blocking event in January 1977[J].Mon Wea Rev,111(4):846-869.

Miyakoda K,Sirutis J,Ploshay J,1986.One-month forecast experiments:without anomaly boundary forcings[J].Mon Wea Rev,114(12):2363-2401.

Namias J,1953.Thirty-day forecasting:a review of a ten years experiment[J].Meteor Monogr,2(6):1-83.

Namias J,1968.Long range weather forecasting:history,current status and outlook[J].Bull Am Meteorol Soc,49:438-470.

Palmer T N,Sun Z B,1985.A modelling and observational study of the relationship between sea surface temperature in the North West Atlantic and the atmospheric general circulation[J].Quart J Roy Meteor Soc,111(470):947-975.

彭麗霞,朱伟军,李忠贤,等,2016.南亚高压强度年代际变化及其与热带副热带海温关系[J].热带气象学报,32(2):145-154. Peng L X,Zhu W J,Li Z X,et al.,2016.The interdecadal variation of south Asian high and its association with the SST of tropical and subtropical regions[J].J Trop Meteor,32(2):145-154.(in Chinese).

Phillips N A,1956.The general circulation of the atmosphere:a numerical experiment[J].Quart J Roy Meteor Soc,82(352):123-164.

覃皓,郭栋,施春华,等,2018.南亚高压与邻近地区臭氧变化的相互作用[J].大气科学,42(2):421-434. Qin H,Guo D,Shi C H,et al.,2018.The interaction between variations of South Asia high and ozone in the adjacent regions[J].Chin J Atmos Sci,42(2):421-434.(in Chinese).

秦正坤,林朝晖,陈红,等,2011.基于EOF/SVD的短期气候预测误差订正方法及其应用[J].气象学报,69(2):289-296. Qin Z K,Lin Z H,Chen H,et al.,2011.The bias correction methods based on the EOF/SVD for short-term climate prediction and their applications[J].Acta Meteorol Sinica,69(2):289-296.(in Chinese).

Rao J,Ren R C,Chen H S,et al.,2018.The stratospheric sudden warming event in February 2018 and its prediction by a climate system model[J].J Geophys Res Atmos,123(23):13332-13345.

Rao J,Ren R C,Chen H S,et al.,2019a.Predictability of stratospheric sudden warmings in the Beijing climate center forecast system with statistical error corrections[J].J Geophys Res Atmos,124(15):8385-8400.

Rao J,Yu Y Y,Guo D,et al.,2019b.Evaluating the Brewe-Dobson circulation and its responses to ENSO,QBO,and the solar cycle in different reanalyses[J].Earth Planet Phys,3(2):166-181.

Rasmusson E M,Carpenter T H,1982.Variations in tropical sea surface temperature and surface wind fields associated with the Southern Oscillation/El Nio[J].Mon Wea Rev,110(5):354-384.

Rasmusson E M,Wallace J M,1983.Meteorological aspects of the El Nio/Southern Oscillation[J].Science,222(4629):1195-1202.

任宏利,丑紀范,2005.统计-动力相结合的相似误差订正法[J].气象学报,63(6):988-993. Ren H L,Chou J F,2005.Analogue correction method of errors by combining both statistical and dynamical methods together[J].Acta Meteorol Sin,63(6):988-993.(in Chinese).

任宏利,丑纪范,2007.动力相似预报的策略和方法研究[J].中国科学(D辑)地球科学,37(8):1101-1109. Ren H,Chou J,2005.Strategy and method of dynamical analogue prediction[J].Sci China(Ser D),37(8):1101-1109.(in Chinese).

Shi C H,Xu T,Guo D,et al.,2017.Modulating effects of planetary wave on a stratospheric sudden warming event in 2005[J].J Atmos Sci,74(5):1549-1559.

Shi C H,Gao Y N,Cai J,et al.,2018.Response of the dynamic and thermodynamic structure of the stratosphere to the solar cycle in the boreal winter[J].J Atmos Sol-Terr Phys,169:122-129.

施能,1996.近40年东亚冬季风强度的多时间尺度变化特征及其与气候的关系[J].应用气象学报,7(2):175-182. Shi N,1996.Features of the East Asian winter monsoon intensity on multiple time scale in recent 40 years and their relation to climate[J].J Appl Meteor Sci,7(2):175-182.(in Chinese).

施能,王建新,1992.稳健回归的反复加权最小二乘迭代解法及其应用[J].应用气象学报,3(3):353-358. Shi N,Wang J,1992.A method of iteratively reweighted least square and its application[J].J Appl Meteor Sci,3(3):353-358.(in Chinese).

Shi N,Zhu Q G,1996.An abrupt change in the intensity of the East Asian summer monsoon index and its relationship with temperature and precipitation over East China[J].Int J Climatol,16(7):757-764.

宋连春,肖风劲,李威,2013.我国现代气候业务现状及未来发展趋势[J].应用气象学报,24(5):513-520. Song L C,Xiao F J,Li W,2013.The current status and future development of modern climate operation in China[J].J Appl Meteor Sci,24(5):513-520.(in Chinese).

Song Y M,Wang Z F,Qi L L,et al.,2019.Soil moisture memory and its effect on the surface water and heat fluxes on seasonal and interannual time scales[J].J Geophys Res Atmos,124(20):10730-10741.

Sun B,Wang H J,Zhou B T,2019a.Climatic condition and synoptic regimes of two intense snowfall events in eastern China and implications for climate variability[J].J Geophys Res Atmos,124(2):926-941.

Sun B,Wang H J,Zhou B T,2019b.Interdecadal variation of the relationship between east Asian water vapor transport and tropical Pacific sea surface temperatures during January and associated mechanisms[J].J Climate,32(21):7575-7594.

Sun S L,Chen H S,Ju W M,et al.,2012.Past and future changes of streamflow in Poyang Lake Basin,Southeastern China[J].Hydrol Earth Syst Sci,16(7):2005-2020.

Sun S L,Chen H S,Ju W M,et al.,2014.On the attribution of the changing hydrological cycle in Poyang Lake Basin,China[J].J Hydrol,514:214-225.

Sun S L,Chen H S,Wang G J,et al.,2016.Shift in potential evapotranspiration and its implications for dryness/wetness over Southwest China[J].J Geophys Res Atmos,121(16):9342-9355.

Sun S L,Chen H S,Sun G,et al.,2017.Attributing the changes in reference evapotranspiration in southwestern China using a new separation method[J].J Hydrometeorol,18(3):777-798.

Sun Z B,1988.The correlations between SST and summer precipitation over eastern China and the effect of the SST anomaly in the South China Sea on the summer monsoon and precipitation[J].J Geophys Res,2(4):426-435.

Sun Z B,1994.Empirical-statistical techniques seasonal forecasting[J].World Meteorol Organ Bull,43(3):216-220.

孙照渤,1992.热带外大气中40~60天振荡的统计特征[C]//章基嘉.长期天气预报论文集.北京:海洋出版社:2935. Sun Z,1992.The statistical features of the 40—60 days fluctuations [C]//Zhang J.The paper reels of long-term weather forecast.Beijing:Ocean Press:2395.(in Chinese).

孙照渤,朱伟军,1998.北半球冬季风暴轴维持的一种可能机制[J].南京气象学院学报,21(3):299-306. Sun Z,Zhu W,1998.A possible mechanism for the maintenance of the Northern Hemisphere wintertime storm tracks[J].J Nanjing Inst Meteor,21(3):299-306.(in Chinese).

孙照渤,章基嘉,Folland C K,1990.准九个月震荡的统计特征及其与SST的关系[C]//章基嘉.长期天气预报论文集.北京:气象出版社. Sun Z B,Zhang J J,Folland C K,1990.The statistical features of the quasi-90 days fluctuations[C]//Zhang J.The paper reels of long-term weather forecast.Beijing:China Meteorological Press:2395.(in Chinese).

孙照渤,李云康,章基嘉,1991a.夏半年青藏高原及附近地区30~60天振荡的分布特征[J].南京气象学院学报,14(4):497-502. Sun Z,Li Y,Zhang J,1991,Detection of the 30—60 day oscillation over the Qinghai-Xizang plateau and its surrounding areas during summer time[J].J Nanjing Inst Meteorol,14(4):497-502.(in Chinese).

孫照渤,章基嘉,华莱士J M,1991b.冬季北大西洋地区海表温度与500百帕高度的奇异值分解[J].南京气象学院学报,14(3):287-293. Sun Z,Zhang J,Wallace J M,1991.Singular value decomposition analysis of SST and 500 hPa height over the North Atlantic in winter months[J].J Nanjing Inst Meteor,14(3):287-293.(in Chinese).

孙照渤,谭桂容,赵振国,1998.人工神经网络方法在夏季降水预报中的应用[J].南京气象学院学报,21(1):47-52. Sun Z B,Tan G R,Zhao Z G,1998.ANN prediction of summer rainfall-patterns of East China[J].J Nanjing Inst Meteor,21(1):47-52.(in Chinese).

孙照渤,闵锦忠,陈海山,2000.冬季积雪的异常分布型及其与冬、夏大气环流的耦合关系[J].南京气象学院学报,23(4):463-468. Sun Z B,Min J Z,Chen H S,2000.Patterns of winter snow depth anomaly with their coupled relation to atmospheric circulation in summer and winter[J].J Nanjing Inst Meteor,23(4):463-468.(in Chinese).

孙照渤,陈海山,谭桂容,等,2010.短期气候预测基础[M].北京:气象出版社. Sun Z,Chen H,Tan G,et al.,2010.Elements of short period climate predications[M].Beijing:China Meteorological Press:2395.(in Chinese).

孙照渤,谭桂容,赵振国,等,2013.中国东部夏季雨型的人工神经网络集合预测[J].大气科学学报,36(1):1-6. Sun Z,Tan G,Zhao Z,et al.,2013.Ensemble prediction of summer rainfall patterns over eastern China based on artificial neural networks[J].Trans Atmos Sci,36(1):1-6.(in Chinese).

涂长望,1937.中国天气与世界大气的浪动及其长期预告中国夏季旱涝的应用[J].气象,13(11):647-697. Tu C W,1937.Weather in China and wave motion in the world atmosphere and its application in long-term forecast of summer drought and flood in China[J].Meteor Mon,13(11):647-697.(in Chinese).

Walker G T,1910.Correlations in seasonal variations[J].Weather Memo India Meteor Dept,21:22-45.

Wallace J M,Gutzler D S,1981.Teleconnections in the geopotential height field during the Northern Hemisphere winter[J].Mon Wea Rev,109(4):784-812.

王迪,陳海山,赵昶昱,2018.春季西亚地表热力异常与初夏东北冷涡活动年代际变化的联系[J].大气科学,42(1):70-80. Wang D,Chen H S,Zhao C Y,2018.Connection between spring land surface thermal anomalies over West Asia and decadal variation of early summer cold vortex in Northeast China[J].Chin J Atmos Sci,42(1):70-80.(in Chinese).

王会军,1997.试论短期气候预测的不确定性[J].气候与环境研究,2(4):12-17. Wang H J,1997.A preliminary study on the uncertainty of short-term climate prediction[J].Clim Environ Res,2(4):12-17.(in Chinese).

王会军,周广庆,林朝晖,2002.我国近年来短期气候预测研究的若干进展[J].气候与环境研究,7(2):220-226. Wang H J,Zhou G Q,Lin Z H,2002.Reviews on study of the short-term climate prediction in China[J].Clim Environ Res,7(2):220-226.(in Chinese).

王会军,孙建奇,郎咸梅,等,2008.几年来我国气候年际变异和短期气候预测研究的一些新成果[J].大气科学,32(4):806-814. Wang H J,Sun J Q,Lang X M,et al.,2008.Some new results in the research of the interannual climate variability and short-term climate prediction[J].Chin J Atmos Sci,32(4):806-814.(in Chinese).

王会军,张颖,郎咸梅,2010.论短期气候预测的对象问题[J].气候与环境研究,15(3):225-228. Wang H J,Zhang Y,Lang X M,2010.On the predictand of short-term climate prediction[J].Clim Environ Res,15(3):225-228.(in Chinese).

王会军,范可,郎咸梅,等,2012.我国短期气候预测的新理论、新方法和新技术[M].北京:气象出版社. Wang H J,Fan K,Lang X M,et al.,2012.Advances in climate prediction theory and technique of China [M].Beijing:China Meteorological Press.(in Chinese).

王建新,施能,甄宗环,1992.混合回归模型及其在长江中下游气象预报中的应用[J].气象科学,12(3):277-282. Wang J N,Shi N,Zhen Z H,1992.Mixed regressive model and its application to the meteorological prediction over the middle and lower reaches of the Changjiang River[J].J Meteor Sci,12(3):277-282.(in Chinese).

王盘兴,卢楚翰,管兆勇,等,2007.闭合气压系统环流指数的定义及计算[J].南京气象学院学报,30(6):730-735. Wang P X,Lu C H,Guan Z Y,et al.,2007.Definition and calculation of three circulation indices for closed pressure systems[J].J Nanjing Inst Meteor,30(6):730-735.(in Chinese).

王绍武,1962.东亚大气活动中心的多年变化与我国的气候振动[J].气象学报,32(1):19-36. Wang S W,1962.The multi-year change of East Asian atmospheric activity center and the climate oscillation in China[J].Acta Meteorol Sin,32(1):19-36.(in Chinese).

王绍武,赵宗慈,龚道溢,等,2005.现代气候学概论[M].北京:气象出版社. Wang S W,Zhao Z C,Gong D Y,et al.,2005.Introduction to modern climatology[M].Beijing:China Meteorological Press.(in Chinese).

王秀荣,吴洪宝,2000.热带印度洋-太平洋地区海表温度异常的线性转置预报模型[J].南京气象学院学报,23(2):218-225. Wang X R,Wu H B,2000.Linear inverse modeling for predicting the SSTA of tropical Indian-Pacific[J].J Nanjing Inst Meteor,23(2):218-225.(in Chinese).

Wei J F,Dirmeyer P A,2019.Sensitivity of land precipitation to surface evapotranspiration:a nonlocal perspective based on water vapor transport[J].Geophys Res Lett,46(21):12588-12597.

Wen N,Li L,Luo J J,2020.Direct impacts of different types of El Nio in developing summer on East Asian precipitation[J].Clim Dyn,55(5/6):1087-1104.

吳国雄,毛江玉,段安民,等,2004.青藏高原影响亚洲夏季气候研究的最新进展[J].气象学报,62(5):528-540. Wu G X,Mao J Y,Duan A M,et al.,2004.Recent progress in the study on the impacts of Tibetan Plateau on Asian summer climate[J].Acta Meteorol Sinica,62(5):528-540.(in Chinese).

吴国雄,刘屹岷,刘新,等,2005.青藏高原加热如何影响亚洲夏季的气候格局[J].大气科学,29(1):47-56. Wu G X,Liu Y M,Liu X,et al.,2005.How the heating over the Tibetan Plateau affects the Asian climate in summer[J].Chin J Atmos Sci,29(1):47-56.(in Chinese).

吴国雄,李建平,周天军,等,2006.影响我国短期气候异常的关键区:亚印太交汇区[J].地球科学进展,21(11):1109-1118. Wu G X,Li J P,Zhou T J,et al.,2006.The key region affecting the short-term climate variations in China:the joining area of Asia and Indian-Pacific ocean[J].Adv Earth Sci,21(11):1109-1118.(in Chinese).

吴洪宝,吴蕾,2005.气候变率诊断和预测方法[M].北京:气象出版社. Wu H B,Wu L,2005.Climate variability diagnosis and prediction method[M].Beijing:China Meteorological Press.(in Chinese).

吴洪宝,丁留贯,贺晓霞,等,2007.中国冬季气温的集合典型相关分析和预报[J].南京气象学院学报,30(5):623-631. Wu H B,Ding L G,He X X,et al.,2007.Ensemble canonical correlation prediction method of winter temperature over China[J].J Nanjing Inst Meteor,30(5):623-631.(in Chinese).

熊明明,陈海山,俞淼,2011.CLM3.0对中国区域陆面过程的模拟试验及评估Ⅱ:土壤湿度[J].气象科学,31(1):1-10. Xiong M M,Chen H S,Yu M,2011.Simulation of land surface processes over China and its validation.Part Ⅱ:soil moisture[J].Scientia Meteorologica Sinica,31(1):1-10.(in Chinese).

Xu B,Chen H S,Gao C J,et al.,2019.Decadal intensification of local thermal feedback of summer soil moisture over North China[J].Theor Appl Climatol,138(3/4):1563-1571.

徐邦琪,臧钰歆,朱志伟,等,2020.时空投影模型(STPM)的次季节至季节(S2S)预测应用进展[J].大气科学学报,43(1):212-224. Hsu P C,Zang Y X,Zhu Z W,et al.,2020.Subseasonal-to-seasonal(S2S) prediction using the spatial-temporal projection model(STPM)[J].Trans Atmos Sci,43(1):212-224.(in Chinese).

徐祥德,陈联寿,2006.青藏高原大气科学试验研究进展[J].应用气象学报,17(6):756-772. Xu X D,Chen L S,2006.Advances of the study on Tibetan Plateau experiment of atmospheric sciences[J].J Appl Meteor Sci,17(6):756-772.(in Chinese).

徐祥德,卞林根,张光智,等,2001.青藏高原地-气过程动力、热力结构综合物理图象[J].中国科学D辑,31(5):428-440. Xu X D,Bian L G,Zhang G Z,et al.,2001.Comprehensive physical image of dynamic and thermal structure of the land-atmosphere process over the Tibetan Plateau [J].Sci China,31(5):428-440.(in Chinese).

Yang S Y,Li T,2016.Zonal shift of the South Asian High on the subseasonal time-scale and its relation to the summer rainfall anomaly in China[J].Quart J Roy Meteor Soc,142(699):2324-2335.

Yang S Y,Li T,2017.The role of intraseasonal variability at mid-high latitudes in regulating Pacific blockings during boreal winter[J].Int J Climatol,37:1248-1256.

Yang S Y,Li T,Hu J G,et al.,2017.Decadal variation of the impact of La Nia on the winter Arctic stratosphere[J].Adv Atmos Sci,34(5):679-684.

葉笃正,朱抱真,1958.大气环流的若干基本问题[M].北京:科学出版社:159. Ye D,Zhu B,1958.Some fundamental problems of the general circulation of the atmosphere [M].Beijing:Science Press:159.(in Chinese).

叶笃正,高由禧,1979.青藏高原气象学[M].北京:科学出版社:278. Ye D,Gao Y,1979.Meteorology of the Tibet Plateau [M].Beijing:Science Press:278.(in Chinese).

叶笃正,陶诗言,李麥村,1959.在六月和十月大气环流的突变现象[J].气象学报,29(4):249-263. Ye D,Tao S,Li M,1958.The abrupt change of circulation over Northern Hemisphere during June and October[J].Acta Meteorol Sin,29(4):249-263.(in Chinese).

Yin Z C,Wang H J,2016.Seasonal prediction of winter haze days in the north central North China Plain[J].Atmos Chem Phys,16(23):14843-14852.

Yin Z C,Wang H J,Chen H P,2017.Understanding severe winter haze events in the North China Plain in 2014:roles of climate anomalies[J].Atmos Chem Phys,17(3):1641-1651.

尹志聪,王会军,段明铿,2019.近几年我国霾污染实时季节预测概要[J].大气科学学报,42(1):2-13. Yin Z C,Wang H J,Duan M K,2019.Outline of the real-time seasonal haze pollution prediction in China in recent years[J].Trans Atmos Sci,42(1):2-13.(in Chinese).

Yin Z C,Wang H J,Li Y Y,et al.,2019.Links of climate variability in Arctic sea ice,Eurasian teleconnection pattern and summer surface ozone pollution in North China[J].Atmos Chem Phys,19(6):3857-3871.

余金波,吳洪宝,2001.3个月平均气温距平的CCA预报方法[J].南京气象学院学报,24(2):171-177. Yu J,Wu H,2001.CCA forecast scheme of 3-month mean temperature anomaly[J].J Nanjing Inst Meteor,24(2):171-177.(in Chinese).

俞淼,陈海山,孙照渤,2011a.动态植被模型模拟的植被季节变化及其评估[J].气候与环境研究,16(1):47-59. Yu M,Chen H,Sun Z,2011a.Seasonal cycle of terrestrial vegetation simulated by a dynamic vegetation model and its assessment[J].Clim Environ Res,16(1):47-59.(in Chinese).

俞淼,陈海山,孙照渤,2011b.动态冠层模型ICM的改进及其对中高纬地区植被季节和年际变化的模拟试验[J].大气科学,35(3):571-588. Yu M,Chen H S,Sun Z B,2011b.Seasonal and interannual variations of boreal vegetation simulated by an improved interactive canopy model (ICM)[J].Chin J Atmos Sci,35(3):571-588.(in Chinese).

Yu M,Wang G L,Chen H S,2016a.Quantifying the impacts of land surface schemes and dynamic vegetation on the model dependency of projected changes in surface energy and water budgets[J].J Adv Model Earth Syst,8(1):370-386.

Yu M,Wang G L,Pal J S,2016b.Effects of vegetation feedback on future climate change over West Africa[J].Clim Dyn,46(11/12):3669-3688.

Yu Y Y,Cai M,Ren R C,2018a.A stochastic model with a low-frequency amplification feedback for the stratospheric northern annular mode[J].Clim Dyn,50(9/10):3757-3773.

Yu Y Y,Cai M,Shi C H,et al.,2018b.On the linkage among strong stratospheric mass circulation,stratospheric sudden warming,and cold weather events[J].Mon Wea Rev,146(9):2717-2739.

Yu Y Y,Cai M,Ren R C,et al.,2018c.A closer look at the relationships between meridional mass circulation pulses in the stratosphere and cold air outbreak patterns in northern hemispheric winter[J].Clim Dyn,51(7/8):3125-3143.

Yu Y Y,Ren R C,2019.Understanding the variation of stratosphere-troposphere coupling during stratospheric northern annular mode events from a mass circulation perspective[J].Clim Dyn,53(9/10):5141-5164.

Yu Y Y,Cai M,Shi C H,et al.,2019.Sub-seasonal prediction skill for the stratospheric meridional mass circulation variability in CFSv2[J].Clim Dyn,53(1/2):631-650.

Yuan C X,Yang M Z,2020.Interannual variations in summer precipitation in southwest China:anomalies in moisture transport and the role of the tropical Atlantic[J].J Climate,33(14):5993-6007.

Yuan C X,Liu J Q,Luo J J,et al.,2019.Influences of tropical Indian and Pacific Oceans on the interannual variations of precipitation in the early and late rainy seasons in South China[J].J Climate,32(12):3681-3694.

Zeng G,Sun Z B,Wang W C,et al.,2007.Interdecadal variability of the East Asian summer monsoon and associated atmospheric circulations[J].Adv Atmos Sci,24(5):915-926.

曾刚,孙照渤,林朝晖,等,2010.不同海域海表温度异常对西北太平洋副热带高压年代际变化影响的数值模拟研究[J].大气科学,34(2):307-322. Zeng G,Sun Z B,Lin Z H,et al.,2010.Numerical simulation of impacts of sea surface temperature anomaly upon the interdecadal variation in the northwestern Pacific subtropical high[J].Chin J Atmos Sci,34(2):307-322.(in Chinese).

曾剛,伯忠凯,孙照渤,等,2013.海表温度异常影响东亚夏季风年代际变化的数值模拟[J].大气科学学报,36(3):286-296. Zeng G,Bo Z K,Sun Z B,et al.,2013.Numerical simulation of SSTA effect on interdecadal variation of East Asian summer monsoon[J].Trans Atmos Sci,36(3):286-296.(in Chinese).

Zeng Q C,1983.The evolution of a Rossby-wave packet in a three-dimensional baroclinic atmosphere[J].J Atmos Sci,40(1):73-84.

曾庆存,袁重光,王万秋,等,1990.跨季度气候距平数值预测试验[J].大气科学,14(1):10-15. Zeng Q,Yuan C,Wang W,et al.,1990.Dynamical extraseasonal climate prediction system[J].Chin J of Atmos Sci,14(1):10-15.(in Chinese).

Zeng Q C,Zhang B L,Yuan C G,et al.,1994.A note on some methods suitable for verifying and correcting the prediction of climatic anomaly[J].Adv Atmos Sci,11(2):121-127.

张邦林,丑纪范,孙照渤,1991.用前期大气环流预报中国夏季降水的EOF迭代方案[J].科学通报,(23):1797-1798. Zhang B,Chou J,Sun Z,1991.The EOF iterative scheme for forecasting summer rainfall in China with the preliminary atmospheric circulation[J].Chin Sci Bull,(23):1797-1798.(in Chinese).

Zhang B L,Liu J,Sun Z B,1993.A new multidimensional time series forecasting method based on the EOF iteration scheme[J].Adv Atmos Sci,10(2):243-247.

Zhang D P,Huang Y Y,Sun B,et al.,2019a.Verification and improvement of the ability of CFSv2 to predict the Antarctic oscillation in boreal spring[J].Adv Atmos Sci,36(3):292-302.

章基嘉,1966.大气环流及中长期预告[R].南京:南京气象学院. Zhang J J,1966.Atmospheric circulation and medium long term forecast[R].Nanjing:Nanjing Institute of Meteorology.(in Chinese).

章基嘉,1977.中长期天气预报基础[R].南京:南京气象学院. Zhang J J,1977.Fundamentals of medium and long range weather forecasting[R].Nanjing:Nanjing Institute of Meteorology.(in Chinese).

章基嘉,葛玲,1983.中长期天气预报基础[M].北京:气象出版社. Zhang J,Ge L,1983.Basics of medium and long-term weather forecast [M].Beijing:China Meteorological Press.(in Chinese).

章基嘉,孙照渤,陈松军,1981.对自然正交函数稳定性条件的讨论[J].气象学报,39(1):82-89. Zhang J,Sun Z,Chen S,1981.On the stability of empirical orthogonal function (EOF)[J].Acta Meteorol Sinina,39(1):82-89.(in Chinese).

章基嘉,孙照渤,陈松军,1984.应用自然正交函数逐年划分东亚自然天气季节的尝试[J].气象学报,42(1):46-56. Zhang J,Sun Z,Chen S,1984.An attempt to divide natural weather season in East Asia using natural orthogonal functions[J].Acta Meteorol Sinina,42(1):46-56.(in Chinese).

章基嘉,孙照渤,张邦林,1989.长期天气预报的一种客观方案[J].气象学报,47(1):43-51. Zhang J,Sun Z,Chen S,1989.An objective scheme for long range forecast[J].Acta Meteorol Sinina,47(1):43-51.(in Chinese).

章基嘉,葛玲,孙照渤,1994.中长期天气预报基础[M].北京:气象出版社. Zhang J,Ge L,Sun Z,1994.Basics of medium and long-term weather forecast [M].Beijing:China Meteorological Press.(in Chinese).

Zhang J,Gao S,Chen H S,et al.,2015a.Retrieval of the land surface-air temperature difference from high spatial resolution satellite observations over complex surfaces in the Tibetan Plateau[J].J Geophys Res Atmos,120(16):8065-8079.

Zhang J,Liu Z Y,Chen L,2015b.Reduced soil moisture contributes to more intense and more frequent heat waves in Northern China[J].Adv Atmos Sci,32(9):1197-1207.

Zhang J,Liu C,Chen H S,2018.The modulation of Tibetan Plateau heating on the multi-scale northernmost margin activity of East Asia summer monsoon in northern China[J].Glob Planet Chang,161:149-161.

Zhang J,Chen H S,Zhang Q,2019b.Extreme drought in the recent two decades in northern China resulting from Eurasian warming[J].Clim Dyn,52(5/6):2885-2902.

Zhang J,Chen H S,Zhao S W,2019c.A tripole pattern of summertime rainfall and the teleconnections linking Northern China to the Indian subcontinent[J].J Climate,32(12):3637-3653.

Zhang J,Chen Z H,Chen H S,et al.,2020a.North Atlantic multidecadal variability enhancing decadal extratropical extremes in boreal late summer in the early twenty-first century[J].J Climate,33(14):6047-6064.

Zhang Q,Guan Z Y,2017.Interdecadal change in the Eurasia-Pacific anti-phase relation of atmospheric mass and its possible link with PDO[J].J Meteor Res,31(1):126-141.

Zhang R H,2001.Relations of water vapor transport from Indian monsoon with that over East Asia and the summer rainfall in China[J].Adv Atmos Sci,18(5):1005-1017.

張人禾,黄荣辉,1998.El Nio事件发生和消亡中热带太平洋纬向风应力的动力作用I.资料诊断和理论分析[J].大气科学,22(4):587-599. Zhang R,Huang R,1998.Dynamical roles of zonal wind stresses over the tropical Pacific on the occurring and vanishing of El Nio part I:diagnostic and theoretical analyses[J].Chin J Atmos Sci,22(4):587-599.(in Chinese).

Zhang R H,Sumi A,Kimoto M,1999.A diagnostic study of the impact of El Nio on the precipitation in China[J].Adv Atmos Sci,16(2):229-241.

Zhang W J,Li J P,Zhao X,2010.Sea surface temperature cooling mode in the Pacific cold tongue[J].J Geophys Res,115(C12):C12042.

Zhang W J,Jin F F,Turner A,2014.Increasing autumn drought over southern China associated with ENSO regime shift[J].Geophys Res Lett,41(11):4020-4026.

Zhang W J,Li H Y,Jin F F,et al.,2015c.The annual-cycle modulation of meridional asymmetry in ENSOs atmospheric response and its dependence on ENSO zonal structure[J].J Climate,28(14):5795-5812.

Zhang W J,Wang L,Xiang B Q,et al.,2015d.Impacts of two types of La Nia on the NAO during boreal winter[J].Clim Dyn,44(5/6):1351-1366.

Zhang W J,Jin F F,Stuecker M F,et al.,2016.Unraveling El Nios impact on the East Asian monsoon and Yangtze River summer flooding[J].Geophys Res Lett,43(21):11375-11382.

Zhang W J,Li S X,Jin F F,et al.,2019d.ENSO regime changes responsible for decadal phase relationship variations between ENSO sea surface temperature and warm water volume[J].Geophys Res Lett,46(13):7546-7553.

Zhang W X,Chen H S,Zhou L M,et al.,2020b.Effects of nonuniform land surface warming on summer anomalous extratropical cyclone activity and East Asian summer monsoon:numerical experiments with a regional climate model[J].J Climate.doi:10.1175/JCLI-D-20-0088.1

趙昶昱,陈海山,孙善磊,2018.欧亚大陆土壤焓异常持续性的时空变化特征[J].气象科学,38(1):19-27. Zhao C,Chen H,Sun S,2018.Spatiotemporal characteristics of soil enthalpy anomaly persistence in Eurasia[J].J Meteor Sci,38(1):19-27.(in Chinese).

Zhao C Y,Chen H S,Sun S L,2018.Evaluating the capabilities of soil enthalpy,soil moisture and soil temperature in predicting seasonal precipitation[J].Adv Atmos Sci,35(4):445-456.

中国科学院大气物理研究所,1978.海气相互作用与旱涝长期预报[M].北京:科学出版社. The Institute of Atmospheric Physics,Chinese Academy of Sciences,1978.Air-sea interaction and long-term forecast for drought and flood[M].Beijing:Science Press.(in Chinese).

中国科学院大气物理研究所长期预报组,1973.太平洋海水温度变异对东亚大气环流和我国旱涝影响的若干事实[J].气象科技资料,3:14-23.Long-term Weather Forecast Group of the Institute of Atmospheric Physics,Chinese Academy of Sciences,1973.Impacts of the anomaly of the Pacific sea temperature on the East Asia atmosphere circulation and flood and drought in China[J].Data Metorol Sci,3:14-23.(in Chinese).

周晶,陈海山,2012.土壤湿度年际变化对中国区域极端气候事件模拟的影响研究Ⅰ.基于CAM3.1的模式评估[J].大气科学,36(6):1077-1092. Zhou J,Chen H S,2012.Impact of interannual soil moisture anomaly on simulation of extreme climate events in China.Part Ⅰ:model evaluation of CAM3.1[J].Chin J Atmos Sci,36(6):1077-1092.(in Chinese).

周琐铨,陈万隆,1995.青藏高原植被下垫面对东亚大气环流影响的数值试验[J].南京气象学院学报,18(4):536-542. Zhou S,Chen W,1995.Numerical experiments with effect of Tibetan vegetation on East Asian atmospheric circulations[J].J Nanjing Inst Meteor,18(4):536-542.(in Chinese).

Zhou Y,Dong X,Chen H,et al.,2020.Sub-seasonal variability of surface soil moisture over eastern China[J].Clim Dyn.doi:10.1007/s00382-020-05464-3.

朱蒙,陈海山,蒋薇,等,2014.陆面热力因子应用于中国夏季降水预测的初步试验[J].气象学报,72(6):1135-1142. Zhu M,Chen H,Jiang W,et al.,2014.A preliminary test of the summer rainfall predication in China based on the land surface thermal factors[J].Acta Meteorol Sin,72(6):1135-1142.(in Chinese).

Zhu S G,Chen H S,Dong X,et al.,2020.Influence of persistence and oceanic forcing on global soil moisture predictability[J].Clim Dyn,54(7/8):3375-3385.

This paper introduces the development of short-term climate prediction in China and abroad from the perspective of scientific development.On this basis,it reviews the growth of short-term climate prediction teams and the related teaching,scientific research and operational practice in Nanjing University of Information Science & Technology (NUIST) since its establishment 60 years ago,and provides an outlook for the future work.

short-term climate prediction;team building;teaching activity;scientific research;prediction practice;review and outlook

doi:10.13878/j.cnki.dqkxxb.20200905017

(責任编辑:张福颖)

猜你喜欢
团队建设教学工作科学研究
Can you eat yourself more happily? 吃出快乐
A Brief Analysis about the Content and Current Situation of Vocational Students Oral English Skills Competition
适应“三三制”培养模式的化工基础实验教学改革
企业新闻采编人员素质和团队建设
高校预算绩效评价探讨
高校学科建设与教学工作关系研究
博物馆临时展览的困境与出路
怎样利用生活情境开展小学数学教学工作
学校教师管理工作探析
高等教育功能转型与创新人才培养研究