许 寻,李中超,刘广英,王瑞飞,李群星,刘云利,杨胜勇
(1.中国石化中原油田分公司勘探开发研究院,河南濮阳 457001;2.中国石化华北油气分公司工程技术研究院,河南郑州 450006;3.西安石油大学陕西省油气井及储层渗流与岩石力学重点实验室,陕西西安 710065;4.西安石油大学石油工程学院,陕西西安 710065;5.中国石油新疆油田公司风城油田作业区,新疆克拉玛依 834000)
随着经济快速发展,能源需求量日益增加,对石油资源的勘探和开发提出更高要求。受探明储量与可采储量条件约束,石油开发技术的改进和非常规油气的勘探开发成为现今油田的发展趋势。文东油田沙三段中亚段作为东濮老区的潜力油区,具有埋藏深(3 200~3 800 m)、异常高温(120~150 ℃)、异常高压(压力系数为1.71~1.88)、渗透率低(平均值为19.2 mD)、层间非均质性强(渗透率级差为10~50)等特点,属于异常高压低渗透砂岩油藏,采用注水开发,存在注入压力高和地层压力下降幅度大的问题。
深层高压低渗透砂岩油藏储层的应力敏感性是需重点关注的开发问题。采液指数和采油指数是衡量油井生产能力的重要指标,也是油田进行产能预测和抽油机选型的重要依据之一。低渗透油藏具有储层物性差、岩性变化大、孔隙结构复杂、非均质性严重等特点,导致其采液指数和采油指数变化规律与常规油藏不同。如何准确计算低渗透油藏的采液指数和采油指数,为该类油藏产能预测及合理开发提供可靠的依据,一直是备受关注的问题,中国学者开展了大量的研究工作。吴应川等开展深层低渗透多层非均质注水研究,提出逐层上返、细分注水的观点[1-2];王瑞飞等基于深层高压低渗透储层的孔喉特性及应力敏感性研究,建立砂岩储层的应力敏感性解释模型[3-5];刘春林等研究油田水驱开发系统及其结构[6];李文兴等分析不同类型储层水驱开发指标[7];冯其红等考虑启动压力,建立层状油藏开发指标计算方法[8];温伟明等分析海上异常高压气藏应力敏感特征并建立产能方程[9];邓勇等研究应力敏感储层相对渗透率的计算方法[10];尹洪军等开展考虑应力敏感的页岩气藏垂直裂缝井压力动态分析研究[11];赵静等提出低渗透油藏采液指数和采油指数的计算方法并分析主要影响因素[12]。综合而言,以往的研究已取得一定成果,但对文东油田深层高压低渗透砂岩油藏适应性不强,需要进一步根据文东油田异常高压低渗透的特点以及生产的实际情况进一步开展相关研究。
对深层高压低渗透砂岩油藏而言,压力不但关系到注水开发的可行性,而且是有效开发的关键所在。在开发过程中高压储层势必会有压力波动,较低的渗透率储层产出剖面的分布及应力敏感性在注水开发过程中均需密切关注。以东濮文东油田典型深层高压低渗透砂岩油藏为研究对象,充分考虑油藏储层的特性,基于渗流力学理论及产出剖面的应力敏感性模型,结合油田吸水剖面和产出剖面测试等生产动态资料,建立异常高压低渗透砂岩油藏采油指数、采液指数、吸水指数随地层压力变化的应力敏感性模型,探讨其变化趋势。
开发过程中,随着地层流体压力的下降,储层孔隙流体所承受的净围压增大,导致喉道变形、渗透率降低。
选取文东油田低渗透储层具有代表性的2块岩心(渗透率分别为22.1 和26.5 mD)开展渗透率敏感性分析。由试验结果(图1)可见,降压曲线的相关性太差,故选择增压曲线进行分析,渗透率随净上覆压力变化的关系式为:
图1 渗透率变化率与净上覆压力的关系Fig.1 Relationship between change rate of permeability and net overburden pressure
内应力不变,外应力增大时,储层渗透率与净上覆压力的相关关系为:
随着净上覆压力增大,储层渗透率降低。根据常规水测、油测渗透率模型,地面岩石应力敏感性评价模型可表示为:
实际上,地层中的岩石在多孔介质中受本体有效应力和结构有效应力的双重作用。储层中的岩石受上覆岩层的压实作用颗粒排列紧凑,一般不会发生较大幅度塑性变形,以骨架的弹性变形为主。油藏开采过程中,上覆岩层压力不变,储层流体不断采出,孔隙流体压力下降致使储层岩石受到的有效应力增加,岩石向稳定状态过渡。原始地层压力及生产过程中某一地层压力条件下储层岩心的渗透率分别为:
此时,应力敏感性评价模型可修正为:
测试结果表明,孔隙度对有效应力的敏感性较弱,当孔隙度损失率达最大值12%时,孔隙度变化的最大值为18%,因此开发过程中可以忽略孔隙度变化。根据校正后的渗透率与净上覆压力关系得到多孔介质有效应力模型,大多数低渗透储层岩石为无-弱应力敏感,而用原未校正模型得到的结论为强-极强应力敏感。对于深层高压低渗透油气藏,当孔隙流体压力下降很大时,原始地层压力与孔隙流体压力的差值非常大,与孔隙度相乘后仍很大,这时仍会有应力敏感发生。也就是说,用多孔介质有效应力理论评价储层岩石的敏感性,会得出深层高压低渗透油气藏储层岩石存在应力敏感。而大多数的情况下低渗透储层岩石的基质对应力不敏感,而岩石的裂缝对应力敏感[13-16]。
文东油田目标储层上覆岩层压力达76.39 MPa,原始流体压力为59.27 MPa。随着油藏开发的进行,该差值越来越大。选取6 个有代表性的岩心,根据(5)和(6)式计算不同地层压力条件下渗透率及应力敏感指数。由结果(表1)可见,中渗透、低渗透Ⅰ类、低渗透Ⅱ类储层在开发过程中均为弱应力敏感,而低渗透Ⅲ类储层为中等敏感。当然,此种分析基于储层为单纯孔隙介质且裂缝不发育的早期认识。若裂缝和微裂缝发育,则油藏开发过程中储层应力敏感性会更强[17-20]。
应力敏感实验中首先测试并计算岩样孔隙度,其表达式为:
在应力敏感实验的应力加载过程中,岩石孔隙体积的变化量为ΔVp。实验室通过测量岩样排出流体的体积来确定孔隙体积变化量。如果不考虑岩石颗粒骨架本身变形ΔVs,外表体积的变化等于孔隙流体变化量,则岩样孔隙度的计算式为:
表1 地层条件下的应力敏感指数Table1 Stress sensitivity indexes in different reservoirs
实际孔隙度的计算式应为:
(8)式中没有考虑岩石颗粒骨架的变形,加载过程中孔隙度变化幅度变小。(9)式计算净上覆压力增加过程中岩石的孔隙度,随净上覆压力增加,孔隙度减小。
驱替试验中,不考虑孔隙压力时,孔隙度随净上覆压力的变化以指数递减形式表示为:
若存在孔隙压力,按照双重有效应力理论,整个油藏开采过程中上覆岩层压力不变,变化的是孔隙流体压力。随着储层中流体的不断采出,孔隙流体压力下降,致使储层岩石所受到的有效应力增加。原始地层压力及生产过程中某一地层压力条件下储层岩石孔隙度分别为:
深层多孔介质在巨大的上覆压力作用下已发生塑性变形,颗粒与颗粒之间以紧凑方式排列。紧凑方式排列的颗粒一般不会再发生相对位移,塑性形变很弱。除了塑性形变外还有岩石骨架颗粒本身的变形,这部分变形同岩石的结构变形不同,是弹性变形,弹性变形是可以恢复的。地表土壤多孔介质变形以塑性变形为主,地下多孔介质岩石变形以颗粒骨架的弹性变形为主[21-23]。
在文东油田沙三段中亚段注水开发过程中,应力敏感性模型中地层条件水测应力敏感性模型的应用结果与实际开发结果较为接近,但其所计算的应力损伤程度略小于实际油田开发中的应力敏感性伤害。地层压力p下的渗透率表示为:
应力敏感性地层中一口井拟稳定产油量为:
油藏原始条件下进行稳定试井时,(16)式可用来描述井的产油量与压力的关系。初期试井时,pe=pi,故生产压差Δp等于流动压差Δpwf。在这种条件下,可写成:
其中:
当pwf>pb时:
某一地层压力和井底流压条件下的采油指数与原始采油指数的比值为[11-14]:
(22)式为渗透率随地层压力呈指数函数变化时,所求得的采油指数随地层压力和井底流压变化的数学模型。
文东油田渗透率应力敏感幂函数模型为:
由采油指数的定义可知某一地层压力p对应的采油指数为:
油层物性分析孔隙度为8.60%~19.60%,平均为14.86%,为便于计算,孔隙度取值为15%,则油藏开发过程中的采油指数为:
以沙三段中亚段埋深为3 360 m 的典型层位为计算对象,岩石密度为2.32 g/cm3,重力加速度为9.8 m/s2,油藏压力系数为1.80。由计算结果可知,当压降为5 MPa时,采油指数下降14%。
统计油田生产中的产出剖面测试的比采油指数和比采液指数(图2),(25)式的计算结果与实际产出剖面统计结果误差小于10%。
图2 油田产出剖面测试的比采油指数和比采液指数Fig.2 Specific oil productivity index and specific fluid productivity index from oilfield test
油水渗流的分流方程为:
则产液量与产油量的关系为:
采液指数与采油指数的关系为:
(28)式即为文东油田深层高压低渗透油藏开发中采液指数的计算式。
基于文东油田产液剖面测试的比采油指数、比采液指数统计结果(图2),分析无因次采液指数和无因次采油指数随含水率的变化(图3)。在低含水率阶段,随着含水率的增大,无因次采液指数和无因次采油指数迅速递减,即采液指数和采油指数迅速递减。由(26)式可知,含水率不断增大,采油指数的递减速度大于采液指数的递减速度,直至最终采油指数递减为0。中含水率阶段,采液指数和采油指数递减速度有所减慢。进入高含水率阶段(fw>60%),采液指数递增,采油指数递减速度有增加的趋势。
图3 无因次采液指数(Jl/Joi)和无因次采油指数(Jop/Joi)随含水率(fw)的变化Fig.3 Trends in dimensionless fluid productivity index(Jl/Joi)and dimensionless oil productivity index(Jop/Joi)with water cut(fw)
影响低渗透油田采油指数和采液指数的因素很多,但对文东油田深层低渗透储层而言,主要的影响因素为油水黏度比、启动压力梯度和含水率。
油水黏度比 在同一含水率下,改变油水黏度比,可计算得到一组无因次采液指数(图4)。在相同含水率的情况下,油水黏度比越大,无因次采液指数越高。
图4 不同油水黏度比时无因次采液指数随含水率的变化Fig.4 Trend in dimensionless fluid productivity index with water cut at different oil-water viscosity ratios
启动压力梯度 令:
改变启动压力梯度与生产压力梯度的比值,计算得到一组无因次采液指数(图5)。可以看出,在含水率相同的情况下,启动压力梯度与生产压力梯度的比值越大,无因次采液指数越大。
图5 不同b时无因次采液指数随含水率的变化Fig.5 Trend in dimensionless fluid productivity index with water cut at different b
含水率 分析图5发现,低含水率阶段,随含水率增大,采液指数减小;中含水率阶段,采液指数递减率减缓;高含水率阶段,采液指数递减率有所增加。
基于油水渗流的分流方程和流度比,结合文东油田低渗透储层实际的地质及流体参数计算,得到文东油田深层高压低渗透油藏开发过程中吸水指数模型为:
油田开发中采油指数、吸水指数、采液指数三者关系的表达式为:
根据(31)式统计油田开发中单位砂岩厚度吸水指数(比吸水指数)的变化(图6,图7)。结果表明,文东油田深层高压低渗透砂岩油藏开发过程中比吸水指数总趋势是增大的。
图6 文东油田比吸水指数变化规律Fig.6 Trend in specific water absorption index of Wendong Oilfield
图7 比吸水指数随含水率的变化关系Fig.7 Trend in specific water absorption index per unit sandstone thickness with water cut
吸水能力和注水压差、油水井间距离、原油性质、流度比及渗透率的应力敏感程度有关。当开采对象及注采井距一定时,注水开发过程中吸水能力的变化主要反映油层中含水饱和度的增加引起的流动阻力的变化,这种变化可用流度比来反映。文献调研表明,水淹前流度比基本不变,水淹后流度比将随井网内水淹区的含水饱和度和水相渗透率的增加不断加大,也就是说注水能力随含水率升高而增强[24-25]。
在油田实际开发过程中,油层吸水能力不仅与含水率有关,还与地层压力及注水压差等因素有关。因地层条件不同,比吸水指数的值可能有些变化。但对于一个注水开发区来说,其值与含水率的变化趋势是一致的。也就是说,某一已知含水率所对应的比吸水指数与含水关系曲线的切线斜率应是一定值。这是因为吸水能力主要受见水后流度比变化影响,而水淹后流度比则将随井网内水淹区含水饱和度和水相渗透率的增大而不断增大。
通过修正的高压低渗透油藏应力敏感评价模型,建立了文东油田深层高压低渗透砂岩油藏储层应力敏感性评价模型,对文东油田不同类型储层的应力敏感性进行评价,中渗透、低渗透Ⅰ类、低渗透Ⅱ类储层在开发过程中均为弱应力敏感,而低渗透Ⅲ类储层为中等敏感。
文东油田深层高压低渗透油藏开发中,采油指数和采液指数逐渐减小且采油指数递减速率大于采液指数递减速率。除储层颗粒骨架变形外,影响采油指数和采液指数变化的因素主要有油水黏度比、启动压力梯度和含水率,其中含水率影响较大。
符号解释
a,d——常数;
ak——渗透率下降系数,MPa-1;
b——启动压力梯度与生产压力梯度的比值;
Bo——地层油体积系数;
fw——含水率,%;
h——有效厚度,m;
Jl——采液指数,m3/(MPa·d);
Jo——采油指数,m3/(MPa·d);
Joi——原始采油指数,m3/(MPa·d);
JoD——无因次采油指数;
Jop——某一地层压力p对应的采油指数,m3/(MPa·d);
Jw——吸水指数,m3/(MPa·d);
K——渗透率,mD;
K0——初始渗透率,mD;
Ki——某一净上覆压力下的储层渗透率,mD;
Kpi——原始地层压力下的渗透率,mD;
Kp——地层压力p下的渗透率,mD;
Kro——油相渗透率,mD;
Krw——水相渗透率,mD;
K∞——克氏渗透率,mD;
p——生产过程中某一地层压力,MPa;
Δp——生产压差,MPa;
pb——饱和压力,MPa;
pD——无因次压力;
pe——供给边缘压力,MPa;
Δpe——供给边缘压降,MPa;
pi——原始地层压力,MPa;
p岩——储层的上覆岩层压力,MPa;
pwf——井底流压,MPa;
Δpwf——流动压差,MPa;
QD——无因次流量;
Ql——产液量,m3;
Qo——产油量,m3/d;
Qw——产水量,m3;
re——泄油半径,m;
rw——井筒半径,m;
S——表皮系数;
SIpK——绝对渗透率为K、地层压力为p条件下的岩石应力敏感指数;
Vb——岩石的外表体积,cm3;
Vp——岩石孔隙体积,cm3;
ΔVp——岩石孔隙体积的变化量,cm3;
ΔVs——岩石颗粒骨架本身变形,cm3;
x——压降距离,m;
μo——地层油黏度,mPa·s;
μw——水的黏度,mPa·s;
σi——岩心样品所承受的净上覆压力,MPa;
φ——储层孔隙度,%;
φ0——初始孔隙度,即净上覆压力为0时的孔隙度,%;
φi——净上覆压力下的孔隙度,%;
φpi——原始地层压力下的孔隙度,%;
φp——某一地层压力下的孔隙度,%。