InGaAs肖特基源漏MOSFET的多子带系综蒙特卡洛模拟

2020-12-01 07:07李金培杜刚刘力锋刘晓彦
关键词:子带蒙特卡洛器件

李金培 杜刚 刘力锋 刘晓彦

InGaAs肖特基源漏MOSFET的多子带系综蒙特卡洛模拟

李金培 杜刚 刘力锋 刘晓彦†

北京大学微电子学研究院, 北京 100871; †通信作者, E-mail: xyliu@ime.pku.edu.cn

采用基于有效质量近似的多子带、多能谷系综蒙特卡洛方法, 考虑纳米尺度 MOSFET 沟道二维电子气中实际存在的多种散射机制, 模拟 InGaAs 肖特基源漏 MOSFET。结果显示, 在稳态下, 散射虽然改变了InGaAs 肖特基源漏 MOSFET 沟道中沟道电势、电子浓度和速度的分布, 但对 InGaAs 肖特基源漏 MOSFET 的输出特性和转移特性影响较小; 而在施加阶跃漏端电压时, 散射的存在增加了过冲电流的峰值和转换时间, 降低了器件的截止频率。

InGaAs; 肖特基源漏MOSFET; 系综蒙特卡洛

肖特基源漏利用金属或金属硅化物形成的肖特基结替代重掺杂 PN 结作为 MOSFET 的源漏, 具有串联电阻低、工艺简单等优点[1–3]。与 Si 或 Ge 等IV 族半导体材料相比, InGaAs 等 III-V 族半导体材料可以提供更高的饱和速度和迁移率[4–7]。这些特点使得 InGaAs 肖特基源漏 MOSFET[8–10]成为高速集成电路技术可能的选择方案。

在纳米尺度下, 准弹道输运和量子尺寸效应使得传统的基于漂移扩散的模拟方法不再适用, 而完全基于量子力学的非平衡格林函数等模拟方法运算量过大, 难以应对多种散射效应等问题。多子带系综蒙特卡洛方法[11–12]是将泊松–薛定谔耦合求解静电特性与蒙特卡洛求解玻尔兹曼输运方程相结合的一种半导体器件模拟方法, 可以很好地考虑量子效应、多种散射机制乃至准弹道输运, 具有较高的准确性和可以接受的计算时间, 广泛地应用于纳米尺度半导体器件的模拟[13–14]。

本文采用多子带系综蒙特卡洛方法, 对纳米尺度 InGaAs 肖特基源漏 MOSFET 的输运特性进行模拟, 研究散射机制对肖特基晶体管稳态、瞬态和高频特性的影响。

1 器件结构与模拟方法

肖特基 MOSFET 器件结构如图 1 所示。其中沟道材料为 In0.53Ga0.47As, 栅介质材料为 HfO2, 等效氧化层厚度为 1nm, 沟道厚度ch=10nm, 沟道长度g=20nm/60nm, Spacer 区长度sp=5nm。整个沟道未掺杂, 肖特基势垒高度为 0.2eV。沟道方向为(100)方向, 图示截面为<001>截面。表 1 给出由InAs 和 GaAs 插值得到的 In0.53Ga0.47As 有效质量[15]。采用自洽的泊松方程和薛定谔方程对器件的静电特性进行模拟; 基于自洽求解泊松方程和薛定谔方程的结果, 采用多子带系综蒙特卡洛方法模拟半导体器件的电学特性。

1.1 自洽求解泊松方程和薛定谔方程

考虑 InGaAs Γ 谷和 L 谷中各 3 条子带, 因此采用非抛物线近似的能带结构:

在图 1 所示的坐标系中求解泊松方程:

其中, 取x方向为载流子输运方向, y方向为垂直于沟道受量子约束的方向, z 方向规定为宽度方向, 不受量子约束; ϵ 为沟道材料的介电常数; V 代表电势; ND 代表半导体器件中电离施主浓度, 在本文模拟的器件中沟道未掺杂为 0; n 代表器件中电子浓度, 可以根据电子波函数计算, 公式为

表1 不同能谷的有效质量及非抛物性因子[15]

其中, 下角标按照一定的粒子–网格耦合方法遍历位于网格中的粒子,w是粒子的权重,()是网格处粒子所处子带的归一化波函数, d是处网格的宽度,T=ch+2×ox是整个沟道的厚度。

在固定的横坐标为处, 沿方向的薛定谔方程为

其中,y,v为能谷中载流子在方向上的有效质量,,i(,)和,i()分别为在能谷中第条子带位于处的波函数与特征能量。由于量子约束的作用, 载流子在约束方向(即方向)上的能量不再连续, 因此在原本连续的能谷中分裂出子带。图 2 展示在不同漏压ds下, 沟道电子第一子带随坐标的变化。

式(2)和(4)相互耦合, 由此可以得到在量子约束情况下的器件中的子带、波函数和器件中电势的分布。子带和波函数用来计算不同区域电子的散射率, 电势分布决定电子在器件中运动的加速度。结合蒙特卡洛方法求解波尔兹曼方程模拟载流子的输运过程, 从而实现器件电学特性的模拟。

1.2 散射机制

基于泊松–薛定谔方程自洽求解到的子带E,j()和波函数,j(,), 可以求得当电子在附近时的散射率()。多子带系综蒙特卡洛模拟考虑的散射机制包括非极性声学声子散射(AP)、非极性光学声子散射(OP)、极性光学声子散射(POP)、表面粗糙散射(SR)和合金无序散射(AD)。

对于能谷内从子带到子带的准弹性谷内非极性声学声子散射, 散射率[16–18]为

其中, Dac,v 是能谷 v 中的等效声学形变势因子, md,v是能谷 v 的态密度有效质量, ρ 是密度, vs 是声速, kB是玻尔兹曼常数, T 是晶格温度, θ(E)是阶跃函数, Fv,i,j(x)是 x 处从初态 i 到终态 j 的形貌因子, 计算公式如下:

对于从能谷v的子带到能谷v的子带的非极性光学声子散射, 散射率[16–18]计算公式为

其中,op,op和op分别为形变势、光学声子能量和占据数,()是费米狄拉克分布函数。在 InGaAs等 III-V 化合物半导体中, 考虑 Γ 与 L 谷间以及 L 谷间的非极性光学散射。

对于 InGaAs 等 III-V 化合物半导体, 考虑能谷中从子带到子带的极性光学散射, 散射率[16,18–19]计算公式为

其中,pop和pop是极性光学声子能量和占据数,∞和S分别为高频和静态介电常数,是初态和终态电子波矢的差值。H,j,v(,)由下式给出:

表面粗糙(SR)散射的矩阵元正比于界面粗糙的谱密度。能谷内子带到子带的散射矩阵元[20–21]计算公式为

其中,m,v是能谷中的限域有效质量,()是界面粗糙谱密度, 假设为下式[16]:

其中和是界面粗糙的幅度和关联长度。只考虑谷内 SR 散射, 能谷中从子带到子带的 SR 散射率计算公式为

其中,是 SR 散射矩阵元,D是为计入静电屏蔽的静态界电函数, 近似为 1。

合金无序散射由多元化合物中带边的涨落引起, 对于能谷子带的合金无序散射, 散射率[16–18]计算公式为

其中,1=0.53,是 InGaAs 的晶格常数,0是合金散射势。

InGaAs 的散射率参数如表 2 所示。图 3 给出InGaAs 半导体材料散射率与电子能量的关系, 可以看出, 表面粗糙散射是这类 III-V 半导体材料中的主要散射机制, 特别是在电子能量较低时。

1.3 肖特基接触

金属注入半导体的隧穿电流可以通过下式来计算:

其中,*是有效理查德孙常数;m和s分别为金属和半导体的费米分布函数;ms为透射系数, 对于场发射电流, 由 WKB 近似给出[23]:

表2 InGaAs的散射参数[15,22]

其中,*是电子的隧穿有效质量,c()是子带的能量,tp是发生隧穿的电子的能量,tp是发生隧穿后电子的位置, 满足c(tp)=tp。对于热发射电流, 透射系数为1。

2 模拟结果和分析

利用建立的多子带系综蒙特卡洛模拟程序, 模拟不同栅长的纳米尺度 InGaAs 肖特基源漏 MOS-FET 的直流和瞬态特性, 分析不同工作模式下散射的影响。

2.1 直流特性

图 4 给出不同栅长的 InGaAs 肖特基源漏 MOS-FET 在弹道和有散射情况下的输出与转移特性曲线。由图 4(a)可见, 在较低的源漏偏压下, 散射对ds的影响显著; 而在高源漏偏压下, 散射的存在对漏端电流几乎没有影响。仿真器件的ds没有显示出随栅长减小而增加, 这是由于更长的栅具有对源端隧穿势垒更强的控制能力。用考虑散射时的ds与无散射时的ds的比值ds,scattering/ds,ballistic表示器件的弹道因子。图 5 为不同栅长的 InGaAs 肖特基源漏 MOSFET 弹道因子随ds的变化。可以看出, 弹道因子随ds的增大而增大, 在ds=0.6V 以上时, 器件的弹道因子接近 1。

图 6 给出不同沟长时, 高(1.0V)、低(0.2V)ds下器件中沟道中央电势分布和载流子平均漂移速度的分布。可以看出, 散射明显地减小了沟道中电子的平均漂移速度。在高ds下, 无论是 20nm 的器件还是 60nm 的器件, 尽管散射使电子平均漂移速度减小, 但源端势垒并没有因为散射的存在而发生较大的变化, 源端隧穿注入基本上不变, 器件具有接近 1 的弹道因子。在低ds下, 器件中电子平均漂移速小, 电子浓度高, 散射造成的电子漂移速度和浓度分布的改变造成源端肖特基势垒展宽, 特别是在栅长为 20nm, 栅对沟道的控制比 60nm 更弱时。因此, 在ds=0.2V时, 器件的弹道因子较低。

图 7 给出 InGaAs 肖特基势垒场效应晶体管中不同能谷和子带电子占总电子数目的比例。InGaAs中 Γ 谷和 L 谷带底的差距约为 0.45eV。当ds较小(ds<0.5V)时, 沟道中的电子主要为 Γ 谷电子, 散射对电子漂移速度的影响主要表现为电子动能和速度方向的改变; 当ds超过 Δ较多(ds=1V)时, 由于较强 Γ-L 非极性光学散射带来的谷间转移, 沟道中 L 谷电子增多, L 谷电子有更大的有效质量和较小的平均漂移速度, 这是高ds时沟道电子速度下降的主要原因。

2.2 瞬态特性

图 8 给出在栅电压维持在 1V, 漏端电压由 0.2 V 突变到 0.4~1.0V 时, InGaAs 肖特基源漏 MOSFET源端和漏端电流以及沟道总电荷随时间的变化。低漏压下, 沟道中载流子浓度比高漏压下更大, 漏端施加由低到高的突变电压时, 沟道电子被突然加速, 造成短时间内漏端电流的过冲; 源端电流主要由金属到半导体注入的电流组成, 因而不会表现出短时间内电流的过冲。图 9 给出不同沟长和ds下, 漏端过冲电流的峰值和漏端电流在达到过冲峰值后, 重新恢复到高漏压下稳定电流的 10%范围内(即达到稳定电压的 110%)需要的时间。可以看出, 突变后的漏端电压越强, 过冲电流的峰值越高, 上升时间和恢复时间也越短。散射的存在显著地增大了过冲电流峰值和恢复时间, 是由于低ds下散射显著地增加了沟道电子数目, 而高ds下沟道电子数目基本上相同, 因此存在散射时, 更多的电子需要从漏端飞出, 以便重新达到稳定状态。

2.3 截止频率

3 总结

本研究采用多子带系综蒙特卡洛方法, 对InGaAs 肖特基源漏 MOSFET 进行模拟, 研究不同栅长时 InGaAS 肖特基源漏 MOSFET 稳态下的输运特性和转移特性, 分析瞬态下沟道电子和源、漏端电流对外加阶跃电压的响应、器件的截止频率以及散射对 InGaAs 肖特基源漏 MOSFET 特性的影响。结果显示, InGaAs 肖特基源漏 MOSFET 可以在 THz频率下工作; 散射对 InGaAs 肖特基源漏 MOSFET输出特性和转移特性影响较小, 但是会增加器件对漏端阶跃电压的响应时间, 减小器件的截止频率。本文模拟结果将有助于优化设计 InGaAs 肖特基源漏MOSFET。

[1] Bashir F, Alharbi A G, Loan S A. Electrostatically doped DSL Schottky barrier MOSFET on SOI for low power applications. IEEE Journal of the Electron Devices Society, 2017, 6: 19–25

[2] Kumar P, Bhowmick B. Scaling of dopant segrega-tion Schottky barrier using metal strip buried oxide MOSFET and its comparison with conventional de-vice. Silicon, 2018, 10(3): 811–820

[3] Prakash A, Ilatikhameneh H, Wu P, et al. Under-standing contact gating in Schottky barrier transistors from 2D channels. Scientific Reports, 2017, 7(1): no. 12596

[4] del Alamo J A, Antoniadis D A, Lin J, et al. III- V MOSFETs for future CMOS // 2015 IEEE Com-pound Semiconductor Integrated Circuit Symposium (CSICS). New Orleans, 2015: 1–4

[5] Svensson J, Dey A W, Jacobsson D, et al. III-V nanowire complementary metal-oxide semiconductor transistors monolithically integrated on Si. Nano Letters, 2015, 15(12): 7898–7904

[6] Schmid H, Cutaia D, Gooth J, et al. Monolithic integration of multiple III-V semiconductors on Si for MOSFETs and TFETs // 2016 IEEE International Electron Devices Meeting (IEDM). San Francisco, 2016: 3–6

[7] Chelliah C R J, Swaminathan R. Current trends in changing the channel in MOSFETs by III-V semicon-ducting nanostructures. Nanotechnology Reviews, 2017, 6(6): 613–623

[8] Zhao X, Heidelberger C, Fitzgerald E A, et al. Sub-10-nm-diameter InGaAs vertical nanowire MOSFETs: Ni Versus Mo contacts. IEEE Transactions on Elec-tron Devices, 2018, 65(9): 3762–3768

[9] Schwarz M, Calvet L E, Snyder J P, et al. On the physical behavior of cryogenic IV and III-V Schottky barrier MOSFET devices. IEEE Transactions on Electron Devices, 2017, 64(9): 3808–3815

[10] Ahangari Z. Impact of indium mole fraction on the quantum transport of ultra-scaled InGa1–xAs double-gate Schottky MOSFET: tight-binding approach. Ap-plied Physics A, 2016, 122(2): no. 69

[11] Du Gang, Liu Xiaoyan, Xia Zhiliang, et al. Monte Carlo simulation of p-and n-channel GOI MOSFETs by solving the quantum Boltzmann equation. IEEE Transactions on Electron Devices, 2005, 52(10): 2258–2264

[12] Du Gang, Liu Xiaoyan, Han Ruqi. Quantum Boltz-mann equation solved by Monte Carlo method for nano-scale semiconductor devices simulation. Chinese Physics, 2006, 15(1): 177–181

[13] Zeng Lang, Liu Xiaoyan, Zhao Yuning, et al. A computational study of dopant-segregated Schottky barrier MOSFETs. IEEE Transactions on Nanotech-nology, 2009, 9(1): 108–113

[14] Zeng Lang, Liu Xiaoyan Liu, Du Gang, et al. A Monte Carlo study of ambipolar Schottky Barrier MOSFETs // 2009 13th International Workshop on Computa-tional Electronics. Beijing, 2009: 1–4

[15] 俄罗斯科学院 Ioffe 物理技术研究所. New semi-conductor materials. Biology systems. Characteris-tics and properties [EB/OL]. (1999) [2020–10–08]. http://www.ioffe.ru/SVA/NSM/

[16] Esseni D, Palestri P, Selmi L. Nanoscale MOS transistors: semi-classical transport and applications. Cambridge: Cambridge University Press, 2011

[17] Esseni D, Abramo A, Selmi L, et al. Physically based modeling of low field electron mobility in ultrathin single-and double-gate SOI n-MOSFETs. IEEE Tran-sactions on Electron Devices, 2003, 50(12): 2445–2455

[18] Poljak M, Jovanovic V, Grgec D, et al. Assessment of electron mobility in ultrathin-body InGaAs-on-insulator MOSFETs using physics-based modeling. IEEE Transactions on Electron Devices, 2012, 59(6): 1636–1643

[19] Ferry D K, Goodnick S M, Bird J. Transport in nano-structures. Cambridge: Cambridge University Press, 2009

[20] Esseni D, Abramo A. Modeling of electron mobility degradation by remote Coulomb scattering in ultrathin oxide MOSFETs. IEEE Transactions on Electron De-vices, 2003, 50(7): 1665–1674

[21] Jin S, Fischetti M V, Tang T W. Modeling of surface-roughness scattering in ultrathin-body SOI MOSFETs. IEEE Transactions on Electron Devices, 2007, 54(9): 2191–2203

[22] Mateos J, González T, Pardo D, et al. Improved Monte Carlo algorithm for the simulation of/spl delta/-doped AlInAs/GaInAs HEMTs. IEEE Transac-tions on Electron Devices, 2000, 47(1): 250–253

[23] Sun L, Liu X Y, Liu M, et al. Monte Carlo simulation of Schottky contact with direct tunnelling model. Semiconductor science and technology, 2003, 18(6): 576–581

Multi-subband Ensemble Monte Carlo Simulation of InGaAs Schottky Barrier MOSFETs

LI Jinpei, DU Gang, LIU Lifeng, LIU Xiaoyan†

Institute of Microelectronics, Peking University, Beijing 100871; †Corresponding author, E-mail: xyliu@ime.pku.edu.cn

With the help of a multi-subband, multi-valley ensemble Monte Carlo simulator, which takes into account of multiple scattering mechanisms present in nano-scale MOSFET channel’s two-dimensional electron gas, InGaAs Schottky barrier MOSFET is simulated. The results show that under steady state, although scattering alters its carrier density, velocity and electric potential distribution, Schottky barrier MOSFET’s output and transfer characteristic is merely impacted by scattering. When a step voltage is applied to the device’s drain contact, scattering increases the device’s peak over-shoot current and transition time. Besides, scattering also reduces the cut-off frequency, especially for short channel device.

InGaAs; Schottky barrier MOSFET; ensemble Monte Carlo

10.13209/j.0479-8023.2020.106

国家自然科学基金(61674008)资助

2019–11–27;

2020–06–28

猜你喜欢
子带蒙特卡洛器件
基于荧光材料的有机电致白光发光器件
面向纳米尺度金属互连线的蒙特卡洛模拟方法研究
基于谱减与自适应子带对数能熵积的端点检测
基于NSCT和PCNN的医学图像伪彩色处理技术研究*
Finding the Extraterrestrial
子带编码在图像压缩编码中的应用
基于蒙特卡洛法的车用蓄电池20h率实际容量测量不确定度评定
改进的DWT?MFCC特征提取算法
马尔科夫链蒙特卡洛方法及应用
通用贴片式器件及应用电路(五)电压变换器MAX860及MAX881R