唐勇 米末 金荣华 林静容
摘 要: Suzuki交叉偶联反应是一类典型的形成碳-碳单键的反应,是以金属钯(Pd)为催化剂,卤代芳烃与有机硼酸化合物进行的交叉偶联反应.相对于传统仅用价廉易得的氯代芳烃化合物为反应原料的Suzuki交叉偶联反应,负载型Pd催化剂有着催化高效、分离简便、可重复使用等优点.简述了不同载体负载的Pd催化剂对于氯代芳烃的Suzuki交叉偶联反应的研究进展.
关键词: 负载型钯(Pd)催化剂; 氯代芳烃; Suzuki交叉偶联
中图分类号: TQ 032.41 文献标志码: A 文章编号: 1000-5137(2020)04-0422-11
Abstract: The palladium(Pd)-catalyzed cross-coupling reaction between organic boricacids and aryl halides provides a powerful and general method for the formation of carbon-carbon bonds known as the Suzuki cross-coupling.It was found that with the cheap and commercially availablearyl chlorides as reactants,the supported Pd catalysts exhibited high efficiency,easy separation,and reusability.This review describes some research progresses of the supported Pd catalysts for Suzuki cross-coupling reaction of aryl chlorides.
Key words: supported palladium(Pd) catalyst; aryl chlorides; Suzuki cross-coupling
0 引 言
碳-碳偶联反应在有机合成中占有重要的地位,其中Suzuki交叉偶联反应是构建碳-碳单键最有效和最灵活的方法之一[1-2].1979年,MIYAURA等[3]报道了在钯(Pd)催化剂条件下卤代芳烃与苯硼酸的合成反应[3].Suzuki交叉偶联反应通常是指卤代芳烃与有机硼酸试剂进行的交叉偶联,芳烃上的取代基通常是卤素,也可以是三氟甲基磺酸基和甲基磺酸基等,有机硼试剂的优点是无毒,对空气稳定而且易得,同时兼容反应物上共存的多种官能团,因此被广泛应用于制药、催化、高分子和先进材料等领域[4].Suzuki交叉偶联反应的反应通式如下:
R_1-B〖(R)〗_2+R_2-XR_1-R_2+X-B〖(R)〗_2,
其中,R1:alkyl,allyl,alkenyl,alkynyl,aryl;R:alkyl,OH,O-alkyl;R2:alkenyl,aryl,alkyl;X:Cl,Br,I,OTf,OPO(OR)2(enol phosphate);base:Na2CO3,Ba(OH)2,K3PO4,Cs2CO3,K2CO3,KF,Bu4F,NaOH.
盡管具有合成简易和高转化率的特点,但Suzuki交叉偶联反应仍因为使用昂贵的溴代和碘代芳烃而严重受限,从而无法在工业上广泛使用[5].由于氯代芳烃具有廉价和易得等优点,在过去的十几年中,对Suzuki交叉偶联反应的研究一直集中在使用氯代芳烃作为偶联底物[6].另一方面,由于氯代芳烃的C-Cl键能比较大,Pd作为催化剂不容易插入C-Cl之间进行氧化加成,这在一定程度上限制了氯代芳烃在Suzuki交叉偶联反应的发展.在这一领域中,均相Pd催化剂已经取得了很大进展,均相催化剂具有分散性好、催化活性高、选择性好等优点,但是存在着均相催化剂难以分离、回收等问题[7-9],在大规模有机合成中,会对环境和经济造成破坏.非均相Pd催化剂因其易分离和可循环利用等优点,成为解决这一问题的有效方法[10].已知的非均相催化体系有负载的Pd配合物[11]、负载的Pd纳米颗粒[12]、没有负载的Pd纳米颗粒[13]等.因此,研究并开发高效的负载型Pd催化剂用于氯代芳烃的Suzuki交叉偶联反应至关重要,也受到越来越多研究人员的重视.本文作者拟对不同载体负载的Pd催化剂催化氯代芳烃的Suzuki交叉偶联反应进行简单综述.
1 无机载体负载的Pd催化剂在氯代芳烃Suzuki交叉偶联反应中的应用
1.1 含镁材料负载的Pd催化剂
1.1.1 Mg-Al负载的催化剂LDH-Pd0
层状二氢氧化物(LDH)在材料、阴离子交换剂以及催化剂上有许多用途[14],其以LDH为载体,不仅可以稳定纳米Pd颗粒,还可以为Pd0提供足够的电子密度,以促进氯代芳烃进行Suzuki偶联反应[15-16].CHOUDARY等[17]发现将PdCl42-交换到用氯化物饱和的LDH上,可得到深棕色的LDH-PdII,然后用水合肼进行还原,得到对空气稳定的黑色纳米Pd催化剂LDH-Pd0粉末.用LDH-Pd0催化剂进行氯代芳烃和芳硼酸的Suzuki交叉偶联反应,如图1所示.
在LDH-Pd0催化的氯代芳烃的Suzuki交叉偶联反应中,具有极性溶剂、带给电子取代基的氯代芳烃和缺电子的芳硼酸有利于催化剂的反应活性,产物的收率为80%~90%.LDH-Pd0纳米催化剂可循环使用5次,催化剂的反应活性和选择性保持不变.
1.1.2 MgO负载的纳米晶体催化剂NAP-Mg-Pd0
由于纳米氧化镁晶体(NAP-MgO)本身具有强碱性和高比表面积,所负载的Pd催化剂在反应中无需额外加入碱,就能表现出很高的催化活性.KANTAM等[18]通过纳米MgO晶体对PdCl42-进行反离子稳定化,然后还原制得的NAP-Mg-Pd0催化剂在氯代芳烃的Suzuki偶联反应中表现出优异的催化活性,可催化生成不对称的联苯,如图2所示.
在NAP-Mg-Pd0催化的氯代芳烃的Suzuki交叉偶联反应中,产物的收率达90%左右,带吸电子基团的氯代芳烃和给电子基团的芳硼酸有利于催化剂的反应活性,该催化剂以平均85%的收率可循环使用4次.
1.2 介孔材料负载的Pd催化剂
1.2.1 中孔方钠石和介孔萘乙酸(NaA)沸石负载的Pd催化剂
将Pd0纳米颗粒或Pd2+负载在碳、沸石、介孔二氧化硅(SiO2)等多孔固体材料上的报道已有很多[19-25].CHOI等[26-28]通过将有机硅烷表面活性剂添加到常规的方钠石和NaA沸石中,合成介孔方钠石和介孔NaA沸石,然后在Pd2+水溶液中进行离子交換,设计了Pd2+交换的介孔方钠石和NaA沸石[29],该催化剂具有很高的热稳定性和催化活性,并且不需要加碱,用于氯代芳基的Suzuki交叉偶联反应,如图3所示.
在中孔Sodalite-Pd/NaA-Pd催化剂催化的氯代芳烃的Suzuki交叉偶联反应中,使用体积小的氯代芳烃,产物的收率可达96%左右,使用体积较大的氯代芳烃,产物的收率也可达85%左右,催化剂可循环使用5次,催化反应的收率保持在85%左右.
1.2.2 中孔LTA沸石(MP-LTA)负载的Pd催化剂(Pd@MP-LTA)
LEE等[30-31]制备了Pd@MP-LTA催化剂用于氯代芳基的Suzuki交叉偶联反应,如图4所示.首先用2,4-戊二酮和3-氨基丙基三乙氧基硅烷反应生成烯弗碱,然后再与Pd2(μ-Cl2)Me2(PPh3)2作用形成含硅基的Pd配位化合物,最后将含硅基的Pd配合物水解沉积在中孔结构的LTA沸石上,得到Pd@MP-LTA催化剂.
所制备的Pd@MP-LTA催化剂用于氯代芳烃的Suzuki交叉偶联反应中,可以在乙醇/水溶液中使用,催化反应活性受底物取代基的影响很小,也可以用氯代杂环化合物进行Suzuki交叉偶联反应,产物的收率在89%~95%之间,催化剂可循环使用10次,未见失活.
1.3 磁性四氧化三铁(Fe3O4)纳米复合材料负载的Pd催化剂
1.3.1 磁性SiO2@Fe3O4纳米颗粒负载的Pd@SiO2@Fe3O4催化剂
由于Fe3O4具有磁性,用Fe3O4作为载体的负载型催化剂可以通过外部永磁体与反应介质分离,磁性Fe3O4纳米颗粒已成为非常具有应用前景的固载化载体[32].这避免了费时费力的分离步骤,并可实现连续化的催化反应.包裹有SiO2薄层的Fe3O4纳米颗粒具有优异的特性,如不变的催化活性和稳定性[33].JIN等[34]通过将含三乙氧基硅基的Pd配位化合物水解聚合在SiO2@Fe3O4的表面上合成了Pd@SiO2@Fe3O4催化剂.
Pd@SiO2@Fe3O4催化剂可在水相中高效催化氯代芳烃的Suzuki交叉偶联反应,如图5所示.产物的收率在83%~93%之间.通常偶联剂中含有氨基供电子体的话很难发生偶联反应[35].但是,该催化剂在2-氯苯胺和3-氯苯胺的Suzuki交叉偶联反应中,产物的收率可达82%~90%;在1-氯萘和9-氯蒽的偶联反应中,收率高达92%~93%;位阻较大的底物2-氯-1,3-二甲基苯也能以71%~73%良好的收率进行偶联反应.Pd@Fe3O4在循环使用10次以后,催化活性保持不变.
1.3.2 磁性Fe3O4@C(MFC)纳米材料上负载的Pd/MFC催化剂
磁性可分离的纳米催化剂已成为均相和非均相催化剂之间的桥梁[36].ZHU等[37]使用沉淀沉积方法将Pd纳米颗粒固定在MFC载体上,制备了一种用碳包裹磁性Fe3O4的负载型Pd/MFC催化剂,用于氯代芳烃的Suzuki交叉偶联反应,如图6所示.该磁性纳米材料既充当Pd纳米颗粒的载体又充当稳定剂,防止了Pd粒子的团聚,提高了催化剂的重复使用性能[38-40].
Pd/MFC催化剂氯代芳烃的Suzuki交叉偶联反应中,反应产物的收率最高可达95 %,催化剂可循环使用5次,催化活性没有降低.
2 有机载体负载的Pd催化剂在氯代芳烃Suzuki交叉偶联反应中的应用
2.1 聚苯胺纳米纤维(PANI)负载的Pd/PANI催化剂
由于“半均相催化剂”的优势[41],人们对金属纳米颗粒催化的兴趣急剧增加.半均相催化将非均相催化的特性(可回收性和可循环性)与均相催化的特性(相对较低的催化剂负载量和良好的选择性)结合在一起.聚苯胺(PA)作为一种新型的半均相催化载体,CHOUDARY等[42-43]对Pd纳米粒子负载在PA上进行了研究.通常这些纳米粒子是通过将Pd(II)盐添加到PANI的水分散液中制备的[42].当界面聚合用于合成PANI时,会形成纳米纤维[44].PANI纳米纤维的高比表面积和孔隙率是制造金属——PA纳米催化剂的理想载体[45-46].利用这些特性,GALLON等[47]用硝酸Pd负载在PANI纳米纤维上制备了Pd/PANI催化剂.KANTAM等[48]利用PA进一步合成了Pd/PANI,PA/Pd1,PA/Pd2,PA/Pd3,PA/Pd4,共5种催化剂.Pd/PANI催化剂对氯代芳烃的Suzuki交叉偶联反应,如图7所示.
在Pd/PANI催化的氯代芳烃的Suzuki交叉偶联反应中,由于PANI可稳定水中的Pd纳米颗粒,该催化反应可以在水相中进行,催化剂使用量非常少,这符合绿色化学的要求;同时偶联反应产物的收率在88%~95 %之间,催化剂可循环使用10次,催化活性没有降低,收率在90 %左右.
2.2 聚苯乙烯负载的Pd配合物Pd/PS催化剂
SCHWEIZER等[49]和INADA等[50-51]报道了利用叔丁基锂、二氯苯基膦、可溶性Pd(PPh3)4等物质合成了叔丁基苯基膦甲基聚苯乙烯(PS)负载的Pd催化剂,如图8所示.该催化剂用于代氯代芳烃的Suzuki交叉偶联反应,如图9所示.
在Pd/PS催化的氯代芳烃的Suzuki交叉偶联反应中,偶联反应产物的收率在78%~90%之间,催化剂可以用于体积较大的2,6-二取代、2,6,2-三取代的联苯和氯代杂环化合物的交叉偶联反应.催化剂可循环使用7次以上,催化活性未见降低.
2.3 氮(N)杂环卡宾主链有机金属聚合物负载的Pd(NHC-Pd-MCOPs)催化剂
在Pd催化的Suzuki交叉偶联反应中,用N-杂环卡宾(NHC)替代对空气敏感的膦配体越来越受到关注[52].与传统的叔膦配体相比,NHC配体具有低毒性、可调节的空间体积、拓扑结构和强供电子等特点,与金属Pd结合牢固,催化剂稳定性好.KHORAMOV等[53]报道了NHC-MCOPs的制备方法, KARIMI等[54]在文献[53]的基础上,用Pd(OAc)2处理二咪唑鎓盐溴化物,再负载在NHC-MCOPs载体上制备NHC-Pd-MCOPs的催化剂,用于氯代芳烃的Suzuki交叉偶联反应,如图10所示.
在NHC-Pd-MCOPs催化的氯代芳烃的Suzuki交叉偶联反应中,催化反应可以在水相中进行,同时偶联反应产物的收率在88%~94%之间,催化剂可循环使用6次以上,催化活性未见降低,收率在92%左右.
3 其他类型催化剂在氯代芳烃Suzuki交叉偶联反应中的应用
3.1 N-二苯基膦基-2-氨基吡啶的PdCl2加合物(L1-PdCl2)催化剂
先前已广泛报道了带有P,N型,或者P,O型半不稳定配体的配合物的合成和催化活性,带有大基团的P-和N-供体配体由于其稳定过渡金属催化剂的能力而受到關注[55].XU等[56]利用P,N型双齿配体N-苯基磷烷基甲基-2-氨基吡啶(L1)和PdCl2成功设计了L1-PdCl2催化剂,并将其用于氯代芳烃的Suzuki交叉偶联反应中,如图11所示.偶联反应产物的收率在82%~98%之间,该催化体系催化效率更高和适用更多的底物[57-65].
3.2 在复杂硅材料上负载的Pd催化剂
3.2.1 SiO2负载的卡宾Pd配合物催化剂P
GURBUZ等[66]将富电子的氮杂环卡宾Pd配合物嫁接在硅材料的表面,制备出的负载Pd催化剂P应用于氯代芳烃的Suzuki交叉偶联反应中,如图12所示.以碳酸铯为碱,二恶烷为溶剂,反应收率大于85%,催化剂可循环使用4次,活性略有降低.
3.2.2 空壳结构的SiO2手性双功能催化剂
SHU等[67]利用空壳结构的SiO2,将Pd中心固定在纳米笼中,而将共价键固定的手性Ru中心固定在纳米通道中,从而构建了手性双功能催化剂Me@IPrPdBF4@mesityleneRuArDPEN@HSMSNs,如图13所示.由于空壳SiO2中Pd-Ru活性位点的分离和协同作用[68],所制备的手性双功能Pd-Ru/SiO2催化剂,实现了氯代苯乙酮的Suzuki交叉偶联反应和不对称氢转移(ATH)一锅法串联反应,如图14所示,得到了手性产物.
手性双功能Me@IPrPdBF4@mesityleneRuArDPEN@HSMSNs催化剂在氯代苯乙酮的Suzuki交叉偶联-ATH串联反应中,能以高达97%收率和96%的对映体过量(ee)值得到手性联芳醇.
4 展 望
上文简述了一些不同类型载体负载的Pd催化剂在氯代芳烃Suzuki交叉偶联反应中的研究进展.虽然氯代芳烃在Suzuki交叉偶联反应中C-C键更难断开,但却是廉价易得的化合物,现已成为热门的研究课题.由于介孔材料和有机聚合物的独特优势,它们作为负载的载体已经得到了很大的发展.展望未来并希望:1) 制备出更多具有功能化的负载型的Pd非均相催化剂,研究出具有更长寿命的催化剂,提高催化效率,降低催化剂的成本;2) 开发出更多高效环境友好的催化剂,可以在水相进行反应,减少对环境的污染;3) 研制出更多具有手性双功能负载型金属催化剂,进行一锅法偶联——ATH串联反应,利用这些反应合成更多有用的天然有机化合物和药物等,为社会和人类作更多的贡献.
参考文献:
[1] YIN L,LIEBSCHER J.Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts [J].Chemical Reviews,2007,107(1):133-173.
[2] RANJAN J,TEJAS P P,SIGMAN M S.Advances in transition metal (Pd,Ni,Fe)-catalyzed cross-coupling reactions using alkyl-organometallics as reaction partners [J].Chemical Reviews,2011,111(3):1417-1492.
[3] MIYAURA N,YANAGI T,SUZUKI A.The palladium-catalyzed cross-coupling reaction of phenylboronic acid with haloarenes in the presence of bases [J].Synthetic Communications,1981,11(7):513-519.
[4] LIU S Y,LI H M,SHI M M,et al.Pd/C as a clean and effictive heterogeneous catalyst for C-C coupling toward highly pure semiconducting polymers [J].Macromolecules,2012,45(22):9004-9007.
[5] SPENCER A.Homogeneous palladium-catalysed arylation of activated alkenes with aryl chlorides [J].Journal of Organometallic Chemistry,1984,270(1):115-120.
[6] ANDERSON K W,BUCHWALD S L.General catalysts for the Suzuki-Miyaura and Sonogashira coupling reactions of aryl chlorides and for the coupling of challenging substrate combinations in water [J].Angewandte Chemie International Edition,2005,44(38):6173-6177.
[7] MONGUCHI Y,FUJITA Y,HASHIMOTO S,et al.Palladium on carbon-catalyzed solvent-free and solid-phase hydrogenation and Suzuki-Miyaurareaction [J].Tetrahedron,2011,67(45):8628-8634.
[8] MOZHGAN N,NASRIN R,BARAHAMN M,et al.Palladium(II)-schiff base complex supported on multi-walled carbon nanotubes:aheterogeneous and reusable catalyst in the Suzuki-Miyaura and copper-free Sonogashira-Hagihara reactions [J].Journal of Organometallic Chemistry,2013,743:63-69.
[9] FORTEA-PERWZ F R,SCHLEGEL I,JULVE M,et al.Sustainable carbon-carbon bond formation catalyzed by new oxamate-containing palladium (II) complexes in ionic liquids [J].Journal of Organometallic Chemistry,2013,743:102-108.
[10] PHAN N T S,VAN DER SLUYS M,JONES C W.On the nature of the active species in palladium catalyzed Mizoroki-Heck and Suzuki-Miyaura couplings-homogeneous or heterogeneous catalysis:a critical review [J].Advanced Synthesis and Catalysis,2006,348(6):609-679.
[11] QIU H,SARKAR S M,LEE D H,et al.Highly effective silica gel-supported N-heterocyclic carbene-Pd catalyst for Suzuki-Miyaura coupling reaction [J].Green Chemistry,2008,10(1):37-40.
[12] PROCH S,MEI Y,VILLANUEVA J M R,et al.Suzuki‐and Heck‐type cross-coupling with palladium nanoparticles immobilized on spherical polyelectrolyte brushes [J].Advanced Synthesis and Catalysis,2008,350(3):493-500.
[13] SAWAI K,TATUMI R,NAKAHODO T,et al.Asymmetric Suzuki-Miyaura coupling reactions catalyzed by chiral palladium nanoparticles at room temperature [J].Angewandte Chemie International Edition,2008,47(36):6917-6919.
[14] PARKER L M,MILESTONE N B,NEWMAN R H.The use of hydrotalcite as an anion absorbent [J].Industrial & Engineering Chemistry Research,1995,34(4):1196-1202.
[15] CHOUDARY B M,CHOWDARI N S,JYOTHI K,et al.Catalytic asymmetric dihydroxylation of olefins with reusable OsO42- on ion-exchangers:the scope and reactivity using various cooxidants [J].Journal of the American Chemical Society,2002,124(19):5341-5349.
[16] SELS B,DE VOS D,BUNTINX M,et al.Layered double hydroxides exchanged with tungstate as biomimetic catalysts for mild oxidative bromination [J].Nature,1999,400:855-857.
[17] CHOUDARY B M,MADHI S,CHOWDARI N S,et al.Layered double hydroxide supported nanopalladium catalyst for Heck-,Suzuki-,Sonogashira-,and Stille-type coupling reactions of chloroarenes [J].Journal of the American Chemical Society,2002,124(47):14127-14136.
[18] KANTAM M L,ROY S,ROY M,et al.Nanocrystalline magnesium oxide-stabilized palladium (0):an efficient and reusable catalyst for Suzuki and Stille cross-coupling of aryl halides [J].Advanced Synthesis and Catalysis,2005,347(15):2002-2008.
[19] DE VRIES J G.A unifying mechanism for all high-temperature Heck reactions:the role of palladium colloids and anionic species [J].Dalton Transactions,2006(3):421-429.
[20] REETZ M T,DE VRIES J G.Ligand-free Heck reactions using low Pd-loading [J].Chemical Communications,2004(14):1559-1563.
[21] KAWAMURA M,SATO K.Magnetic nanoparticle-supported crown ethers [J].Chemical Communications,2007(32):3404-3405.
[22] SCHMIDT A F,SMIRNOV V V.Simple method for enhancement of the ligand-free palladium catalyst activity in the Heck reaction with non-activated bromoarenes [J].Journal of Molecular Catalysis A:Chemical,2003,203(1/2):75-78.
[23] SCHMIDT A F,SMIRNOV V V.Concept of “magic” number clusters as a new approach to the interpretation of unusual kinetics of the Heck reaction with aryl bromides [J].Topics in Catalysis,2005,32(1/2):71-75.
[24] YIN L,IEBSCHER J.Carbon-carbon coupling reactions catalyzed by heterogeneous palladium catalysts [J].Chemical Reviews,2007,107(1):133-173.
[25] ROSSI L M,SILVA F P,VONO L L R,et al.Superparamagnetic nanoparticle-supported palladium:a highly stable magnetically recoverable and reusable catalyst for hydrogenation reactions [J].Green Chemistry,2007,9(4):379-385.
[26] CHOI M,CHO H S,SRIVASTAVA R,et al.Amphiphilicorganosilane-directed synthesis of crystalline zeolite with tunable mesoporosity [J].Nature Materials,2006,5(9):718-723.
[27] SHETTI V N,KIM J,SRIVASTAVA R,et al.Assessment of the mesopore wall catalytic activities of MFI zeolite with mesoporous/microporous hierarchical structures [J].Journal of Catalysis,2008,254(2):296-303.
[28] CHOI M,SRIVASTAVA R,RYOO R.Organosilane surfactant-directed synthesis of mesoporousaluminophosphates constructed with crystalline microporous frameworks [J].Chemical Communications,2006(42):4380-4382.
[29] CHOI M,LEE D H,NA K,et al.High catalytic activity of palladium (II)-exchanged mesoporoussodalite and NaA zeolite for bulky aryl coupling reactions:reusability under aerobic conditions [J].Angewandte Chemie International Edition,2009,48(20):3673-3676.
[30] LEE D H,JUNG J Y,LEE I M,et al.(β‐Oxoiminato)(phosphanyl) palladium complexes as highly active catalysts in Suzuki-Miyaura coupling reactions [J].European Journal of Organic Chemistry,2008,2008(2):356-360.
[31] LEE D H,CHOI M,YU B W,et al.Expanded heterogeneous Suzuki-Miyaura coupling reactions of aryl and heteroaryl chlorides under mild conditions [J].Advanced Synthesis and Catalysis,2009,351(17):2912-2920.
[32] CHOUHAN G,WANG D,ALPER H.Magnetic nanoparticle-supported proline as a recyclable and recoverable ligand for the CuI catalyzed arylation of nitrogen nucleophiles [J].Chemical Communications,2007(45):4809-4811.
[33] DENG Y D,QI D W,ZHAO D Y,et al.Superparamagnetic high-magnetization microspheres with an Fe3O4@SiO2 core and perpendicul arly aligned mesoporous SiO2 shell for removal of microcystins [J].Journal of the American Chemical Society,2008,130(1):28-29.
[34] JIN M J,LEE D H.A practical heterogeneous catalyst for the Suzuki,Sonogashira,and Stille coupling reactions of unreactive aryl chlorides [J].Angewandte Chemie International Edition,2010,49(6):1119-1122.
[35] BILLINGSLEY K L,ANDERSON K W,BUCHWALD S L.A highly active catalyst for Suzuki-Miyauracross-coupling reactions of heteroaryl compounds [J].Angewandte Chemie International Edition,2006,45(21):3484-3488.
[36] SHYLESH S,SCHUNEMANN V,THIEL W R.Magnetically separable nanocatalysts:bridges between homogeneous and heterogeneous catalysis [J].Angewandte Chemie International Edition,2010,49(20):3428-3459.
[37] ZHU M,DIAO G.Magnetically recyclable Pd nanoparticles immobilized on magnetic Fe3O4@C nanocomposites:preparation,characterization,and their catalytic activity toward Suzuki and Heck coupling reactions [J].The Journal of Physical Chemistry C,2011,115(50):24743-24749.
[38] ZHU Y,SHEN J,ZHOU K,et al.Multifunctional magnetic composite microspheres with in situ growth Au nanoparticles:a highly efficient catalyst system [J].The Journal of Physical Chemistry C,2010,115(5):1614-1619.
[39] GE J,ZHANG Q,ZHANG T,et al.Core-satellite nanocomposite catalysts protected by a porous silica shell:controllable reactivity,high stability,and magnetic recyclability [J].Angewandte Chemie International Edition,2008,47(46):8924-8928.
[40] DENG Y,CAI Y,SUN Z,et al.Multifunctional mesoporous composite microspheres with well-designed nanostructure:a highly integrated catalyst system [J].Journal of the American Chemical Society,2010,132(24):8466-8473.
[41] ASTRUC D,LU F,ARANZAES J R.Nanoparticles as recyclable catalysts:the frontier between homogeneous and heterogeneous catalysis [J].Angewandte Chemie International Edition,2005,44(48):7852-7872.
[42] CHOUDARY B M,ROY M,ROY S,et al.Preparation,characterization and catalytic properties of polyaniline-supported metal complexes [J].Advanced Synthesis and Catalysis,2006,348(12/13):1734-1742.
[43] HOUDAYER A,SCHNEIIDER R,BILLUAD D,et al.Heck and Suzuki-Miyaura couplings catalyzed by nanosized palladium in polyaniline [J].Applied Organmetallic Chemistry,2005,19(12):1239-1248.
[44] HUANG J,KANER R B.A general chemical route to polyanilinenanofibers [J].Journal of the American Chemical Society,2004,126(3):851-855.
[45] HUANG J,KANER R B.The intrinsic nanofibrillar morphology of polyaniline [J].Chemical Communications,2006(4):367-376.
[46] WANG H L,LI W,JIA Q X,et al.Tailoring conducting polymer chemistry for the chemical deposition of metal particles and clusters [J].Chemistry of Materials,2007,19(3):520-525.
[47] GALLON B J,KOJIMA R W,KANER R B,et al.Palladium nanoparticles supported on polyaniline nanofibers as a semi‐heterogeneous catalyst in water [J].Angewandte Chemie International Edition,2007,46(38):7251-7254.
[48] KANTAM M L,ROY M,ROY S,et al.Polyaniline supported palladium catalyzed Suzuki-Miyaura cross-coupling of bromo-and chloroarenes in water [J].Tetrahedron,2007,63(33):8002-8009.
[49] SCHWEIZER S,BECHT J M,LE DRIAN C.Highly efficient reusable polymer-supported Pd catalysts of general use for the Suzuki reaction [J].Tetrahedron,2010,66(3):765-772.
[50] INADA K,MIYAURA N.The cross-coupling reaction of arylboronic acids with chloropyridines and electron-deficient chloroarenes catalyzed by a polymer-bound palladium complex [J].Tetrahedron,2000,56(44):8661-8664.
[51] MIYAURA N,SUZUKI A.Palladium-catalyzed cross-coupling reactions of organoboroncompounds [J].Chemical Reviews,1995,95(7):2457-2483.
[52] CORBET J P,MIGNANI G.Selected patented cross-coupling reaction technologies [J].Chemical Reviews,2006,106(7):2651-2710.
[53] KHORAMOV D M,BOYDSTON A J,BIELAWSKI C W.Synthesis and study of janusbis(carbene)s andtheir transition-metal complexes [J].Angewandte Chemie International Edition,2006,45(37):6186-6189.
[54] KARIMI B,AKHAVAN P F.Main-chain NHC-palladium polymer as a recyclable self-supported catalyst in the Suzuki-Miyaura coupling of aryl chlorides in water [J].Chemical Communications,2009(25):3750-3752.
[55] SAIKIA B,ALI A A,BORUAH P R,et al.Pd (OAc)2 and (DHQD)2 PHAL as a simple,efficient and recyclable/reusable catalyst system for Suzuki-Miyaura cross-coupling reactions in H2O at room temperature [J].New Journal of Chemistry,2015,39(4):2440-2443.
[56] XU L Y,LIU C Y,LIU S Y,et al.Suzuki-Miyaura cross-coupling reaction of aryl chlorides with aryl boronic acids catalyzed by a palladium dichloride adduct of N-diphenyl phosph anyl-2-aminopyridine [J].Tetrahedron,2017,73(22):3125-3132.
[57] LIU G,LIU C,HAN F,et al.Highly active palladium catalysts containing a 1,10-phenanthroline analogue N-heterocyclic carbene for room temperature Suzuki-Miyaura coupling reactions of aryl chlorides with arylboronic acids in aqueous media [J].Tetrahedron Letters,2017,58(8):726-731.
[58] MARCHENKO A,KOIDAN G,HURIEV A A,et al.Palladium(II) complexes with chelating N-phosphanyl acyclic diamino carbenes:synthesis,characterization and catalytic performance in Suzuki couplings [J].Dalton Transactions,2016,45(5):1967-1975.
[59] MARCHENKO A,KOIDAN G,HURIEVA A N,et al.Chelate palladium (II) complexes with saturated N-phosphanyl-N-heterocyclic carbene ligands:synthesis and catalysis [J].Organometallics,2016,35(5):762-770.
[60] BARAN T,MENTES A.Construction of new biopolymer (chitosan)-based pincer-type Pd (II) complex and its catalytic application in Suzuki cross coupling reactions [J].Journal of Molecular Structure,2017,1134:591-598.
[61] SCHAARSCHMIDT D,LANG H.P,O-Ferrocenes in Suzuki-Miyaura C,C couplings [J].ACS Catalysis,2011,1(4):411-416.
[62] MUTHUMARI S,RAMESH R.Highly efficient palladium (II) hydrazone based catalysts for the Suzuki coupling reaction in aqueous medium [J].RSC Advances,2016,6(57):52101-52112.
[63] BORAH M,BHATTACHARYYA P K,DAS P.Iron carbonyl complex containing bis[2-(diphenylphosphino) phenyl] ether enhancing efficiency in the palladium-catalyzed Suzuki-Miyaura reaction [J].Applied Organmetallic Chemistry,2012,26(3):130-134.
[64] NING J J,WANG J F,REN Z G,et al.Versatile palladium(II)-catalyzed Suzuki-Miyaura coupling in ethanol with a novel,stabilizing ligand [J].Tetrahedron,2015,71(23):4000-4006.
[65] HEJAZIFAR M,EARLE M,SEDDON K R,et al.Ionic liquid-based microemulsions in catalysis [J].The Journal of Organic Chemistry,2016,81(24):12332-12339.
[66] GURBUZ N,?ZDEMIR I,SECKIN T,et al.Surface modification of inorganic oxide particles with a carbene complex of palladium:a recyclable catalyst for the Suzuki reaction [J].Journal of Inorganic and Organometallic Polymers,2014,14(2):149-159.
[67] SHU X,JIN R,ZHAO Z,et al.An integrated immobilization strategy manipulates dual active centers to boost enantioselective tandem reactions [J].Chemical Communications,2018,54(94):13244-13247.
[68] SOLED S.Silica-supported catalysts get a new breath of life [J].Science,2015,350(6265):1171-1172.
(責任编辑:郁 慧,包震宇)