南京信息工程大学气候与气候变化研究进展回顾

2020-12-11 09:09江志红翁笃鸣屠其璞缪启龙吴息余锦华
大气科学学报 2020年5期

江志红 翁笃鸣 屠其璞 缪启龙 吴息 余锦华

摘要 简要回顾了南京信息工程大学建校60 a来在气候与气候变化方向的研究历程,总结了南京信息工程大学(简称南信大)气候学科在辐射气候、山地气候、应用气候、气候诊断与预测、统计气候、气候变化与区域响应及其未来预估等方面的重要研究成果。

关键词 辐射气候;气候诊断;统计气候;气候变化与区域响应;气候要素精细化

2020年是南京信息工程大学(原南京气象学院)建校60周年。作为一所以气象学科为主的行业特色高校,学校60 a的发展壮大缩影了中国气象教育事业现代化的历程。大气科学是学校创立和发展的学科根基,在教育部第四轮学科评估中排名A+,在软科大气科学学科排名中位列全球高校第12名,入选国家“双一流”建设学科。气候与气候变化是大气科学的重点研究领域,也是南信大气候学研究的主导方向之一,在学校大气科学学科发展、人才培养、服务需求中发挥了重要推动作用,取得了丰硕的研究成果。

1 南信大气候学科的发展历程及其研究概述

作为气候学科人才培养主体的气候学专业创建于1960年,是建校初期最早的四个专业(系)之一,1978年招收首届气候学硕士研究生,1994年在气象学博士点开始招收气候方向博士研究生,2004年设立气候系统与全球变化博士、硕士二级点,2013年改名为气候系统与气候变化博士、硕士点。1997年气候学被批准为中国气象局重点学科,气候系统与气候变化作为大气科学一级学科下的二级学科,在大气科学2008年的江苏省一级重点学科、2011年的江苏省高校优势学科建设中发挥了重要作用,也是南信大大气科学在教育部第三轮学科评估排名位列全国第一、教育部第四轮学科评估中获得A+等级、以及目前南信大国家“双一流”建设学科的主要支撑学科方向。

建校之初,南信大气候专业就确立了理论联系实际、科教融合的教学模式;改革开放以来,气候学专业相继出版了一大批专业教材和教学参考书,如翁笃鸣等(1981)编著《小气候和农田小气候》;屠其璞等(1984)编著《气象应用概率统计学》;翁笃鸣和罗哲贤(1990)所著《山区地形气候》;马开玉等(1993)编著《气候统计原理与方法》;缪启龙等(1995)编著《气候学》;翁笃鸣(1997)编著《中国辐射气候》;丁裕国和江志红(1998)编著《气象时间序列信号处理》;高绍凤等(2001)主编《应用气候学》;缪启龙(2001)主编《地球科学概论》;罗哲贤(2005)编著《中国西北干旱气候动力学引论》;孙卫国(2008)主编《气候资源学》;丁裕国和江志红(2009)所著《极端气候研究方法导论》;缪启龙等(2010)主编《现代气候学》等等。其中《小气候与农田小气候》获得1988年教育部全国高校优秀教材奖,《气候统计原理与方法》获得1996年国家高等教育优秀教材奖。这些都已成为气候学界具有南信大特色的教学科研成果,并形成一支师德高尚、学术精深的高水平师资队伍,包括享受国务院特殊津贴、国家级和省级突出贡献的中青年科学家、江苏省普通高校优秀学科带头人、江苏省“333”工程培养人选等10余人,1997年气候专业获江苏省优秀学科团队称号。2006年开始,学校以“开放发展、联合发展”为新的发展理念,实施“人才强校”发展战略,特别是2015年王会军院士及其团队的加盟,全面提升了南信大气候与气候变化的研究。据不完全统计,自建校以来,气候学科已经为我国输送了数千名以上的专门人才,其中既包括国际重要学会会士、国家特聘教授、杰出青年基金获得者等活跃在国内外学术前沿的科学家,还包括活跃在业务部门的业务专家、骨干和管理人员,也包括坚守在高山、海岛、边陲等各级各类艰苦地区的气象工作者,他们为气象事业做出了重要贡献。

南信大气候学的研究始终立足国家需求,瞄准学术发展前沿,并具有科教结合的特色。20世纪60—70年代,气候学科在辐射气候、山地气候、小气候、应用气候、统计气候等方面的研究成果丰富,许多成果填补了当时的国内空白。1980年代后,随着气候学界对全球变暖的关注,气候系统概念的提出,主要研究方向扩展到包括:气候诊断、短期气候预测、动力气候、统计气候、气候变化与区域响应、台风动力学、城市气候、气候要素精细化、气候变化影响与评估和区域气候模拟与预估等等,取得了一批重要科研成果。此外,南信大在能源(太阳能、风能)、交通、电力输送、农业、城市规划等方面展开过一系列气候应用与服务研究,取得了显著的社会效益和良好的经济效益。据不完全统计,南信大气候学团队先后主持或参加完成国家九五攻关、国家重点研发项目、国家自然科学基金重点(面上)项目、973项目、国家公益性行业专项等近百项省部级以上科研项目及众多企事业单位委托项目。作为主要参与单位和参与人,获国家、省部級奖励20余项,其中包括国家科技进步奖二等奖项目“中国亚热带东部丘陵山区农业气候资源及其合理利用研究”、“中国西北干旱气象灾害监测预警及减灾技术”;江苏省科技进步一等奖项目“极端气候的统计理论和变化规律及其未来预估”。

值建校60周年之际,本文将围绕南信大气候与气候变化的主要研究方向进行简要回顾与梳理,并以此热烈庆贺南京信息工程大学建校60周年。

2 辐射气候学

早在建校之初,以翁笃鸣教授为主的气候学研究团队便开展了辐射气候学方面的工作。以参与或主持的青藏高原气象科学试验(1979)、青藏铁路沿线气象科学考察(1975)、大别山区气候考察(1985)、中国亚热带东、西部丘陵山区农业气候资源及合理开发利用研究等历次野外科学考察资料为基础,连同国内外相关实验、观测资料,研究山地辐射气候基本特征、起伏地形辐射场以及地表辐射平衡各分量的气候计算方法。发表了一大批学术论文、教材、专著,不少成果填补了当时的国内空白,有较高的学术影响力(翁笃鸣等,1981,1988;青藏高原气象科学实验第一课题组,1984;章基嘉等,1988;翁笃鸣和罗哲贤,1990;翁笃鸣,1997;《中华人民共和国气候图集》编委会,2002)。

2.1 地表辐射平衡和热量平衡气候计算方法

南信大在地表辐射和热量平衡各分量气候计算这一领域的研究工作起步较早,翁笃鸣(1964)提出了太阳总辐射的气候学计算方法,论述了计算式的起始数据、结构、天空遮蔽度因子和遮蔽度函数形式以及经验系数的稳定性和参数化等问题,还对计算式的精度要求做了初步阐述。之后陆续发表了太阳总辐射、直接辐射、散射辐射、地表反射率、大气逆辐射、地表有效辐射和地表净辐射气候计算方法的研究成果(孙治安和翁笃鸣,1986;翁笃鸣等,1997),针对各分量特点,不断加以充实、完善,使之具有相对完整的体系化特点。此后,进一步开展了地表热量平衡各分量气候计算方法的研究(翁笃鸣和高庆先,1994;高庆先和翁笃鸣,1996)。

上述地表能量平衡气候计算方法,已被《中华人民共和国气候图集》编委会采纳,并由南信大承担图集中相应图组的绘制分析任务,该图集已于2002年正式出版(《中华人民共和国气候图集》编委会,2002)。

2.2 山区辐射场数值计算方法

2.2.1 坡地辐射计算问题

坡地辐射计算问题实质上是把水平地面的各辐射量换算到坡面(斜面)。1988年以来,翁笃鸣等(1988)陆续发表了全国以及东部亚热带山区(南北坡向,坡度20°)太阳直接辐射、总辐射和净辐射的研究成果,出版了中国亚热带东部山区坡面太阳能资源和净辐射图集,揭示出各辐射量的分布特点(Weng et al.,1997)。就全國墙面总辐射问题进行了研究,为建筑采光、保温设计提供太阳能资源信息(缪启龙等,1991)。

2.2.2 坡面散射辐射的各向异性问题

坡面散射辐射计算通常都被简单当作各向同性处理。实际上大气对太阳辐射的散射过程是各向异性的,如何真实考虑坡地散射辐射的各向异性特点,无论在理论与观测实践中都未有公认的解决办法,为此,翁笃鸣等利用自行设计安装在经纬仪上的天空辐射表,1975年观测了不同斜面的散射辐射,初次观测到坡面散射辐射的各向异性特点。1985年通过大别山区气候考察,依据更多的试验观测资料,进一步揭示了坡地散射辐射各向异性的规律性,并研制了相应的订正计算方法(李占清和翁笃鸣,1988)。

2.2.3 起伏山区辐射场的数值计算

起伏山区辐射场的数值计算问题,实质上是如何精确计算地形遮蔽对坡地辐射的影响。翁笃鸣等从教学中形成理念,在科研中加以实现,解决了这一问题,研制出了起伏地形辐射场的数值计算模式(翁笃鸣等,1981;翁笃鸣和罗哲贤,1990),其一是计算山地地形参数(坡向、坡度、地形遮蔽度)的数值模式(李占清和翁笃鸣,1987),另一是计算各辐射要素的数值模式(翁笃鸣和罗哲贤,1990)。

李占清和翁笃鸣(1987)在1∶100 000等高线地形图上,选取大别山赵公岭山区一块3.5 km×3.0 km坡段,网格距100 m×100 m,完成了对该地段太阳直接辐射、散射辐射、坡前反射辐射、总辐射、有效辐射以及最终净辐射的计算,绘制出的分布图与地形匹配较好,能反映地形条件的主导作用(翁笃鸣等,1997)。李慧和翁笃鸣(1992)完成了该试验山区地面热平衡各分量的数值计算和分析研究工作,上述研究从方法论上初步解决了起伏地形下地面辐射、热平衡数值计算和分析,袁德辉等还把上述计算模式扩大推广到浙江龙泉山区,对该县作了网格距为1 km×1 km平均气温的推算试验(袁德辉和翁笃鸣,1992)。

2.3 青藏高原地表辐射和热量平衡

2.3.1 青藏高原地表辐射热平衡基本状况

1979年5—8月,南信大翁笃鸣等参加了青藏高原气象科学实验的野外考察工作,承担高原地表辐射和热量平衡状况研究,重点是研究干湿季转换对高原地表热源变化的影响,发现了许多具有高原特色的现象,如曾15次测得太阳总辐射超过太阳常数的记录,还测得很大的地表净辐射(1 270.0 W·m-2)等。高原夜雨及云状况的特殊性都对高原辐射热平衡状况产生明显有别于平原地区的影响,相关成果参与完成了《青藏高原地面辐射平衡和热量平衡图集》的编制(青藏高原气象科学实验第一课题组,1984),参与了由章基嘉(1988)主持的《青藏高原气象学进展》的撰写工作。

2.3.2 青藏高原地表热源研究

翁笃鸣和高庆先(1997)通过观测分析拉萨夏季地表净辐射各分量以及云量、降水、土壤湿度的逐日变化曲线,发现青藏高原夏季地表热源强度伴随季风爆发加强,其原因主要是高原夜雨所造成。这一认识可以从分析拉萨夏季地表净辐射各分量以及云量、降水、土壤湿度的逐日变化曲线中得到证实(翁笃鸣和高庆先,1997)。此外,还可以从高原7月(代表雨季)与5月(代表旱季)地表净辐射场差值图上得出同样的结论(翁笃鸣,1997)。

此前,关于冬季高原地表冷热源性质问题的认识并不一致,分歧主要在对地表反射率的估值和有效辐射的计算等方面,其中最主要的原因是对冬季积雪的估计不一致。翁笃鸣和高庆先(1997)从高原8个代表站的计算以及后续的研究中,发现冬季青藏高原地表净辐射为正。

2.4 地-气系统和大气辐射气候

翁笃鸣等(1997)根据地球辐射平衡试验(ERBE)1985—1988年资料以及同期国际云气候计划(ISCCP)资料,对我国地-气系统和大气辐射平衡各分量进行了逐项研究。同时利用1979年5—8月季风试验(MONEX)期间印度8个陆地辐射探空站资料,结合同期高原科学试验资料分析了我国对流层大气各个等压面的长波辐射交换,如在行星反射率、地-气系统短波吸收辐射、长波射出辐射(OLR)和净辐射等影响因子变化特征取得了许多有意义的结果,最终绘制出地-气系统各辐射分量的全国分布图。

研究揭示了整层大气短波吸收辐射、大气有效辐射和大气净辐射的基本特征及其影响因素,着重分析了水汽对大气短波辐射吸收的影响。结果表明,就全年平均看,除青藏高原等高海拔地区外,大气对太阳辐射的吸收率一般在0.25以上,沿海湿润地区在0.30以上,极端甚至可超过0.35。这一结果远远超过以往文献上提供的计算值(0.17以下)水平。对流层大气各等压面大气向下和向上辐射的气候计算表明,不论何层面确定的大气向下、向上辐射以及大气有效辐射气候计算式,普遍适用于对流层各等压面。

3 气候要素精细化分析

3.1 气候要素分布式模拟

气候要素分布式模拟可以将各种气候要素和相关气候信息解算到不同空间分辨率的网格点,从而得到其精细化分布特征,是定点、定量地开展气候资源开发利用、气象防灾减灾等精细化气象服务的核心技术。

3.1.1 气候要素分布式模型

将地表非均匀因素分为几何非均匀性和物理性质非均匀性两方面,利用数字高程模型(DEM)等基础地理数据,基于气候要素与坡向、坡度、周围地形相互遮蔽、地表类型多样等因素的相互关系,Qiu et al.(2005)、曾燕等(2003,2005)在我国建立了气候要素分布式模型,综合考虑纬度、经度、海拔等地理因素,坡度、坡向、地形间相互遮蔽等局地地形因素和植被类型多样等地表非均匀因素对复杂地理环境下气候要素时、空分布的影响,克服了地面气象站一般设置在开阔平地,观测资料不能代表实际地理环境下地表气候要素复杂时空分布的不足。

3.1.2 多源数据融合

对于云、水汽等大气参数,现有研究多直接采用卫星遥感数字产品,或利用地面台站观测资料插值获得其空间分布。云、水汽等遥感数字产品尽管有空间上连续分布的优势,但其精度无权威论证;地面观测有相应观测规范,精度高,但为台站离散数据,且数量有限,空间分布不均,大量无观测资料地区只能采用插值等方法估计得到,误差大。对此,曹芸等(2012)提出遥感数字产品与地面观测资料的集成融合技术,实现了两种观测资料的优势集成与融合,克服了地面气象台站数量有限,空间分布不均的局限,从而提高了模拟的精度。

3.1.3 参数优化与误差控制

随着时空分辨率的提高,网格化模拟结果的不确定性增加,误差控制难度加大;同时,因各地气候类型不同等因素,模型系数存在地域和季节差异。对此,曾燕等(2009)设计了五类验证方案(局地規律验证、交叉验证、加密站验证、野外考察资料验证、个例年验证),开展模型不确定性分析,探寻误差来源,研究模型误差的传递规律,利用数据集群技术优化模型系数,误差得到了良好的控制,模型参数的时空稳定性得到了提高,有效地解决了气候要素网格化模拟过程中误差控制的难题(曾燕等,2009;Shi et al.,2018a)。

综合以上关键技术,自主建立气候要素分布式模型30多个,涵盖太阳辐射(Shi et al.,2018b)、长波辐射(Zhu et al.2018a)、蒸散(邱新法等,2003)等气候要素(He et al.,2015),提出了以气候要素分布式模型为核心,以地理信息系统为数据处理平台,集成遥感数字产品、基础地理数据和地面观测资料,分析误差来源及其传递规律,优化确定模型系数,实现气候信息网格化模拟的新技术体系,生产30多种气候要素多种时空尺度的网格化气候数据产品。邱新法等参与主编的《黄河流域气象水文学要素图集》(刘昌明等,2004),完成了1 km×1 km空间分辨率黄河全流域气象水文学要素的网格化模拟,从水、热平衡角度,展现了黄河流域热量和水分收支的空间分布,为精细化气候应用与服务提供了重要支撑。

3.2 精细化气候应用及服务

气候资源是最重要的自然资源之一,农业、交通、能源、城市建设等经济社会事业发展,减灾防灾、灾害防御能力的提高,需要各类专业气候服务。在气候理论研究的基础,结合精细化建模技术,我们在应用气候领域也开展了众多气候服务工作,取得了较好的社会经济效益,相关成果获得了多项省部级科技进步奖。

3.2.1 气候资源开发利用及其精细化服务

研发的气候资源网格化模拟系统,集成DEM数据和卫星遥感数据,可实现各种时间尺度上,复杂地形下光照与辐射资源、气温与热量资源(邱新法等,2009)、湿度与水资源等气候资源和气候要素的分布式模拟(Zhu et al.,2018b),所生产的栅格化(空间化)气候要素数据既可作为基础数据,供陆面过程等研究领域从事地表物质输送及能量交换等科学研究,也可作为科学依据供气象、农林、环保、生态、水文等业务部门开展气候资源开发利用及气象灾害防灾减灾等应用研究。邱新法等研发了太阳能网格化评估系统、气候资源网格化模拟系统、气象灾害网格化风险评估系统等20多个GIS气象应用软件,服务于全国31个省级、1 000多个市县级气象业务部门及部分地区的农业、水文等部门。相关成果获得2014年江苏省科学进步二等奖、2019年地理信息科技进步奖二等奖。

电线覆冰灾害是电网建设与运行中最具影响的安全隐患之一。江志红等(2010)、吴息等(2012)研究了不同方法在导线覆冰冰厚极值估计中的实用性,探讨了覆冰极值序列与气象要素的定量关系,为科学合理地解决电网线路设计覆冰问题提供了科学依据,相关成果获得2011年四川省科技进步二等奖。

我国风能资源具有巨大的开发潜力,但具有时空变化的不确定性。吴息等(2009)利用区域模式分析了电网用电高峰期风能密度的分布特征,并进一步通过对数值预报的风速进行订正(吴息等,2013,2014),为选择风力电场或进行电力调度管理提供依据,有助于电力公司有效的使用风力发电。相关成果分别获吉林省、重庆市科技进步奖三等奖。

针对茶叶等名特优经济作物复杂的山地生长环境,开展霜冻等气象灾害的精细化风险评估、种植适宜性区划研究并在全国气象部门得到推广(Zhu et al.,2019)。城市微气候研究方面,适应城市建筑等矢量数据,研制了分布式矢量气候要素模型,开展城市建筑群的微气候模拟(Li et al.,2019),相关成果获2015年度湖北省科技进步奖二等奖。

4 气候诊断与统计建模

4.1 气候资料的质量控制及其插补重建

气候学研究,特别是气候变化的研究,需要准确、均一的反映气象要素变化的完整的长期观测记录,气候资料的可靠性决定了气候研究结果的正确性。20世纪50年代之前,我国气象台站数量少,资料序列短,部分时期出现观测中断,同时也存在观测制式、仪器的更替、观测场位置改变或周围环境变化等的实际问题。为此,在20世纪80—90年代,屠其璞等根据相邻气象要素的相关性、周期性以及特殊地形的小气候特点,研究开发了一系列的气候资料的质量检测和修补、序列延长的方法(屠其璞等,1978,1979;屠其璞,1980,1986)。如屠其璞等(1978,1979)利用相邻基本气象站长期资料序列,根据比值或差值稳定性得到将短序列的气候指标值延长到基本长度的方法,其中超短序列插补方法很好地解决了短期气候考察与应用部门对气候指标的基本周期长度要求的矛盾(吴息等,2012)。

利用气象要素的空间相关性,经验正交展开函数将要素场分解为相互独立的典型场,并通过时间系数可在任意时间点还原原始场,屠其璞等利用正交展开的时空特性延长、插补气候要素场,建立了我国42个测站1881—1981年的连续、均一气温序列(屠其璞,1986)。在此基础上借助主成分典型相关分析,江志红和丁裕国(1990)就恢复我国百年(1881—1980年)月平均总辐射场做了有益的尝试;江志红等(1999a)对比分析了各类方法的特点,为插补、重建连续、均一的月平均气温序列提供了高精度的统计模式;李庆祥和屠其璞(2000)在自然正交函数理论的基础上,引进逐步迭代法,对北半球陆面降水的缺测值进行插补工作。这些工作推动了我国气候资料的收集完善,为20世纪80—90年代的气候变化研究奠定了资料基础。

4.2 气候多元统计诊断与预测

4.2.1 诊断分析理论和方法

鉴于气候系统是一种高度非线性的复杂巨系统,它本身存在着多尺度变率和复杂的时空结构,研究高噪声背景下多尺度气候变率的诊断检测新方法与新技术,有助于提高对全球与中国区域多尺度气候变化规律的认识。丁裕国等(2005)指出气象变量场的空间分布可视为各种主要空间分布型的叠加,经验展开函数(EOFs)能够由气象要素场序列构造相互独立典型场,其分布形式具有明确的物理内涵,在气候诊断分析上获得广泛应用。但由于典型场不是固定空间函数,当相关矩阵出现小扰动时,气象典型场存在是否稳定性问题,丁裕国和江志红(1993)分析了气象场本身的相关结构及其随机扰动对EOF的稳定性的影响,并给出达到稳定EOF展开的最低样本长度临界值,提出了对任一气象场应用EOFs方法时,预估其收敛性速度的几种经验性判据(丁裕国和吴息,1988);还从理论上证明,非均匀站网EOFs展开有不同程度的失真,并且提出了一种附加面积权重的修正方案(丁裕国和江志红,1995);此外丁裕国等(2007)证明了统计聚类检验(CAST)与旋转经验正交函数或旋转主分量分析(REOF/RPCA)用于气候聚类分型区划的关联性,提出了以 CAST与RPCA相结合的一种新的气候分型区划方法。丁裕国和江志红(1996)从理论上证明探讨了两个气象场的奇异值分解(SVD)模型在气象场时空分布耦合信号的诊断分析中具有普适性,指出EOFs及CCA类型的正交分解方法都可纳入SVD模型的框架,特别适合大尺度气象场的遥相关型研究。

4.2.2 ENSO的短期气候预测

ENSO作为年际尺度上可预报性最强的信号,与我国夏季旱涝变率密切相关,一直是年际尺度短期气候预测的关注重点,江志红和丁裕国(1998)、丁裕国等(1998,1999,2002a)、江志红等(1999b)引入和改进各种多元统计与时序分析技术,持续研发ENSO预测统计模型。如丁裕国等(1998)引入奇异谱分析(SSA)基础上的自回归(AR)预测模型方案,对Nio海区平均SST逐月距平序列作自适应滤波意义下的超前预报;为改善SSA-AR自回归的局限,他们提出了奇异交叉谱分析方法(SCSA)用于ENSO预测,并从理论上证明,它是一类时频域相结合的广义交叉谱分析方法,基于SCSA的回归预报模型的预报技巧绝大部分优于SSA-AR预报模型(丁裕国等,1999),江志红等(1999c)则建立基于主分量典型相关分析(PC-CCA)的广义典型混合回归模式,对Nio海区海温指数进行提前1~4季度的预报;进一步将多通道奇异谱分析与奇异值分解相结合,丁裕国等(2002a)建立了MSSA-SVD广义典型混合回归模式。Yu et al.(2016a,2016b,2020)的最近研究进一步揭示了ENSO的遥相关效应影响次年TC活动的机理。其中主分量典型相关模式(PC-CCA)、多通道奇异谱分析与自回归结合模式(MSSA-AR)直接用于当时国家气候中心的ENSO预测业务系统,主分量典型相关模式(PC-CCA)在当时总体预报技术水平已达到美国NOAA/NWS/NCEP/气候诊断公报 (CPC) 同类模式水平,在我国ENSO月至年际尺度短期气候业务预测系统中发挥了重要作用,取得了显著的社会、经济效益。

4.3 概率分布模型及统计模拟

气象变量作为随机变量遵循某一概率模型,通过对气象变量服从分布的统计建模,对于认识极端气候的出现规律、极端气候变化和平均气候变化的联系有重要的意义。丁裕国和张耀存(1989)利用多状态一阶Markov链,根据随机模拟理论建立产生单站逐日降水量模拟记录的随机模式,从而推求各种长年气候统计特征;江志红等(2013)基于多状态一阶Markov链转移概率研究了中国降水过程的持续性特征;从相邻地区旱涝分布特征的相互关联出发,借助于Monte-Carlo随机模拟思想重建历史降水量场的统计模拟,由多次数值试验产生了相应于各级旱涝的模拟降水量记录(丁裕国和冯燕华,1992)。

全球变暖背景下,近几十年极端气候事件的频发和加剧引起了科学界乃至各国政府、国际社会的广泛关注,从统计意义上说,极端事件就是小概率事件,因此,十分有必要构建极端气候的监测指标,发展极端气候统计理论方法。丁裕国等(2002b)、Ding et al.(2008)、江志红等(2009a)系统引入适合气候极值研究的广义极值分布、广义帕累托分布等极值分布模型及其概率加权(PWM)、L-矩等高精度参数估计方法,Ding et al.(2008)从理论上证明了广义极值分布模型(GEV)和广义帕累托分布模型(GPD)的近似关系,建立了高门限下不同极值分布参数估计的理论联系,为极端气候监测指标的建立提供理论依据;江志红等(2009a)采用的POT抽样增加样本容量,提高了气候极值的分布精度,为短序列气候极值分布的模拟提供了新途径;丁裕国等(2002b)将平稳交叉理论推广应用于极值变化的诊断分析,推導了不同分布条件下气候极值出现次数、持续时间和间隔时间等统计特征量的计算方法,揭示了极值统计特征量与一般统计参数的联系。程炳岩等(2003)进一步利用非正态假设下的交叉理论,从理论上导出适用性更广的基于Gamma分布和负指数分布的极值特征量诊断公式及其样本估计式。在此基础上,丁裕国和江志红(2009)总结出版了专著《极端气候研究方法导论》,填补了我国在该领域的空白。

以上气候资料的插补重建为早期气候变化的研究奠定了资料基础,多元分析、统计诊断及其极端气候的统计理论方法的探讨,为气候变化时空规律及其可能成因研究提供了方法技术,系列ENSO短期气候预测模型则推动了我国短期气候预测业务。相关成果相继获得了1994、1998年中国气象局科技进步三等奖以及2009年江苏省科技进步二等奖。

5 中国气候和极端天气气候变化

5.1 近百年区域气候的时空变化

1980年代后中国近百年的气候变化规律的研究引起了高度关注,屠其璞(1984,1991)利用中国1880年以来重建的温度序列,发现近百年来中国气候变暖非常显著,与全球增暖趋势基本相同,指出1851—1984年北半球气温变化与我国大范围气温距平有显著的正相关(屠其璞,1991)。进一步研究表明,虽然中国各区域升温趋势大小不一,但从年代际以上尺度看我国平均气温与北半球陆地平均温度的变化相当一致,主要差别在于年际变化。江志红等(1997)则详细对比中国近百年两次明显的增暖时期(20世纪30—40年代和70年代中后期以来)大范围气温场距平时空分布结构特征,指出两次增暖期内中国气温场空间分布和季节变化存在着明显差异,1940年代前的增暖是以我国南方地区全年各季气温一致上升为基本特征,且夏半年增幅高于冬半年,而1970年代中后期以来的增暖,则主要集中于我国北方地区和冬半年,夏半年的贡献很小。屠其璞(1987)、李庆祥和屠其璞(2002)基于重建的百年(1881—1981年)连续、均一的降水量序列,指出降水量有明显的35 a、4.7 a和2 a左右的周期,并提出旱涝与太阳活动11 a周期存在一定的关系。

在Jones et al.(1988)建立全球和半球百年平均气温序列之后,全球变暖背景下,各区域的近百年气候变化特征是1990年代以来“全球气候变化”研究的热点。丁裕国等(2001)、余锦华等(2001)采用奇异谱(SSA)和奇异交叉谱(SCSA)研究全球平均温度场年际变率中的QBO振荡的长期变化特征,发现全球平均气温序列所蕴含的显著QBO分量与全球气候系统中的其他变量具有各种对应的耦合关系;江志红等(2001,2004)对全球各区域平均温度序列进行多种信号的检测、重构,发现年代际低频振荡信号对全球变暖的强度、显著性、稳定性及其区域性差异有重要影响,准20~30 a振荡主要集中于大洋的中纬度和副热带纬度,且有沿副热带海洋环流传播的特点。

随着气象资料的丰富,我国区域气候变化的规律也有了更多研究(丁裕国和江志红,1999;江志红和丁裕国,1999),发现我国增温趋势较大的地区主要集中在北方,而冬季升温区范围和幅度最大。我国地处东亚季风区,我国雨带的季节内变化与东亚夏季风的进退紧密相关,江志红等(2006)、Jiang et al.(2008)发现中国夏季降水型态的年代际变化是夏季风推进过程年代际变化的表现,与北太平洋年代际模(PDO)有关;20世纪60年代中期前,南海夏季风的建立时间较迟,但北推较快,夏季风前沿到达华北地区时间较早,在华北地区维持时间长,夏季风的北界位置偏北,华北雨季、淮河梅雨明显;70年代末以后南海夏季风的建立时间较早,降水主要集中在长江流域及其以南地区,华北雨季不明显;当雨带推进偏强时,雨带易偏北,夏季多出现Ⅰ型降水分布,雨带推进弱时,雨带易偏南,夏季多出现Ⅱ型、Ⅲ型降水分布。Sun et al.(2019a)发现1961年来梅雨强度(梅雨峰值日期)呈现显著的弱-强-弱(偏早-偏晚-偏早)的年代际变化特征,揭示梅雨强度的年代际变化与长江流域上空对流活动的年代际变化有关,梅雨峰值日期的年代际变化则主要受经向水汽输送的影响;同时印度洋海盆模态的年际活动中心在70年代末以后北移至阿拉伯海,对中国夏季气候的年际变化产生了重要影响(Sun et al.,2019b)。

周莉等(2015)、Ma et al.(2016)、Jiang et al.(2017)进一步研究了近40 a中国东部大规模城市化对东亚夏季风环流的影响,通过高分辨率耦合城市冠层模型的全球大气环流模式CAM5的数值试验,发现无论是城市土地利用,还是人为气溶胶排放,以及二者的共同效应,都将导致东亚夏季风强度减弱,降水呈现“南涝北旱”异常分布,它们都与东亚中纬度西风急流减弱,南方的水汽辐合增强有关,研究成果提高了城市化与东亚夏季风相互作用的科学认识,为我国城市化发展规划提供了科学建议。

5.2 中国极端天气气候变化特征

20世纪90年代起,伴随着全球气候变暖,极端天气气候事件的频发和加剧给人类社会造成巨大损失,相关研究开始引起科学界乃至国际社会高度重视。Jiang et al.(2014)发现在全球变暖的背景下,全国降水强度普遍增加,极端强降水的相对贡献显著增强。与1986—2002年相比,华北地区2003—2016年强降水量和强降水频率都有显著的增加(Han et al.,2020)。而中国西北汛期极端降水事件发生频次同降水量的空间分布有很大的差异(杨金虎等,2007)。Ding et al.(2008)给出了我国50 a一遇、100 a一遇日最大降水量及其置信区间的分布特征;Ma et al.(2012,2013)等发现变暖背景下东亚地区增暖的经向非对称性直接导致的东亚副热带急流偏南,是造成我国近年来南方暴雪、冻雨极端事件多发的重要原因之一。Zhou et al.(2018) 发现近60 a我国总降雪日数减少,主要因小雪日数减少所致;中到暴雪量的增加导致我国北方总降雪量增加;小到暴雪量的减少造成我国南方总降雪量减少。吴志伟等(2006)设计了监测“旱涝并存、旱涝急转”强度的定量指标,发现我国长江中下游地区“旱涝并存、旱涝急转”灾害近几十年来呈显著加剧趋势。

随着全球变暖,我国极端暖事件增多,极端低温事件显著减少这不仅因为平均温度的增加,在某些局部地区,其方差或其形状参数也有变动,相应的时空概率分布变化显著,因而形成极端高温(低温)事件频率增大(减少)的现象(刘吉峰等,2007)。从区域上来看,1960—2004年来中国西北年极端高温发生频次的增加趋势明显,强度在不断增强,而年极端低温发生频次的减少趋势更显著,强度不断减弱,该区域极端高(低)温事件的变化显示出对西北区域增暖的明显正(负)响应(Yang and Jiang,2008)。通过比较16种热浪指数发现,热浪频发区主要集中在江淮和华南地区(You et al.,2017),并且极端热浪事件主要发生在6—8月并在7月达到峰值。在过去的30 a(1980—2009年),中国南方经历了或长或短的寒潮,但是中国北方的寒潮变的不活跃(Jiang et al.,2012a)。近期,Zhou et al.(2016)基于高分辨率格点观测资料,发现1961年以来极端暖事件增加,极端冷事件减少;冷日冷夜增温幅度大于暖日暖夜增温幅度;极端强降水变化具有空间不一致性,在西南-东北走向减少,而东部和西北地区增加。Xie et al.(2020)发现1961年以来,我国轻度、中度、重度和严重高温热浪事件均呈增加的趋势,其中严重热浪事件在西北东部和华北增加最为显著,轻度事件在江淮和华南增加最为明显。进一步利用“联合变量法”構建了复合型极端高温干旱指数,发现近半个世纪以来,东北地区复合型高温干旱事件的发生频次显著增加,北大西洋海温的年代际偏暖对东北夏季复合型高温干旱事件的年代际偏多起重要调控作用(Li et al.,2020a),近年来人类活动强迫的增强则对东北复合型高温干旱事件的增加趋势有显著影响(Li et al.,2020b)。以上部分极端气候的检测指标与方法已应用于我国“极端天气气候事件的监测、诊断和预测业务系统”,为我国极端气候监测诊断业务系统的建设做出了贡献。

热带气旋(TC)是影响我国的主要灾害性天气系统。罗哲贤等长期致力于热带气旋动力学理论及应用的研究,特别是21世纪初期,采用高分辨卫星探测数据,通过理想模型的解析推演和数值模拟相结合的途径,应用自组织、分形和分形自组织等非线性科学,探讨了复杂结构型态TC突然北折和逆时针打转等异常路径形成的机理,揭示了TC环流与中小尺度对流系统相互作用影响TC路径的大样本特征,推动了TC移动动力学的深入发展(Luo 2011;Luo and Ping 2012;Luo et al.,2014),相关系列研究成果获2010年度江苏省科技进步二等奖。

5.3 气候变化的影响及其评估

气候变化的影响评估是全球变化研究的重要分支,直接关系到应对气候变化的政策制定。围绕气候变化对长江三角洲的影响,缪启龙(1995)利用长江三角洲海岸带的历史资料,讨论了长江三角洲海岸带的历史演变,并对未来海岸的变化作了估计,指出未来气候变化对长江三角洲海堤、江口通航、江口淡水资源的影响,并提出了适应气候变化和减轻影响的措施。进一步研究了气候变化对西藏地区农、牧业生产、水资源及环境的影响,发现温度的上升会延长生育期,提高光合生产力,但降水的减少将使农作物产量受到严重影响,畜牧业的生产也有类似现象,将使环境更为恶化,同时提出适应气候变化可采取的一些策略措施(缪启龙等,1998)。此外,缪启龙等(2009a,2009b)还分析了气候变化对我国热量资源、季节变化及其亚热带北界位置的影响。通过引入经济学“投入-产出”分析方法的基本原理,结合气候变化对工业影响的统计模型、对农业产量影响的模拟系统,建立了气候变化对长江三角洲江苏省经济影响的投入-产出模型,预测了未来不同气候变化情景下,资金投入量及各经济部门之间相互投入量的变化(张永勤和缪启龙,2001),为区域经济发展规律提供了决策参考,并在区域气候变化对社会经济影响的研究方法做了有益的探索。相关成果获得1999年国家环境保护总局科技进步二等奖。

6 气候变化的模拟与预估

6.1 气候变化的模拟评估

全球气候系统模式是气候变化模拟预估的重要工具,为此,世界气候研究计划(WCRP)设立了一系列模式比较计划(CMIP),并提供了众多气候系统模式试验结果。为提高东亚气候未来预估的可信度,江志红等评估了CMIP3-CMIP6系列模式对东亚环流及中国气候的模拟能力(江志红等,2009b;Jiang et al.,2012a,2015,2017)。在环流场方面,他们引入EOF、自组织映射神经网络(SOM),大气活动中心闭合环流系统指数的定量化计算方法,从不同高度环流场(黄海玲等,2015)、大气活动中心(Zhao et al.,2020)、天气型态(Wang et al.,2015)等方面建立了评估环流系统模拟能力的系列指标与方法,发现CMIP5模式对东亚平均大气环流场和大气活动中心都有较好的模拟能力,但都存在系统性偏差,特别是夏季西太平洋副热带高压位置、强度模拟能力都较弱。

在气候及极端气候方面,江志红等从气候趋势、时空结构、概率分布等方面建立系列评估多尺度气候与极端气候模拟能力的指标,发现全球气候模式对中国区域温度模拟存在“冷偏差”,降水模拟在干旱、半干旱区有“湿偏差”,湿润区存在“干偏差”(江志红等,2009c;Jiang et al.,2012b;黄海玲等,2015;Wang et al.,2015;Li et al.,2018a;Zhao et al.,2020)。但随着全球气候模式的改进,偏差得到了显著的降低,尤其是我国东南地区的干偏差在CMIP6中得到了显著的降低(Zhu et al.,2020)。对于极端气候,全球模式能够较好模拟极端温度的平均气候场,但是对趋势的模拟偏弱。对中国东部地区极端降水的模拟能力要显著高于西部地区,减小阿拉伯半岛东侧西南气流的模拟偏差,可以显著降低东南部地区的干偏差(Jiang et al.,2015)。通过系统评估近40個CMIP5全球模式对东亚地区环流系统和中国气候、极端气候等方面的模拟能力,发现CCSM4、CNRM-CM5、MPI-ESM-LR、 MPI-ESM-MR、CMCC-CM模式对东亚区域气候具有较好的综合模拟能力,研究成果为优选模式进行区域降尺度,进而开展东亚区域气候未来预估,降低预估不确定性,提供了重要基础。

6.2 统计和动力降尺度

虽然全球气候模式对区域气候变化特征有一定的模拟能力,但有效可靠的区域(或局地)细化气候变化信息必须通过降尺度途径获取,降尺度方法主要有动力和统计降尺度两类。

利用采用变网格模式LMDZ4分别对全球模式CNRM-CM5、MPI-ESM-MR、MPI-ESM-LR、IPSL-CM5A-MR、BCC-CSM1-1-m和FGOALS-g2进行动力降尺度,得到了1961—2100年中国区域6个高分辨模拟及其未来RCP4.5/8.5排放情景下的预估结果,发现相对于全球模式,LMDZ4降尺度后中国区域气候的模拟能力都得到了提高,中国区域气候的冷偏差、湿偏差显著减小(Chen et al.,2011a;Yang et al.,2016);降尺度后各区域日降水、日平均气温的PDF曲线更加接近观测,尤其在地形复杂的青藏高原、西北、西南等西部地区,且降尺度后模式对极端温度、降水模拟的改善程度也随地形升高而增强(高谦等,2017)。

统计降尺度方法主要是依据当前大尺度环流和局地气候的统计关系(或传递函数)在未来气候背景下不变,推断未来局地气候变化信息,江志红等引入并构建了SOM、非齐次隐马尔科夫模型(NHMM)、CCA、偏差订正模型等多种先进统计降尺度方法,通过比较不同降尺度方法对全球模式的降尺度模拟效果,揭示了不同统计降尺度方法在中国区域的适用性(江志红等,2009c;Jiang et al.,2011;丁梅等,2016;Wu et al.,2016;Guo et al.,2019)。以江淮流域夏季(6—8月)的逐日降水进行统计建模为例,发现NHMM、SOM方法都能够有效提高气候模式对江淮流域夏季日降水量的模拟能力,NHMM降尺度后对各降水指数气候场的偏差百分率普遍降至10%以下(Guo et al.,2019);SOM降尺度后对各降水指数气候场的偏差百分率普遍降至15%以下,相关系数均达到0.9(Li et al.,2020c)。同时系统引入并构建线性变换(LS)、分位点投影变换(QM)、分布投影变换(DM)以及累积概率分布变换(CDFT)四种偏差订正模型,对BCC-CSM1.1-m模式的模拟降水进行偏差订正(Zhu et al.,2017;Guo et al.,2020),发现四种偏差订正模型均能有效改善对江淮流域夏季降水的模拟性能,其中分位点投影变换订正效果最为显著。研发的SOM、NHMM等多种先进统计降尺度方案为模式的解释应用、气候预测提供了新技术,相应各种统计动力降尺度预估结果为开展中国区域未来精细化气候预估提供了基础数据。

6.3 气候变化的预估及其不确定性

在客观评估模式对气候模拟能力基础上,如何优化集合众多气候模式预估结果,减小预估不确定性,同时定量评估不确定性,更有效服务于气候影响评估与风险决策,也是气候预估的关键问题。

江志红等基于多个CMIP全球模式,通过贝叶斯模型平均(BMA)、优选模式秩加权等方法(江志红等,2009c;Chen et al.,2011b;Jiang et al.,2012b;郯俊岭等,2016;Li et al.,2016;Guo et al.,2020),结合动力和统计降尺度获得了中国区域未来高分辨率气候变化的概率预估;发现RCP4.5排放情景下,21世纪中期(2046—2065年)北方和南方增温超过1.5 ℃的概率分别为80%和50%,21世纪末期(2081—2100年),北方(南方)有80%(50%)的可能性增温超过2 ℃。对于降水,冬季降水增加比夏季明显,21世纪末期我国东北北部和青藏高原北部冬季降水很有可能增加10%,而夏季降水增加超过10%的区域主要位于我国北方地区。21世纪末期,西北、西南及黄淮流域极端降水贡献率都有较大可能增加20%,霜冻日数减少超过20 d,热浪指数增加超过20 d。Zhou et al.(2014)基于CMIP5多模式集合,预估到21世纪末,中国区域暖事件增加,冷事件减少,极端强降水将增加。表明21世纪末期中国区域极端温度增温显著,极端温度变化的敏感区主要位于青藏高原周围以及东南沿海;降水更趋向于极端化,特别是在西北等降水偏少的地区,局地旱涝更加频繁。

为加强应对气候变化的威胁,巴黎协议提出将全球平均气温升幅控制在较工业化前2 ℃之内,并力争限制在1.5 ℃,中国气候及其极端事件在增温1.5 ℃的响应特征与机制是我国有效参与全球气候治理及国际气候谈判的迫切需要。Li et al.(2018b)、Shi et al.(2018c)以及Sun et al.(2019c)利用几十个CMIP5模式资料(瞬变条件下的模拟试验)、HAPPI与CESM-Low warming(21世纪末期稳定增温下的试验)试验结果,研究了全球增温1.5 ℃和2 ℃下,我国气候以及极端气候的响应特征,发现全球瞬变增温1.5 ℃/2.0 ℃下,相对于历史时期(1985—2005年),中国区域平均温度增加1.0 ℃/1.7 ℃,极端降水强度增加约7%/11%;增温大值区集中在中国北部地区以及青藏高原地区;历史时期中国区域平均100 a一遇的极端降水事件发生风险将会增加1.6倍/2.4倍(Li et al.,2018);中国西部、青藏高原和长江以南地区是极端高温变化的敏感区(Shi et al.,2018)。利用全球稳定增暖1.5 ℃试验(HAPPI,CESM-LW)结果,发现HAPPI、CESM-LW稳定试验中我国平均温度和极端温度变化的分布与CMIP5瞬变试验结果基本一致(Sun et al.,2019c)。但中国长江及其以南地区夏季降水存在显著差异,该区域稳定增温下夏季降水增加明显超过瞬变增温,并主要与动力因子导致的环流调整有关。

未来气候变化预估的不确定性分析表明(郯俊岭等,2016;Li et al.,2016),预估温度变化的可信度高,全国温度预估的信噪比普遍高于3.0,降水预估的可信度较低,除个别地区略高于1.0外,其他区域信噪比均低于1.0,冬季降水预估的可信度略高于夏季。未来总降水量和降水强度的可信度较高,信噪比大于1.0,而極端降水的可信度较低。Zhou et al.(2014)进一步量化了排放情景、模式差异和自然变率在全国与区域尺度极端事件预估不确定性中的相对贡献。

以上有关气候变化的模拟与预估相关工作,被联合国政府间气候变化专门委员会(IPCC)系列报告、国家气候变化系列评估报告引用,成为中国区域气候变化及其未来响应的重要依据,相关研究成果获得2015年江苏省科学技术进步一等奖。

7 结语

六十年来,南京信息工程大学在气候与气候变化领域的研究,不仅促进大气科学和其他相关学科的高质量发展,为学校在大气科学研究领域和教育界赢得了良好声誉和较高知名度,也培养了一批气候和气候变化领域的优秀人才。

气候与气候变化的研究是近60 a大气科学研究中最具活力的前沿研究领域之一,全球变暖及其对地球环境的影响不仅是科学界的研究热点,也是各国政府、国际社会的共同关注,据世界气象组织最新报告预测,全球范围内的气候变化将在未来持续加剧。展望未来,气候与气候变化研究仍然存在许多问题,气候和气候变化的研究更需要学科交叉,尤其是对于气候系统过程及相互作用、极端天气气候变化机理及其预测预估、冰冻圈气候与气候变化、气候变化影响及其风险防控、气候变化适应与可持续发展等方面问题,需要不同学科的科学家协同攻关。南京信息工程大学气候与气候变化的研究将聚焦科学研究前沿,关注交叉融合趋势,面向气候服务需求,为南信大大气科学“一流学科”的建设作出新贡献。

致谢:感谢邱新法教授、周波涛教授、李伟博士、孙博教授、李娟教授、李惠心博士在稿件形成过程中所做出的努力。

参考文献(References)

曹芸,何永健,邱新法,等,2012.基于地面观测资料的MODIS云量产品订正[J].遥感学报,16(2):325-342. Cao Y,He Y J,Qiu X F,et al.,2012.Correction methods of MODIS cloud product based on ground observation data[J].J Remote Sens,16(2):325-342.(in Chinese).

Chen W L,Jiang Z H,Li L,et al.,2011a.Simulation of regional climate change under the IPCC A2 scenario in southeast China[J].Clim Dyn,36(3/4):491-507.

Chen W L,Jiang Z H,Li L,2011b.Probabilistic projections of climate change over China under the SRES A1B scenario using 28 AOGCMs[J].J Climate,24(17):4741-4756.

程炳岩,丁裕国,汪方,2003.非正态分布的天气气候序列极值特征诊断方法研究[J].大气科学,27(5):920-928. Cheng B Y,Ding Y G,Wang F,2003.A diagnosis method of the extreme features of weather and climate in time series based on non-normal distribution[J].Chin J Atmos Sci,27(5):920-928.(in Chinese).

丁梅,江志红,陈威霖,2016.非齐次隐马尔可夫降尺度方法对江淮流域夏季逐日降水的模拟及其评估[J].气象学报,74(5):757-771. Ding M,Jiang Z H,Chen W L,2016.Simulation and evaluation of summer daily precipitation based on nonhomogeneous hidden Markov model over the Yangtze-Huaihe River Basin[J].Acta Meteorol Sin,74(5):757-771.(in Chinese).

丁裕国,吴息,1988.经验正交函数展开气象场收敛性的研究[J].热带气象学报,4(4):316. Ding Y G,Wu X,1988 Studies of convergence for the expansion of meteorological fields with empirical orthogonal functions,Journal of Tropical Meteorology,(04):316-326.[J].J Trop Meteor,4(4):316.(in Chinese).

丁裕国,张耀存,1989.降水气候特征的随机模拟试验[J].南京气象学院学报,12(2):146-155. Ding Y G,Zhang Y C,1989.A stochastic simulation test for climatological features of precipitation[J].J Nanjing Inst Meteor,12(2):146-155.(in Chinese).

丁裕国,冯燕华,1992.重建历史降水量场的统计模拟方法[J].南京气象学院学报,15(4):485-492. Ding Y G,Feng Y H,1992.A statistical simulation method for reconstruction precipitation fields in historical time[J].J Nanjing Inst Meteorol,15(4):485-492.(in Chinese).

丁裕国,江志红,1993.气象场相关结构对EOFs展开稳定性的影响[J].气象学报,51(4):448-456. Ding Y G,Jiang Z H,1993.The effect of the correlation structure of meteorological fields on stability of expansion of EOFs[J],Acta Meteorol Sin,51(4):448-456.(in Chinese).

丁裕国,江志红,1995.非均匀站网EOFs展开的失真性及其修正[J].气象学报,53(2):247-253. Ding Y G,Jiang Z H,1995.The lack fidelity OF EOFs expansion over heterogeneous network and its revised scheme[J].Acta Meteorol Sin,53(2):247-253.(in Chinese).

丁裕國,江志红,1996.SVD方法在气象场诊断分析中的普适性[J].气象学报,54(3):365-372. Ding Y G,Jiang Z H,1996.Generality of singular value decomposition in diagnostic analysis of meteorological field[J].Acta Meteorol Sin,54(3):365-372.(in Chinese).

丁裕国,江志红,1998.气象数据时间序列信号处理[M].北京:气象出版社. Ding Y G,Jiang Z H,1998.The signal processing of times series of meteorological data[M].Beijing:China Meteorological Press.(in Chinese).

丁裕国,江志红,1999.中国近50年严冬和冷夏演变趋势与区划[J].应用气象学报,10(S1):88-96. Ding Y G,Jiang Z H,1999.Study of trends and features for extreme temperatures in winter and summer over China during the past 50 years[J].Q J Appl Meteorol,10(Z1):88-96.(in Chinese).

丁裕国,江志红,2009.极端气候研究方法导论[M].北京:气象出版社 Ding Y G,Jiang Z H,2009.Introduction to extreme climate research methods[M].Beijing:China Meteorological Press.(in Chinese).

丁裕国,江志红,1998.Nio海区SSTA短期气候预测模型试验[J].热带气象学报,14(4):289-296. Ding Y G,Jiang Z H,1998.Experiment on short term climatic prediction to SSTA over the nio oceanic region[J].J Trop Meteor,14(4):289-296.(in Chinese).

丁裕国,江志红,1999.奇异交叉谱分析及其在气候诊断中的应用[J].大气科学,23(1):91-100. Ding Y G,Jiang Z H,1999.Singular cross-spectrum analysis and its applicability in climatic diagnosis[J].Chin J Atmos Sci,23(1):91-100.(in Chinese).

丁裕国,刘晶淼,余锦华,2001.近百年全球平均气温年际变化型态的低频变率特征[J].热带气象学报,17(3):193-203. Ding Y G,Liu J M,Yu J H,2001.Low frequency variability of interannual changepatterns for global mean temperatureduring recent 100 years[J].J Trop Meteorol,17(3):193-203.(in Chinese).

丁裕国,程正泉,程炳岩,2002a.MSSA-SVD典型回归模型及其用于ENSO预报的试验[J].气象学报,60(3):361-369. Ding Y G,Cheng Z Q,Cheng B Y,2002a.A prediction experiment by using the generalized canonical mixed regression model based on mssa-svd for enso[J].Acta Meteorol Sin,60(3):361-369.(in Chinese).

丁裕国,金莲姬,刘晶淼,2002b.诊断天气气候时间序列极值特征的一种新方法[J].大气科学,26(3):343-351. Ding Y G,Jin L J,Liu J M,2002b.A new method on time series of weather and climate to diagnose the features of extreme value[J].Chin J Atmos Sci,26(3):343-351.(in Chinese).

丁裕国,梁建茵,刘吉峰,2005.EOF/PCA诊断气象变量场问题的新探讨[J].大气科学,29(2):307-313. Ding Y G,Liang J Y,Liu J F,2005.New research on diagnoses of meteorological variable fields using EOF/PCA[J].Chin J Atmos Sci,29(2):307-313.(in Chinese).

丁裕国,张耀存,刘吉峰,2007.一种新的气候分型区划方法[J].大气科学,31(1):129-136. Ding Y G,Zhang Y C,Liu J F,2007.a new cluster method for climatic classification and compartment using the conjunction between CAST and REOF[J].Chin J Atmos Sci,31(1):129-136.(in Chinese).

Ding Y G,Cheng B Y,Jiang Z H,2008.A newly-discovered GPD-GEV relationship together with comparing their models of extreme precipitation in summer[J].Adv Atmos Sci,25(3):507-516.

高謙,江志红,李肇新,2017.多模式动力降尺度对中国中东部地区极端气温指数的模拟评估[J].气象学报,75(6):917-933. Gao Q,Jiang Z H,Li Z X,2017.Simulation and evaluation of multi-model dynamical downscaling of temperature extreme indices over the Middle and East China[J].Acta Meteorol Sin,75(6):917-933.(in Chinese).

高庆先,翁笃鸣,1996.中国地表感热的气候计算及其分布[J].南京气象学院学报,19(2):238-244. Gao Q X,Weng D M,1996.Climatological calculations of surface sensible heat and its distribution over China[J].J Nanjing Inst Meteor,19(2):238-244.(in Chinese).

高绍凤,陈万隆,朱瑞兆,等,2001.应用气候学[M].北京:气象出版社. Gao S F,Chen W L,Zhu R Z et al.,2001.Applied climatology [M].Beijing:China Meteorological Press.(in Chinese).

Guo L Y,Jiang Z H,Ding M,et al.,2019.Downscaling and projection of summer rainfall in Eastern China using a nonhomogeneous hidden Markov model[J].Int J Climatol,39(3):1319-1330.

Guo L Y,Jiang Z H,Chen D L,et al.,2020.Projected precipitation changes over China for global warming levels at 1.5 ℃ and 2 ℃ in an ensemble of regional climate simulations:impact of bias correction methods[J].Clim Chang.doi:10.1007/s10584-020-02841-z.

Han T T,Guo X Y,Zhou B T,et al.,2020.Recent changes in heavy precipitation events in northern central China and associated atmospheric circulation[J].Asia-Pacific J Atmos Sci.doi:10.1007/s13143-020-00195-1.

He Y J,Qiu X F,Sun Z A,et al.,2015.A geometric photography model for determining cloud top heights using MISR images[J].J Geophys Res:Atmos,120(20):10939-10950.

黄海玲,江志红,王志福,等,2015.CMIP5模式對东亚500 hPa 高度场主要模态时空结构模拟能力的评估[J].气象学报,73(1):110-127. Huang H L,Jiang Z H,Wang Z F,et al.,2015.The evaluation of the 500 hPa geopotential height's main modes in East Asia as done by the CMIP5 models[J].Acta Meteorol Sin,73(1):110-127.(in Chinese).

江志红,丁裕国,1990.我国近百年(1881—1980年)总辐射场资料的重建试验[J].气象科学,10(1):22-31. J Z H,Ding Y G,1990.A trial of reconstructing data series of global radiation field of China in recent 100 years (1881—1980)[J].Sci Meteor Sin,10(1):22-31.(in Chinese).

江志红,丁裕国,1998.奇异谱分析的广义性及其应用特色[J].气象学报,56(6):736-745. J Z H,Ding Y G,1998.Generality and applied features for singular spectrum analysis[J].Acta Meteorol Sin,56(6):736-745.(in Chinese).

江志红,丁裕国,1999.近百年上海气候变暖过程的再认识:平均温度与最低、最高温度的对比[J].应用气象学报,10(2):151-159. Jiang Z H,Ding Y G,1999.Renewed study on the warming process of Shanghai during the past 100 years[J].Q J Appl Meteorol,10(2):151-159.(in Chinese).

江志红,丁裕国,金莲姬,1997.中国近百年气温场变化成因的统计诊断分析[J].应用气象学报,(02):48-58. Jiang Z H,Ding Y G,Jin C J,1997.Statistical-diagnostic Analysis of Cause for the Change of Chinas Temperature Field During the Last 100 Years.Joumal of Applied Meteorological Science,8(2):175-185.(in Chinese).

江志红,丁裕国,屠其璞,1999a.气象场序列几种插补方案的对比试验[J].南京气象学院学报,22(3):352-359. Jiang Z H,Ding Y G,Tu Q P,1999a.Contrast study on the several interpolation schemes of meteorological fields series[J].J Nanjing Inst Meteor,22(3):352-359.(in Chinese).

江志红,丁裕国,周琴芳,1999b.用于ENSO预测的一种广义典型混合回归模式及其预报试验[J].热带气象学报,15(4):322-329. Jiang Z H,Ding Y G,Zhou Q F,1999b.A general ized model using canonical mixed regress i onand forecasting test to enso[J].J Trop Meteor,15(4):322-329.(in Chinese).

江志红,屠其璞,施能,2001.多窗谱分析方法及其在全球变暖研究中的应用[J].气象学报,59(4):480-490. Jiang Z H,Tu Q P,Shi N,2001.Multi-taper method of spectral analysis and applications in global warming study[J].Acta Meteorol Sin,59(4):480-490.(in Chinese).

江志红,李建平,屠其璞,等,2004.20世纪全球温度年代和年代际变化的区域特征[J].大气科学,28(4):545-558. Jiang Z H,Li J P,Tu Q P,et al.,2004.Regional characteristics of the decadal and interdecadal variations for global temperature field during the last century[J].Chin J Atmos Sci,28(4):545-558.(in Chinese).

江志红,何金海,李建平,等,2006.东亚夏季风推进过程的气候特征及其年代际变化[J].地理学报,61(7):675-686. Jiang Z H,He J H,Li J P,et al.,2006.Northerly advancement characteristics of the east Asian summer monsoon with its interdecadal variations[J].Acta Geogr Sin,61(7):675-686.(in Chinese).

Jiang Z,Yang S,He J,et al.,2008.Interdecadal variations of East Asian summer monsoon northward propagation and influences on summer precipitation over East China[J].Meteor Atmos Phys,100(1/2/3/4):101-119.

江志红,丁裕国,朱莲芳,等,2009a.利用广义帕雷托分布拟合中国东部日极端降水的试验[J].高原气象,28(3):573-580. Jiang Z H,Ding Y G,Zhu L F,et al.,2009a.Extreme precipitation experimentation over Eastern China based on generalized Pareto distribution[J].Plateau Meteor,28(3):573-580.(in Chinese).

江志红,陈威霖,宋洁,等,2009b.7个IPCC AR4模式对中国地区极端降水指数模拟能力的评估及其未来情景预估[J].大气科学,33(1):109-120. Jiang Z H,Chen W L,Song J,et al.,2009b.Projection and evaluation of the precipitation extremes indices over China based on seven IPCC AR4 coupled climate models[J].Chin J Atmos Sci,33(1):109-120.(in Chinese).

江志红,丁裕国,蔡敏,2009c.未来极端降水对气候平均变暖敏感性的蒙特卡罗模拟试验[J].气象学报,67(2):272-279. Jiang Z H,Ding Y G,Cai M,2009c.Monte Carlo experiments on the sensitivity of future extreme rainfall to climate warming[J].Acta Meteorol Sin,67(2):272-279.(in Chinese).

江志红,刘冬,刘渝,等,2010.导线覆冰极值的概率分布模拟及其应用试验[J].大气科学学报,33(4):385-394. Jiang Z H,Liu D,Liu Y,et al.,2010.Study on the probability distribution simulation of conductor icing and its application test[J].Trans Atmos Sci,33(4):385-394.(in Chinese).

Jiang Z H,Ding Y G,Zheng C Y,et al.,2011.An improved,downscaled,fine model for simulation of daily weather states[J].Adv Atmos Sci,28(6):1357-1366.

Jiang Z H,Ma T T,Wu Z W,2012a.China coldwave duration in a warming winter:change of the leading mode[J].Theor Appl Climatol,110(1/2):65-75.

Jiang Z H,Song J,Li L,et al.,2012b.Extreme climate events in China:IPCC-AR4 model evaluation and projection[J].Clim Chang,110(1/2):385-401.

江志紅,常奋华,丁裕国,2013.基于马尔科夫链转移概率极限分布的降水过程持续性研究[J].气象学报,71(2):286-294. Jiang Z H,Chang F H,Ding Y G,2013.An investingation into continuous precipitation based on the Markov transition probability limit distribution[J].Acta Meteorol Sin,71(2):286-294.(in Chinese).

Jiang Z H,Shen Y C,Ma T T,et al.,2014.Changes of precipitation intensity spectra in different regions of mainland China during 1961—2006[J].J Meteorol Res,28(6):1085-1098.

Jiang Z H,Li W,Xu J,et al.,2015.Extreme precipitation indices over China in CMIP5 models.part I:model evaluation[J].J Climate,28(21):8603-8619.

Jiang Z H,Huo F,Ma H Y,et al.,2017.Impact of Chinese urbanization and aerosol emissions on the east Asian summer monsoon[J].J Climate,30(3):1019-1039.

Jones P D,1988.Hemispheric surface air temperature variations:recent trends and an update to 1987[J].J Climate,1(6):654-660.

李慧,翁篤鸣,1992.丘陵山区地面热平衡场数值模拟的初步探讨[J].气象学报,50(4):485-491. Li H,Weng D M,1992.A preliminary numerical study on the surface heat balance field in the hilly area[J].Acta Meteorol Sin,50(4):485-491.(in Chinese).

Li H X,Chen H P,Sun B,et al.,2020a.a detectable anthropogenic shift toward intensified summer hot drought events over northeastern China[J].Earth Space Sci.doi:10.1029/2019ea000836.

Li H X,He S P,Gao Y Q,et al.,2020b.North Atlantic modulation of interdecadal variations in hot drought events over northeastern China[J].J Climate,33(10):4315-4332.

Li M,Jiang Z H,Zhou P,et al.,2020.Projection and possible causes of summer precipitation in Eastern China using self-organizing map[J].Clim Dyn,54(5/6):2815-2830.

Li M X,Qiu X F,Shen J J,et al.,2019.CFD simulation of the wind field in Jinjiang City using a building data generalization method[J].Atmosphere,10(6):326.

李庆祥,屠其璞,2000.近百年北半球陆面降水资料的插补及初步分析[J].南京气象学院学报,23(4):528-535. Li Q X,Tu Q P,2000.Interpolation and primary analysis of Northern Hemisphere land surface precipitation in the past 100 years[J].J Nanjing Inst Meteor,23(4):528-535.(in Chinese).

李庆祥,屠其璞,2002.近百年北半球陆面及中国年降水的区域特征与相关分析[J].南京气象学院学报,25(1):92-99. Li Q X,Tu Q P,2002.The regional characters of annual precipitation in Northern Hemisphere land-sur face and China and their correlation[J].J Nanjing Inst Meteorol,25(1):92-99.(in Chinese).

Li W,Jiang Z H,Xu J,et al.,2016.Extreme precipitation indices over China in CMIP5 models.part II:probabilistic projection[J].J Clim,29(24):8989-9004.

Li W,Jiang Z H,Zhang X B,et al.,2018a.On the emergence of anthropogenic signal in extreme precipitation change over China[J].Geophys Res Lett,45(17):9179-9185.

Li W,Jiang Z H,Zhang X B,et al.,2018b.Additional risk in extreme precipitation in China from 1.5 ℃ to 2.0 ℃ global warming levels[J].Sci Bull,63(4):228-234.

李占清,翁笃鸣,1987.一个计算山地地形参数的计算机模式[J].地理学报,42(3):269-278. Li Z Q,Weng D M,1987.A computer model to determine tpographic parameters.Acta Geographica Sinica,42(3):269-278.(in Chinese).

李占清,翁笃鸣,1988.坡面散射辐射的分布特征及其计算模式[J].气象学报,46(3):349-356. Li Z Q,Weng D M,1988.The distribution and the computing model of the diffuse radiation on slopes.Acta Meteorological Sinica,46(3):349-356.(in Chinese).

刘昌明,曾燕,邱新法,2004.黄河流域气象水文学要素图集[M].郑州:黄河水利出版社. Liu C M,Zeng Y,Qiu X F,2004.Atlas of Meteorological and Hydrological Elements in the Yellow River Basin[M].Zheng Zhou:The Yellow River Water Conservancy Press.(in Chinese).

刘吉峰,丁裕国,江志红,2007.全球变暖加剧对极端气候概率影响的初步探讨[J].高原气象,26(4):837-842. Liu J F,Ding Y G,Jiang Z H,2007.The influence of aggravated global warming on the probability of extreme climatic event[J].Plateau Meteor,26(4):837-842.(in Chinese).

罗哲贤,2005.中国西北干旱气候动力学引论[M].北京:气象出版社. Luo Z X,2005.Introduction of dynamics of drought climate over Northwestern China[M].Beijing:China Meteorological Press.(in Chinese).

Luo Z X,2011.Energy dispersion of complex non-isolated vortices[J].Chin Sci Bull,56(25):2713-2717.

Luo Z X,Ping F,2012.Mechanism for initial brows-like meso-scale vortex effects on tropical cyclone track[J].Sci China Earth Sci,55(4):611-621.

Luo Z X,Wang Y,Ma G L,et al.,2014.Possible causes of the variation in fractal dimension of the perimeter during the tropical cyclone Dan motion[J].Sci China Earth Sci,57(6):1383-1392.

Ma H Y,Jiang Z H,Song J,et al.,2016.Effects of urban land-use change in East China on the East Asian summer monsoon based on the CAM5.1 model[J].Clim Dyn,46(9/10):2977-2989.

马开玉,丁裕国,屠其璞,1993.气候统计原理与方法[M].北京:气象出版社. Ma K Y,Ding Y G,Tu Q P,1993.Principle and method of climate statistic[M].Beijing:China Meteorological Press.(in Chinese).

Ma T T,Wu Z W,Jiang Z H,2012.How does coldwave frequency in China respond to a warming climate?[J].Clim Dyn,39(9/10):2487-2496.

Ma T T,Jiang Z H,Wu Z W,2013.Responses of the leading mode of coldwave intensity in China to a warming climate[J].Acta Meteorol Sin,27(5):673-683.

繆启龙,1995.气候变化对长江三角洲海岸带的可能影响[J].自然灾害学报,4(2):79-85. Miao Q L,1995.The possible impact of climate change on the delta Coast of Yangtze River[J].J Nat Disasters,4(2):79-85.(in Chinese).

缪启龙,2001.地球科学概论[M].北京:气象出版社. Miao Q L,2001.Introduction of Earth Science[M].Beijing:China Meteorological Press.(in Chinese).

缪启龙,翁笃鸣,孙治安,等,1991.中国墙面太阳总辐射的计算及全国分布[J].应用气象学报,2(2):184-190. Miao Q L,Weng D M,Sun Z A,et al.,1991.A calculation method of the total solar radiation received by wall surfaces in China[J].Q J Appl Meteorol,2(2):184-190.(in Chinese).

繆启龙,刘雅芳,周锁铨,1995.气候学[M].北京:气象出版社. Miao Q L,Liu Y F,Zhou Z S,1995.Climatology[M].Beijing:China Meteorological Press.(in Chinese).

缪启龙,向毓意,顾显跃,1998.气候变化对西藏环境经济的可能影响[J].应用气象学报,9(2):225-230. Miao Q L,Xiang Y Y,Gu X Y,1998.A possible impact of climate change on environment and economy of Tibetan region[J].Q J Appl Meteorlolgy,9(2):225-230.(in Chinese).

缪启龙,丁园圆,王勇,2009a.气候变暖对中国亚热带北界位置的影响[J].地理研究,28(3):634-642. Miao Q L,Ding Y Y,Wang Y,2009a.Impact of climate warming on the northern boundary of sub-tropical zone of China[J].Geogr Res,28(3):634-642.(in Chinese).

缪启龙,丁园圆,王勇,等,2009b.气候变暖对中国热量资源分布的影响分析[J].自然资源学报,24(5):934-944. Miao Q L,Ding Y Y,Wang Y,et al.,2009b.Impact of climate warming on the distribution of China's thermal resources[J].J Nat Resour,24(5):934-944.(in Chinese).

缪启龙,江志红,陈海山,等,2010.现代气候学[M].北京:气象出版社. Mian Q L,Jiang Z H,Chen H S,et al.,2010.Modern Climatology[M].Beijing:China Meteorological Press.(in Chinese).

青藏高原气象科学实验第一课题组,1984.青藏高原地面辐射平衡和热量平衡图集(1979年5—8月)[M].北京:气象出版社. The number one work group on Qinghai-Tibet Plateau Meteorological Scientific Experiment,1984.The Atlas of Surface Radiation and Heat Balance (May—August,1979)[M].Beijing:China Meteorological Press.(in Chinese).

邱新法,曾燕,缪启龙,等,2003.用常规气象资料计算陆面年实际蒸散量[J].中国科学D辑,33(3):281-288. Qiu X F,Zeng Y,Miao Q L,et al.,2003.Calculating actual annual evapotranspiration on land surface with conventional meteorological data [J].Sci China Ser D,33(3):281-288.(in Chinese).

Qiu X F,Zeng Y,Liu S M,2005.Distributed modeling of extraterrestrial solar radiation over rugged terrain[J].Chinese J Geophys,48(5):1100-1107.

邱新法,卞宗雅,曾燕,等,2009.重庆山地界限温度起止日期和持续日数的分布式模拟[J].自然科学进展,19(7):746-753. Qiu X F,Bian Z Y,Zeng Y,et al.,2009.Distributed simulation of starting and ending date and duration of Chongqing mountain boundary temperature.[J].Prog Nat Sci,19(7):746-753.(in Chinese).

Shi C,Jiang Z H,Chen W L,et al.,2018.Changes in temperature extremes over China under 1.5 ℃ and 2 ℃ global warming targets[J].Adv Clim Chang Res,9(2):120-129.

Shi G P,Sun Z A,Qiu X F,et al.,2018a.Comparison of two air temperature gridding methods over complex terrain in China[J].Theor Appl Climatol,133(3/4):1009-1019.

Shi G P,Qiu X F,Zeng Y,2018b.New method for estimating daily global solar radiation over sloped topography in China[J].Adv Atmos Sci,35(3):285-295.

Sun B,Li H X,Zhou B T,2019a.Interdecadal variation of Indian Ocean basin mode and the impact on Asian summer climate[J].Geophys Res Lett,46(21):12388-12397.

Sun B,Wang H J,Zhou B T,et al.,2019b.Interdecadal variation in the synoptic features of Mei-yu in the Yangtze River valley region and relationship with the Pacific decadal oscillation[J].J Climate,32(19):6251-6270.

Sun C,Jiang Z,Li W,et al.,2019c.Changes in extreme temperature over China when global warming stabilized at 1.5 ℃ and 2.0 ℃[J].Sci Rep,9(1):14982.

孙卫国,2008.气候资源学[M].北京:气象出版社. Sun W G,2008.Science of climatic resources[M].Beijing:China Meteorological Press.(in Chinese).

孙治安,翁笃鸣,1986.我国有效辐射的气候计算及其分布特征(下)[J].南京气象学院学报,9(4):335-347. Sun Z A,Weng D M,1986.Climatological calculation and distributional features of effective radiation over China[J].Journal of Nanjing meteorological University,9(4):335-347.(in Chinese).

郯俊岭,江志红,马婷婷,2016.基于贝叶斯模型的中国未来气温变化预估及不确定性分析[J].气象学报,74(4):583-597. Tan J L,Jiang Z H,Ma T T,2016.Projections of future surface air temperature change and uncertainty over China based on the Bayesian Model Averaging[J].Acta Meteorol Sin,74(4):583-597.(in Chinese).

屠其璞,1980.氣温序列的延长和插补[J].气象,6(5):14-16. Tu Q P,1980.Extension and Interpolation of Temperature Series.Meteorology[J].Meteor Mon,6(5):14-16.(in Chinese).

屠其璞,1984.近百年来我国气温变化的趋势和周期[J].南京气象学院学报,7(2):151-162. Tu Q P,1984.Trends and cycles of temperature changes in China in the past 100 years[J].J Nanjing Inst Meteor,7(2):151-162.(in Chinese).

屠其璞,1986.一种气温场序列的延长插补方法[J].南京气象学院学报,9(1):19-30. Tu Q P,1986.A method for interpolation and extrapolation of temperature field series[J],J Nanjing Inst Meteor,9(1):19-30.(in Chinese).

屠其璞,1987.近百年来我国降水量的变化[J].南京气象学院学报,10(2):177-187. Tu Q P,1987.Variation of precipitation over China in the past 100 years[J].J Nanjing Inst Meteor,10(2):177-187.(in Chinese).

屠其璞,1991.北半球增暖对我国气候的影响[J].南京气象学院学报,14(3):269-276. Tu Q P,1991.The effect of the northern hemisphere warming on the climate change in China[J].J Nanjing Inst Meteor,14(3):269-276.(in Chinese).

屠其璞,翁笃鸣,武全,姜余庆,潘里娜,1978.气候资料超短序列订正方法讨论(上)[J].南京气象学院学报,1(00):59-67. Tu Q P,Weng D M.Wu Q,et al.1978.Discussion on the correction method of ultrashort sequence of climate data[J].J Nanjing Inst Meteor,1(00):59-67.(in Chinese).

屠其璞,翁笃呜,武全,姜余庆,潘里娜,1979.气候资料超短序列订正方法讨论(中)[J].南京气象学院学报 2(1):42-50. Tu,Q.P.,Weng,D.M.Wu,Q.et al.1979.Discussion on the correction method of ultrashort sequence of climate data[J].J Nanjing Inst Meteor,2(1):42-50.(in Chinese).

屠其璞,王俊德,丁裕国,等,1984.气象应用概率统计学[M].北京:气象出版社. Tu Q P,Wang J D,Ding Y G,et al.,1984.Probability statistics of meteorology application[M].Beijing:China Meteorological Press.(in Chinese).

屠其璞,邓自旺,周晓兰,1999.中国近117年年平均气温变化的区域特征研究[J].应用气象学报,(S1):3-5. Tu Q P,Deng Z W,Zhou X,L,1999.Study of regional characteristics on mean annual temperature variation of near 117 years in China.Quarterly Journal of Applied Meteorology,(S1):3-5.(in Chinese).

Wang Y D,Jiang Z H,Chen W L,2015.Performance of CMIP5 models in the simulation of climate characteristics of synoptic patterns over East Asia[J].J Meteor Res,29(4):594-607.

翁笃鸣,1964.试论总辐射的气候计算方法[J].气象学报,34(3):304-315. Weng D M,1964.On the climatic calculation method of total radiation[J].Acta Meteorol Sin,34(3):304-315.(in Chinese).

翁笃鸣,1997.中国辐射气候[M].北京:气象出版社. Weng D M,1997.Radiation climate in China[M].Beijing:China Meteorological Press.(in Chinese).

翁笃鸣,罗哲贤,1990.山区地形气候[M].北京:气象出版社. Weng D M,Luo Z X,1990.Mountain terrain climate[M].Beijing:China Meteorological Press.(in Chinese).

翁笃鸣,高庆先,1994.中国土壤热通量的气候计算及其分布特征[J].气象科学,14(2):91-98. Weng D M,Gao Q X,He F P,1994.Climatologcal calculations and distribution of soil heat flux over China[J].Sci Meteorol Sin,14(2):91-98.(in Chinese).

翁笃鸣,高庆先,1997.应用ISCCP云资料反演青藏高原地面总辐射场[J].南京气象学院学报,20(1):41-46. Weng D M,Gao Q X,1997 ISCCP Data retrieval of Qinghai-Tibetan surface total radiation.Journal of Nanjing Institute of Meteorology.J Nanjing Inst Meteorol,20(1):41-46.(in Chinese).

翁篤鸣,陈万隆,沈觉成,等,1981.小气候和农田小气候[M].北京:农业出版社出版. Weng D M,CHEN W D,SHEN J C,et al.,1981.Microclimate and Cropland Microclimate[M].Beijing:Agricultural Press.(in Chinese).

翁笃鸣,李炬,高歌,1997.晴天太阳总辐射的参数化及气候计算[J].气象科学,17(1):1-9. Weng,D.M.,Li,J.,Gao,G.,Sun,Z.A.,1997.Parameterization of clear-sky total radiation and climate scheme.Scientia Meteorological Sinica.17(1):1-9.(in Chinese).

Weng D M,Gao Q X,Yao Z G,1997.Climatic Characteristics of Atmospheric Net Radiation over China.Journal of Meteorological Research,11(2),246-254.

翁笃鸣,孙治安,缪启龙,等,1988.中国亚热带东部山区坡面太阳能资源和净辐射图集[M].北京:气象出版社. Weng D M,Sun Z A,Miao Q L,1988.Atlas of solar resources and net radiation on slope surfaces in eastern subtropical mountainous areas of China[M].Beijing:China Meteorological Press.(in Chinese).

Wu D,Jiang Z H,Ma T T,2016.Projection of summer precipitation over the Yangtze—Huaihe River basin using multimodel statistical downscaling based on canonical correlation analysis[J].J Meteor Res,30(6):867-880.

吴息,赵彦厂,王冰梅,等,2009.江苏省风电资源的调峰能力评估[J].气象科学,29(5):633-637. Wu X,Zhao Y C,Wang B M,et al.,2009.The evaluation of adjusting electric power peak of wind energy resource in Jiangsu[J].Sci Meteorol Sin,29(5):633-637.(in Chinese).

吴息,孙朋杰,熊海星,等,2012.利用常规气象资料建立的导线覆冰模型[J].大气科学学报,35(3):335-341. Wu X,Sun P J,Xiong H X,et al.,2012.A conductor icing model based on parameters of conventional meteorological observations[J].J Nanjing Inst Meteorol,35(3):335-341.(in Chinese).

吴息,王彬滨,周海,等,2013.基于神经网络的风电场超短期风速数值预报的动态修订[J].科技导报,31(34):39-44. Wu X,Wang B B,Zhou H,et al.,2013.Dynamic modification of super short term numerical wind forecast based on neural networks at wind farm[J].Sci Technol Rev,31(34):39-44.(in Chinese).

吴息,黄林宏,周海,等,2014.风电场风速数值预报的动态修订方法的探讨[J].大气科学学报,37(5):665-670. Wu X,Huang L H,Zhou H,et al.,2014.Discussion on dynamic corrections of numerical prediction of wind velocity in wind farm[J].Trans Atmos Sci,37(5):665-670.(in Chinese).

吴志伟,江志红,何金海,2006.近50年华南前汛期降水、江淮梅雨和华北雨季旱涝特征对比分析[J].大气科学,30(3):391-401. Wu Z W,Jiang Z H,He J H,2006.The comparison analysis of flood and drought features among the first flood period in South China,Meiyu period in the Yangtze River and the Huaihe river valleys and rainy season in North China in the last 50 years[J].Chin J Atmos Sci,30(3):391-401.(in Chinese).

Xie W X,Zhou B T,You Q L,et al.,2020.Observed changes in heat waves with different severities in China during 1961—2015[J].Theor Appl Climatol,141(3/4):1529-1540.

Yang H,Jiang Z H,Li L,2016.Biases and improvements in three dynamical downscaling climate simulations over China[J].Clim Dyn,47(9/10):3235-3251.

Yang J H,Jiang Z H,2008.Characteristics of extreme temperature event and its response to regional warming in northwest China in past 45 years[J].2008 2nd Int Conf Bioinform Biomed Eng,:4590-4593.

楊金虎,江志红,杨启国,等,2007.中国西北汛期极端降水事件分析[J].中国沙漠,27(2):320-325. Yang J H,Jiang Z H,Yang Q G,et al.,2007.Anlysis on extreme precipitation envent over the northwest China in flood season[J].J Desert Res,27(2):320-325.(in Chinese).

You Q L,Jiang Z H,Kong L,et al.,2017.A comparison of heat wave climatologies and trends in China based on multiple definitions[J].Clim Dyn,48(11/12):3975-3989.

余锦华,丁裕国,刘晶淼,2001.近百年全球平均地面气温准周期信号及其长期演变特征的分析[J].大气科学,25(6):767-777. Yu J H,Ding Y G,Liu J M,2001.Quasi-periodic signals and its features of long-term change for global surface temperatures over the past recent 100 years[J].Chin J Atmos Sci,25(6):767-777.(in Chinese).

Yu J H,Chen C,Li T,et al.,2016a.Contribution of major SSTA modes to the climate variability of tropical cyclone genesis frequency over the western North Pacific[J].Quart J Roy Meteor Soc,142(695):1171-1181.

Yu J H,Li T,Tan Z M,et al.,2016b.Effects of tropical North Atlantic SST on tropical cyclone genesis in the western North Pacific[J].Clim Dyn,46(3/4):865-877.

Yu J H,Zhang X Y,Li L,et al.,2020.Salient difference of sea surface temperature over the North Atlantic in the spring following three super El Nio events[J].Environ Res Lett,15(9):094040.

袁德輝,翁笃鸣,1992.县级山区月平均气温推算方法[J].地理研究,11(3):32-36. Yuan D H,Weng D M,1992.A method of simulating monthly mean temperature in County-size mounta in areas[J].Geogr Res,11(3):32-36.(in Chinese).

曾燕,邱新法,缪启龙,等,2003.起伏地形下我国可照时间的空间分布[J].自然科学进展,13(5):545-548. Zeng Y,Qiu X F,Miao Q L,et al.,2003.Spatial distribution of sunshine time in China under rugged terrain.Advances in natural science [J].Prog Nat Sci,13(5):545-548.(in Chinese).

曾燕,邱新法,刘绍民,2005.起伏地形下天文辐射分布式估算模型[J].地球物理学报,48(5):1028-1033. Zeng Y,Qiu X F,Liu S M,2005.Distributed modeling of extraterrestrial solar radiation over rugged terrains[J].Chin J Geophys,48(5):1028-1033.(in Chinese).

曾燕,邱新法,何永健,等,2009.复杂地形下黄河流域月平均气温分布式模拟[J].中国科学(D辑:地球科学),39(06):774-786. Zeng Y,Qiu X F,He Y J,et al.,2009.Distributed modeling of monthly air temperatures over the rugged terrain of the Yellow River Basin[J] Sci China Ser D-Earth Sci,52(5):694-707.(in Chinese).

张永勤,缪启龙,2001.气候变化对区域经济影响的投入-产出模型研究[J].气象学报,59(5):633-640. Zhang Y Q,Miao Q L,2001.Research on input-output model of climate change on r egional economy[J].Acta Meteorol Sin,59(5):633-640.(in Chinese).

章基嘉,朱抱真,朱福康,等,1988.青藏高原气象学进展[M].北京:科学出版社. Zhang J J,Zhu B Z,Zhu F K,et al.,1990.Advances in Plateau Meteorology[M].Beijing:China Meteorological Press.(in Chinese).

Zhao C,Jiang Z H,Sun X J,et al.,2020.How well do climate models simulate regional atmospheric circulation over East Asia?[J].Int J Climatol,40(1):220-234.

《中华人民共和国气候图集》编委会,2002.中华人民共和国气候图集[M].北京:气象出版社. Editorial Committee of “Climate Atlas of the People's Republic of China”,2002.Climate Atlas of the Peoples Republic of China M].Beijing:China Meteorological Press.(in Chinese).

Zhou B T,Wen Q H,Xu Y,et al.,2014.Projected changes in temperature and precipitation extremes in China by the CMIP5 multimodel ensembles[J].J Climate,27(17):6591-6611.

Zhou B T,Xu Y,Wu J,et al.,2016.Changes in temperature and precipitation extreme indices over China:Analysis of a high-resolution grid dataset[J].Int J Climatol,36(3):1051-1066.

Zhou B T,Wang Z Y,Shi Y,et al.,2018.Historical and future changes of snowfall events in China under a warming background[J].J Clim,31(15):5873-5889.

Zhu H H,Jiang Z H,Li J,et al.,2020.Does CMIP6 inspire more confidence in simulating climate extremes over China?[J].Adv Atmos Sci,37(10):1119-1132.

Zhu L H,Li Y,Jiang Z H,2017.Statistical modeling of CMIP5 projected changes in extreme wet spells over China in the late 21st century[J].J Meteor Res,31(4):678-693.

周莉,江志紅,李肇新,等,2015.中国东部不同区域城市群下垫面变化气候效应的模拟研究[J].大气科学,39(3):596-610. Zhou L,Jiang Z H,Li Z X,et al.,2015.Numerical simulation of urbanization climate effects in regions of East China[J].Chin J Atmos Sci,39(3):596-610.(in Chinese).

Zhu X C,Qiu X F,Zeng Y,et al.,2018a.Effects of complex terrain on net surface longwave radiation in China[J].Theor Appl Climatol,134(1/2):251-264.

Zhu X C,Qiu X F,Zeng Y,et al.,2018b.High-resolution precipitation downscaling in mountainous areas over China:Development and application of a statistical mapping approach[J].Int J Climatol,38(1):77-93.

Zhu X C,Zhou B,Qiu X F,et al.,2019.a dynamic impact assessment method for rainstorm waterlogging using land-use data[J].J Integr Environ Sci,16(1):163-190.

This article briefly reviews the research on climate and climate change in NUIST since 1960,and summarizes the important academic findings in such aspects of climate science as radiation climatology,applied climatology,climate diagnosis and prediction,statistical climatology,climate change and its regional response and future projections.

radiation climatology;climate diagnosis;statistical climatology;climate change and its regional response;fine climate elements

doi:10.13878/j.cnki.dqkxxb.20200915001

(责任编辑:袁东敏)